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Natural Language

Spoken Language
Written Language
Vocal Language

Sign Language



Writing systems

e Alphabets (English)
e Logographies (Chinese, Egyptian hieroglyphs)
e Abugida (Brahmic, Tibetan etc.)

Directions:

e Top-down,
e Left-Right,
e Rightto Left
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Natural Language Processing

e Natural Language Understanding
o Information Retrieval
o Summarization

e Natural Language Generation

o Automatic Legal Drafting
o Summarization



Word, Phrase, Sentences, Discourse

e Part of Speech

e Morphology

e Sense Disambiguation
e Entity Identification



Morphology



Unsupervised Root Words identification
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Unsupervised Root Words identification
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Unsupervised Root Words identification
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Unsupervised Root Words identification

Table III. Retrieval Results for Various Stemmers (WSdJ, queries 151-200)

No Stemming | D; — 0.046 | Dy — 0.31 | D3 — 1.55 | D4 — 0.86 | Lovins | Porter | n-gram
Rel ret 3082 3235 3249 3268 3265 3318 | 3290 | 3171
Py 0.4920 0.5020 0.4960 0.5090 0.5130 | 0.5030 | 0.5060 | 0.4960
Avg.P 0.3505 0.3732 0.3721 0.3796 0.3775 |0.3746 | 0.3746 | 0.3595

Table VII. Performance of D3;-Based Stemmer on the French LeMonde

Corpus
No Stemmmg D';(115) D‘;(155) D';(Z].O) Porter
Rel ret 516 540 538 538 540
Py 0.2222 0.2611 0.2578 0.2522 0.2467
Avg.P 0.3987 0.4301 0.4334 0.4153 0.4284




Parsing
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Dependency Parsing

Basically, we represent dependencies as a directed graph G= (V, A) where V(set of
vertices) represents words (and punctuation marks as well) in the sentence & A( set of arcs)
represent the grammar relationship between elements of V.

A dependency parse tree is the directed graph mentioned above which has the below
features:

e Root has no Incoming arcs (can only be Head in Head-Dependent pair)
e \ertices(except Root) should have only one incoming arc (Only one Parent/Head)
e A Unique path should exist between Root & each vertex in the tree.



Text representation



Text representation

TF-IDF

Latent semantic indexing

Word2Vec

Bidirectional Encoder Representations from Transformer

And many more...



Bidirectional Encoder Representations from Transformer (BERT)

1. BERT (Bidirectional Encoder Representations from Transformers) uses Transformer, an
attention mechanism that “learns” contextual relations between words (or sub-words)
in a text.

2. BERT is pre-trained on two NLP tasks:

a. Masked Language Modeling: Predict the masked word given the context words
b. Next Sentence Prediction: Given a sentence predict the next sentence.

3. As opposed to directional models, which read the text input sequentially (left-to-right or
right-to-left), the Transformer encoder reads the entire sequence of words at once.

4. BERT is pre-trained on a large corpus of unlabelled text which includes the entire
Wikipedia (2,500 million words) and Book Corpus (800 million words).

Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).



BERT Architecture
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BERT Architecture

What is the best contextualized embedding for “Help” in that context?
For named-entity recognition task CoNLL-2003 NER
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Challenges in Downstream tasks :

Search Engines

Hate Speech Detection
Sentiment Analysis
Question Answering
Recommendation
Summarization



Summarization



DATA

DUC 2002, DUC 2003 and DUC 2004

1. DUC 2002: 59 clusters of around 10 documents each (TREC collection)
2. DUC 2003: 30 clusters of about 10 documents each (TDT Datasets)
3. DUC 2004 50 clusters with 10 documents per cluster. (TDT Datasets)

*All three datasets include four manually written summaries per cluster.
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Effect of pre-processing and post-processing steps on ROUGE-1 recall.

System No pre/post Only Only stopword Only redundancy Stopword + Redundancy
processing stemming removal removal removal
DUC 2002 Centroid 0.41783 0.42001 0.42223 0.43157 0.44987
Greedy-KL 0.40173 0.40537 0.41392 0.40962 0.41522
LexRank 0.42733 0.42000 0.42292 0.44134 0.43289
FreqSum 0.39247 0.38120 0.40480 0.38766 0.42522
DUC 2003 Centroid 0.33387 0.34222 0.34382 0.35237 0.36780
Greedy-KL 0.31473 0.31263 0.33892 0.31592 0.33892
LexRank 0.35643 0.34900 0.34292 0.36111 0.35689
FreqSum 0.29316 0.30120 0.32748 0.30486 0.34335
DUC 2004 Centroid 0.35399 0.35104 0.34874 0.36541 0.37271
Greedy-KL 0.31913 0.32215 0.33717 0.31866 0.34160
LexRank 0.35356 0.34343 0.34453 0.36277 0.35377
FreqSum 0.30776 0.31500 0.34816 0.31370 0.35851
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Hate Speech Detection



User Aggression Detection’

NAG: Non- Aggressive CAG: Covertly Aggressive OAG: Overtly Aggressive

[1] R. Kumar, A. N. Reganti, A. Bhatia, and T. Maheshwari. Aggression-annotated Corpus of Hindi-English Code-mixed
Data. In Proceedings of the 11th Language Resources and Evaluation Conference (LREC), Miyazaki, Japan, 2018.



Heatmap: Results on TRAC Facebook English Dataset
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Heatmap: Results on TRAC Twitter English Dataset
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Heatmap: TRAC Facebook Hindi Dataset
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Heatmap: TRAC Twitter Hindi Dataset
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Multilingual and Domain Specific

Japanese Patent retrieval task

Arabian Text summarization

Bengali news recommendation systems

English Chinese cross lingual Information retrieval systems

TREC, NIST, USA
NTCIR, Japan
FIRE, India



Evaluation

Training data (human annotated data)

o

Evaluation Metrics

o

Test and Validation Data

Its a round the year process.



Evaluation

TREC, NIST, USA
CLEF, EU

NTCIR, Japan
FIRE, India



