
CrystalBall: Design a SAT Solver as you need it

Arijit Shaw Kuldeep S. Meel, Mate Soos Raghav Kulkarni

Institute for
Advancing Intelligence

School of Computing

The SAT problem

The SAT problem

} }

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

} }

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

} }

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

● Cryptanalysis

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

● Cryptanalysis
● Optimize the S-Box

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

● Cryptanalysis
● Optimize the S-Box
● Get the optimized

decision tree

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

● Cryptanalysis
● Optimize the S-Box
● Get the optimized

decision tree
● Prove theorem

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

● Cryptanalysis
● Optimize the S-Box
● Get the optimized

decision tree
● Prove theorem
● Problems in chessboard

The SAT problem

Satisfiable.
(a = ,⟙ b = , ⟙ c =)⟙

Unsatisfiable.

} }

A lot can be encoded:

● Cryptanalysis
● Optimize the S-Box
● Get the optimized

decision tree
● Prove theorem
● Problems in chessboard

SAT is NP-Complete

SAT is NP-Complete

In 80’s : Reduce SAT to a problem

– To show it’s difficuilty

21st century : Reduce a problem to SAT

– To solve it in practice

SAT is NP-Complete

In 80’s : Reduce SAT to a problem

– To show it’s difficuilty

21st century : Reduce a problem to SAT

– To solve it in practice

Industrial SAT solvers : Software/Hardware Verification, cryptography, AI

planning, genome rearrangement, constrained scheduling...

SAT Revolution

The Price of Success

● SAT is NP-complete yet solvers
tend to solve problems involving
millions of variables

● The solvers of today are very
complex

● We understand very little why
SAT solvers work!

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

[DL60, DLL62]

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

[DL60, DLL62]

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

Level Dec. Unit Prop.

0

1 x

2 y

3 a

[DL60, DLL62]

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

Level Dec. Unit Prop.

0

1 x

2 y

3 a

[DL60, DLL62]

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

Level Dec. Unit Prop.

0

1 x

2 y

3 a

[DL60, DLL62]

b

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

Level Dec. Unit Prop.

0

1 x

2 y

3 a

[DL60, DLL62]

b

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

Level Dec. Unit Prop.

0

1 x

2 y

3 a

[DL60, DLL62]

b

The DPLL Algorithm

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and
flip variable

SAT

UNSAT

N

N

N

Y

Y

Y

Level Dec. Unit Prop.

0

1 x

2 y

3 a

[DL60, DLL62]

b

Level Dec. Unit
Prop.

0

1 x

2 y

3 z a

b

Level Dec. Unit
Prop.

0

1 x

2 y

3 z a

b

[MSS96] Analyze Conflict

➢ Create a new clause

Level Dec. Unit
Prop.

0

1 x

2 y

3 z a

b

Conflict Driven Clause Learning (CDCL)

[MSS96] Analyze Conflict

➢ Create a new clause

Level Dec. Unit
Prop.

0

1 x

2 y

3 z a

b

Conflict Driven Clause Learning (CDCL)

[MSS96] Analyze Conflict

➢ Create a new clause

Level Dec. Unit
Prop.

0

1 x

2 y

3 z a

b

Clause learning can be related with resolution

Conflict Driven Clause Learning (CDCL)

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and flip
variable

SAT

UNSAT

N

N

N

Y

Y

Y

Conflict Driven Clause Learning (CDCL)

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and flip
variable

SAT

UNSAT

N

N

N

Y

Y

Y

AnalyzeConflict

Conflict Driven Clause Learning (CDCL)

Decision Heuristics

Clause Maintainance
Heuristics

Restart Heuristics

Unassigned
Variables?

Assign value to
variable

Unit Propagation

Conflict?

Can undo
decision?

Backtrack and flip
variable

SAT

UNSAT

N

N

N

Y

Y

Y

AnalyzeConflict

The curse of learnt clauses

● Learnt clauses are very useful

● But they consume memory and can slowdown other components of SAT solving

● Not practical to keep all the learnt clauses. We can keep around 5% of the learnt clauses.

● Task : predict whether the current clause will be useful in future.

The curse of learnt clauses

● Learnt clauses are very useful

● But they consume memory and can slowdown other components of SAT solving

● Not practical to keep all the learnt clauses. We can keep around 5% of the learnt clauses.

● Task : predict whether the current clause will be useful in future.

● Popular heuristics include

– Delete larger clauses

– Delete less used clauses

– Delete clauses based on Literal block distance

Data-Driven Design of SAT solver

● View SAT solvers as composition of prediction engines

– Branching

– Clause learning

– Memory management

– Restarts

Data-Driven Design of SAT solver

● View SAT solvers as composition of prediction engines

– Branching

– Clause learning

– Memory management

– Restarts

CrystalBall Framework

CrystalBall Framework

● For inference, we want to do
supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

CrystalBall Framework

Labelled data
● For inference, we want to do

supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

CrystalBall Framework

Labelled data
● For inference, we want to do

supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

Run a
Classifier

Decision tree

CrystalBall Framework

Labelled data
● For inference, we want to do

supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

Run a
Classifier

Decision tree

Code for solver

Generate
Code

CrystalBall Framework

Labelled data
● For inference, we want to do

supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

Run a
Classifier

Decision tree

Code for solver

Generate
Code

formula(s)

CrystalBall Framework

Labelled data
● For inference, we want to do

supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

Run a
Classifier

Decision tree

Code for solver

Generate
Code

formula(s)

Run a aided
SAT solver

Data

CrystalBall Framework

Labelled data
● For inference, we want to do

supervised learning

● For every clause, we need values of
different features and a label

● The inference engine should learn
the model to predict the label

Run a
Classifier

Decision tree

Code for solver

Generate
Code

formula(s)

Run a aided
SAT solver

Data

Labelled
data

Sample and
Label

Feature Engineering / Data Collection

● Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

● Features include

– properties of learnt clauses

– state of solver

– properties of formula

Feature Engineering / Data Collection

LBD size used_last_10k activity

10 15 3 top half

7 10 1 bottom
half

3 7 0 bottom
half

● Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

● Features include

– properties of learnt clauses

– state of solver

– properties of formula

Feature Engineering / Data Collection

LBD size used_last_10k activity

10 15 3 top half

7 10 1 bottom
half

3 7 0 bottom
half

● Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

● Features include

– properties of learnt clauses

– state of solver

– properties of formula

● Run on UNSAT instances

Feature Engineering / Data Collection

LBD size used_last_10k activity

10 15 3 top half

7 10 1 bottom
half

3 7 0 bottom
half

● Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

● Features include

– properties of learnt clauses

– state of solver

– properties of formula

● Run on UNSAT instances

Labeling

Task : predict whether the current clause will be useful in future.

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT
instance

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT
instance

PROOF logged in
DRUP format

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT
instance

PROOF logged in
DRUP format

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT
instance

PROOF logged in
DRUP format

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT
instance

PROOF logged in
DRUP format DRAT - trim

Backward pass to
construct optimal
proof.

Labeling

● Look at DRAT-trim’s proof

● Check which learnt clauses are useful

● Label accordingly.

Labeling

glue size used_last_10k activity label

10 15 3 top half keep

7 10 1 bottom
half

throw

3 7 0 bottom
half

throw

● Look at DRAT-trim’s proof

● Check which learnt clauses are useful

● Label accordingly.

Labeling

glue size used_last_10k activity label

10 15 3 top half keep

7 10 1 bottom
half

throw

3 7 0 bottom
half

throw

● Look at DRAT-trim’s proof

● Check which learnt clauses are useful

● Label accordingly.

Labeling

glue size used_last_10k activity label

10 15 3 top half keep

7 10 1 bottom
half

throw

3 7 0 bottom
half

throw

● Look at DRAT-trim’s proof

● Check which learnt clauses are useful

● Label accordingly.

Backward PassForward Pass

Collect Data Label Data

Inference Engine

glue size
used_las
t_10k label

10 15 3 keep

7 10 1 throw

3 7 0 throw

Inference Engine

glue size
used_las
t_10k label

10 15 3 keep

7 10 1 throw

3 7 0 throw

Inference Engine

glue size
used_las
t_10k label

10 15 3 keep

7 10 1 throw

3 7 0 throw

Create new solver with this heuristic!

Experimental Setup

● All the UNSAT instances from SAT
2014-17.

● The number of learnt clauses for
different problems varied from few
hundreds to millions

● In total, we had 422K data points.

● Tested on SAT competition 2019
benchmarks.

Experimental Setup

● All the UNSAT instances from SAT
2014-17.

● The number of learnt clauses for
different problems varied from few
hundreds to millions

● In total, we had 422K data points.

● Tested on SAT competition 2019
benchmarks.

solver #
solved

Avg.
Runtime*

CryptoMiniSat 291 9939

PredCryptoMiniSat 299 9710

on 400 SAT ’19 instances

Domain specific solver

Benchmark

Solver trained on SATCompetition ’19 SHA-1

SATCompetition 2440 1263

SHA-1 2805 1165

comparing average runtime in seconds

Domain specific solver

Benchmark

Solver trained on SATCompetition ’19 SHA-1

SATCompetition 2440 1263

SHA-1 2805 1165

Benchmark

Solver trained on AES

SATCompetition 1474

AES 1340

comparing average runtime in seconds

Benchmark

Solver trained on Grain

SATCompetition 1860

Grain 1973

Domain specific solver

Benchmark

Solver trained on SATCompetition ’19 SHA-1

SATCompetition 2440 1263

SHA-1 2805 1165

Benchmark

Solver trained on AES

SATCompetition 1474

AES 1340

comparing average runtime in seconds

Benchmark

Solver trained on Grain

SATCompetition 1860

Grain 1973

Rooms for improvement

● Sampling
● Labelling
● Different models to try

...

Conclusion

● First time, white-box access to SAT solvers.

● Democritizing SAT solver research : easy to test new features.

● Extend for branching and restarts.

Conclusion

● First time, white-box access to SAT solvers.

● Democritizing SAT solver research : easy to test new features.

● Extend for branching and restarts.

● Create domain specific solvers.

Conclusion

● First time, white-box access to SAT solvers.

● Democritizing SAT solver research : easy to test new features.

● Extend for branching and restarts.

● Create domain specific solvers.

\end{document}

Code : meelgroup.github.io/crystalball

An approach in solving Cryptographic Problems

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem

An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem Solution

An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem Solution

E
N
C
O
D
I
N
G

An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem Solution

E
N
C
O
D
I
N
G

S
O
L
V
I
N
G

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 2 (6)
	Slide: 2 (7)
	Slide: 2 (8)
	Slide: 2 (9)
	Slide: 2 (10)
	Slide: 2 (11)
	Slide: 2 (12)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 6 (7)
	Slide: 6 (8)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 11 (6)
	Slide: 11 (7)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 19 (6)
	Slide: 19 (7)
	Slide: 19 (8)

