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NEWLY AVAILABLE SECTION OF
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The Art of
Computer
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21°" century : Reduce a problem to SAT 6

DONALD E. KNUTH

Industrial SAT solvers : Software/Hardware Verification, cryptography, Al

planning, genome rearrangement, constrained scheduling...



SAT Revolution

SAT Competition Winners on the SC2020 Benchmark Suite
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The Price of Success

o SAT is NP-complete yet solvers
tend to solve problems involving
millions of variables

e The solvers of today are very
complex

o We understand very little why
SAT solvers work!
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e Learnt clauses are very useful

o But they consume memory and can slowdown other components of SAT solving

o Not practical to keep all the learnt clauses. We can keep around 5% of the learnt clauses.
o Task : predict whether the current clause will be useful in future.

o Popular heuristics include
— Delete larger clauses
— Delete less used clauses

— Delete clauses based on Literal block distance
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e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

formula(s)

Run a aided
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Label

Labelled
data
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Feature Engineering / Data Collection

o Modify our solver CryptoMiniSAT to
record different features, while the

solver runs.
« Features include LBD size used last 10k
— properties of learnt clauses 10 15 3
— state of solver 7 10 |

— properties of formula

e Run on UNSAT instances
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top half
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Task : predict whether the current clause will be useful in future.

UNSAT PROOF logged in ,
instance DRUP format DRAT - trim

p cnf é f Z’ 8 8 Backward pass to
-2 30 S s an construct optimal
_1 2 g 4-1-200 proof.

1 290 5 1-200

1 -20 6 2-300

5 -3 0 7-2 0450

3 60 8 3 01230

9 0 6780
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Labeling

o Look at DRAT-trim’s proof

glue size used_last_I10k activity label
o Check which learnt clauses are useful 10 15 3 top half keep
« Label accordingly. 7 10 | ';:I‘]';mm throw
3 7 0 bottom throw
half
Forward Pass Backward Pass

Collect Data Label Data



Inference Engine

used las
glue size t_10k label
10 15 3 keep
7 10 |  throw

3 7 0 throw
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rdb1.used_for_uip_creation < 15.5
8.9%
[0.47,0.53]

clsize < 4.5
17.6%
[0.382, 0.618]

e cl.s“igs.: <65 rl:bO.used_for_Lf'ip_creaim <45
[055, 0.45] (0667, 0.333] rdb1.used_f for u|p creation < 46.5 ] l
rdb0.used for_uip_creation £21.5 e 572 0 = - 533 -
7 10 | throw
3 7 0 throw
o (] (] (] ' T X _ljp_ " <
Create new solver with this heuristic! [mw;mf:]m wﬁ]_m
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Experimental Setup

e All the UNSAT instances from SAT

2014-17. on 400 SAT ’19 instances
solver # Avg.

e The number of learnt clauses for N solved  Runtime*
different problems varied from few CryptoMiniSat 291 9939
hundreds to millions PredCryptoMiniSat 299 9710

o In total, we had 422K data points.

o Tested on SAT competition 2019
benchmarks.
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Domain specific solver

: o e
comparing average runtime in seconds Rooms for improvement
Benchmark
Solver trained on  SATCompetition '[9 SHA-1 o Sampling
o« Labelling
SATC titi 2440 1263 .
SMPEHEen « Different models to try
SHA-I 2805 1165
N
Benchmark Benchmark
Solver trained on AES Solver trained on Grain
SAT Competition 1474 SATCompetition 1860

AES 1340 Grain 1973
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Conclusion

o First time, white-box access to SAT solvers.
o Democritizing SAT solver research : easy to test new features.
o Extend for branching and restarts.

o Create domain specific solvers.

Code : meelgroup.github.io/crystalball
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