CrystalBall: Design a SAT Solver as you need it

Arijit Shaw Kuldeep S. Meel, Mate Soos Raghav Kulkarni

Institute for School of Computing
Advancing Intelligence

=& e | CHENNAI
tcg crest NUS MY | S

of Singapore

The SAT problem

Fi1=(aVb)A(-bVc)

The SAT problem

C1 C2

~ ~
Fi1=(aVb)A(-bVc)

The SAT problem

C1 C2

~— ~= Satisfiable.
Fi1=(aVb)A(-bVc) @=T,b=Tc=T)

The SAT problem

C1 C2
~— ~= Satisfiable.
Fi=(aVbA(—-bVc) @=T.b=Tc=T)

Fy = (aVb)A(=bVe)A(a) A (—c)

The SAT problem

C1 C2
~— ~= Satisfiable.
Fi=(aVbA(—-bVc) @=T.b=Tc=T)

Fy = (aVb)A(=bVe)A(a) A (—c)

Unsatisfiable.

The SAT problem

Cq C9 A lot can be encoded:
/ \ ~ Satisfiable.
Fi=(aVvb)A(-bVec) =T b=Tc=T)

Fy = (aVDb)A(=bVc)A (a)A(—c)

Unsatisfiable.

The SAT problem

C1 C2 A lot can be encoded:
: ‘ ‘ ‘ Satisfiable. Cryptanalysis
Fi=(aVvb)A(-bVec) =T b=Tc=T)

Fy = (aVDb)A(=bVc)A (a)A(—c)

Unsatisfiable.

The SAT problem

C1 Co A lot can be encoded:
~— ~ =\ Satisfiable. o Cryptanalysis
Fi=(aVb)A(-bVc) @=T.b=Tc=T) « Optimize the S-Box

Fo = (aVb)A(=bVe)A(a) A (=)

Unsatisfiable.

The SAT problem

Cq Co A lot can be encoded:
F= N ~ Satisfiable. « Cryptanalysis
F1 - (CL Vv b) A (ﬁb \ C) (a =T,b=T,c=T) o Optimize the S-Box

o Get the optimized
decision tree

Fo=(aVb)A(=bVc)A(a) A (—c)

Unsatisfiable.

The SAT problem

C1 Co A lot can be encoded:

/ \ ~ Satisfiable. o Cryptanalysis
F1 — (CL N b) A (ﬁb \% C) @=T,b=Tc=T) o Optimize the S-Box
« Get the optimized
decision tree
e Prove theorem

Fo=(aVb)A(=bVec)A(a)A(—c)

Unsatisfiable.

The SAT problem

C1 C2

~ ~ = Satisfiable.
Fi1=(aVb)A(=bVc) @=T.b=Tc=T)

Fo=(aVb)A(=bVc)A(a) N (—c)

Unsatisfiable.

A lot can be encoded:

Cryptanalysis

Optimize the S-Box

o Get the optimized
decision tree

e Prove theorem

e Problems in chessboard

The SAT problem

Cq Co A lot can be encoded:

~ ~ = Satisfiable.
Fi1=(aVb)A(=bVc) @=T.b=Tc=T)

Cryptanalysis

Optimize the S-Box

o Get the optimized
decision tree

e Prove theorem

e Problems in chessboard

Fo=(aVb)A(=bVc)A(a) N (—c)

Unsatisfiable SAT is NP-Complete

SAT is NP-Complete

Bl

NEWLY AVAILABLE SECTION OF

In 80’s : Reduce SAT to a problem —

The Art of
Computer
Programming

21* century : Reduce a problem to SAT 6

Satisfiability

DONALD E. KNUTH

SAT is NP-Complete

Bl

NEWLY AVAILABLE SECTION OF

In 80’s : Reduce SAT to a problem —
The Art of
Computer
Programming
21°" century : Reduce a problem to SAT 6

DONALD E. KNUTH

Industrial SAT solvers : Software/Hardware Verification, cryptography, Al

planning, genome rearrangement, constrained scheduling...

SAT Revolution

SAT Competition Winners on the SC2020 Benchmark Suite

250 |-

200

150

100

solved instances

20 |

[

|
. __&—e%e'@

—o— kissat-2020

—&— maple-lem-disc-ch-dl-v3-2019

—2&— maple-lem-dist-ch-2018

—#&— maple-lem-dist-2017

—4— maple-comsps-drup-2016

—— lingeling-2014

—=a&— abedsat-2015
lingeling-2013

—+—— glucose-2012
glucose-2011
cryptominisat-2010

—— precosat-2009

—H— minisat-2008
berkmin-2003

—&— minisat-2006

——+——T1sat-2007

—o— satelite-gti-2005

—&— zchaff-2004

—@— limmat-2002

1 | | | i
1,000 2,000 3,000 4,000 5,000
CPU time

data produced by Armin Biere and Marijn Heule

The Price of Success

o SAT is NP-complete yet solvers
tend to solve problems involving
millions of variables

e The solvers of today are very
complex

o We understand very little why
SAT solvers work!

solved instances

250

200

150

100

20

S

-
paye -

| | | | i
1,000 2,000 3,000 4,000 5,000
CPU time

data produce

The DPLL Algorithm
'

Unassigned N
’ Variables? _l
Yy SAT
Assign value to
variable

‘4

Unit Propagation

'

Conflict?

‘ Y
Can undo
decision?
1Y
Backtrack and
flip variable

UNSAT

'Tz E

The DPLL Algorithm

'

Z
Z'*—‘Z | -

'

Unassigned
Variables?

Yy
Assign value to
variable

N

-

‘4

Unit Propagation

'

Conflict?

‘ Y
Can undo
decision?
1Y
Backtrack and
flip variable

F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

The DPLL Algorithm
'

Unassigned N

Variables’] F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

.
Assign value to
variable
‘4 x
Unit Propagation

'

'

N
— Conflict?
* Y Level Dec. Unit Prop.
0
N Can undo | X
decision?
2 y
{ 1Y 3
Backtrack and
NSAT _—

flip variable

The DPLL Algorithm
'

Unassigned N

Variables’] F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

.
Assign value to

variable
‘4 x

Unit Propagation

| Y

'

N
— Conflict?
* Y Level Dec. Unit Prop.
0
N Can undo | X
decision?
2 y
{ 1Y 3
Backtrack and
NSAT _—

flip variable

The DPLL Algorithm
'

Unassigned N

Variables’] F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

.
Assign value to

variable
‘4 x

Unit Propagation

| Y

'

N
— Conflict?
Y a Level Dec. Unit Prop.
Y 0
N Can undo | X
decision?
‘ 2 y
‘ Y 3 a—>"b—> |
Backtrack and
NSAT _—

flip variable

The DPLL Algorithm
'

Unassigned N

Variables’] F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

.
Assign value to

variable

‘4

Unit Propagation

'

'

N
— Conflict?
* Y Level Dec. Unit Prop.
0
N Can undo | X
decision?
‘ 2 y
‘ Y 3 a—>"b—> |
Backtrack and
NSAT _—

flip variable

The DPLL Algorithm
'

Unassigned N

Variables’] F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

.
Assign value to

variable

‘4

Unit Propagation

'

'

N
— Conflict?
* Y Level Dec. Unit Prop.
0
N Can undo | X
decision?
‘ 2 y
‘ Y 3 a—>"b—> |
Backtrack and
NSAT _—

flip variable

The DPLL Algorithm

'

Z
ETZ | -

'

Unassigned
Variables?

Yy
Assign value to
variable

N

‘4

Unit Propagation

'

Conflict?

‘ Y
Can undo
decision?
1Y
Backtrack and
flip variable

F=@Vy Alavb) A(@aVvb)A(aVvd)A(aVb)

Dec. Unit Prop.

(@aVb)A(ZVD)A(ZVZVa)A(yVb)

Unit

Level Dec. Prop.

X

Y

e

w N — O

(@aVb)A(ZVD)A(ZVZVa)A(yVb)

Level Dec. Hg;
0
I X
2 y \w
3

(@aVb)A(ZVD)A(ZVZVa)A(yVb)

Level Dec. I%’Jrrgra.
0
I X
2 y \\
3

Analyze Conflict

> Create a new clause (T V 2)

Conflict Driven Clause Learning (CDCL)

(@aVb)A(ZVD)A(ZVZVa)A(yVb)

Level Dec. Igjrrgra.
0
I X
2 y \
3

Analyze Conflict

> Create a new clause (T V 2)

Conflict Driven Clause Learning (CDCL)

(@aVb)A(ZVD)A(ZVZVa)A(yVb)

Level Dec. Unit

Prop.
0 Clause learning can be related with resolution
| _
X\\\ (@vb) (Vb)) (ZVzVa)
2 y - -
3 z < a5 | (ZC N Z)
/

Analyze Conflict

> Create a new clause (T V 2)

Conflict Driven Clause Ilearning (CDCL)

Unassigned N
Variables?

Yy SAT

Assign value to
variable

‘4

Unit Propagation

'

S Conflict?

N lY
N Can undo
decision?

Y
UNSAT Backtract and flip

variable

Conflict Driven Clause Learning (CDCL)

UNSAT

'

Unassigned
Variables?

Yy
Assign value to
variable

N

SAT

‘4

Unit Propagation

'

Conflict?

|Y

AnalyzeConflict

\

Can undo
decision?

t Y
Backtrack and flip
variable

Conflict Driven Clause Learning (CDCL)

UNSAT

'

Unassigned N
Variables?
Yy SAT
Assign value to
variable —_

k \ Decision Heuristics

Unit Propagation

'

Conflict?

Clause Maintainance
|Y Heuristics

AnalyzeConflict

\

Can undo

decision?
Restart Heuristics

t Y
Backtrack and flip
variable

The curse of learnt clauses

e Learnt clauses are very useful
o But they consume memory and can slowdown other components of SAT solving
o Not practical to keep all the learnt clauses. We can keep around 5% of the learnt clauses.

o Task : predict whether the current clause will be useful in future.

The curse of learnt clauses

e Learnt clauses are very useful

o But they consume memory and can slowdown other components of SAT solving

o Not practical to keep all the learnt clauses. We can keep around 5% of the learnt clauses.
o Task : predict whether the current clause will be useful in future.

o Popular heuristics include
— Delete larger clauses
— Delete less used clauses

— Delete clauses based on Literal block distance

Data-Driven Design of SAT solver

o View SAT solvers as composition of prediction engines
— Branching
— Clause learning
— Memory management

— Restarts

Data-Driven Design of SAT solver

o View SAT solvers as composition of prediction engines
— Branching
— Clause learning
— Memory management

— Restarts

CrystalBall Framework

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

Labelled data

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

Labelled data

Run a
Classifier

Decision tree

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

Labelled data

Run a
Classifier

Decision tree

Generate
Code

Code for solver

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

formula(s)

Labelled data

Run a
Classifier

Decision tree

Generate
Code

Code for solver

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

formula(s)

Run a aided
SAT solver

Labelled data

Run a
Classifier

Decision tree

Generate
Code

Code for solver

CrystalBall Framework

e For inference, we want to do
supervised learning

o For every clause, we need values of
different features and a label

o The inference engine should learn
the model to predict the label

formula(s)

Run a aided
SAT solver

Sample and
Label

Labelled
data

Labelled data

Run a
Classifier

Decision tree

Generate
Code

Code for solver

Feature Engineering / Data Collection

o Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

o Features include
— properties of learnt clauses
— state of solver

— properties of formula

Feature Engineering / Data Collection

o Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

« Features include LBD size used_last_10k activity

— properties of learnt clauses
— state of solver

— properties of formula

Feature Engineering / Data Collection

o Modify our solver CryptoMiniSAT to
record different features, while the
solver runs.

« Features include LBD size used_last_10k activity

— properties of learnt clauses
— state of solver

— properties of formula

e Run on UNSAT instances

Feature Engineering / Data Collection

o Modify our solver CryptoMiniSAT to
record different features, while the

solver runs.
« Features include LBD size used last 10k
— properties of learnt clauses 10 15 3
— state of solver 7 10 |

— properties of formula

e Run on UNSAT instances

activity

top half

bottom
half

bottom
half

Labeling

Task : predict whether the current clause will be useful in future.

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT
instance

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT PROOF logged in
instance DRUP format

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT PROOF logged in
instance DRUP format

|
|
N
O O OO O O O

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT PROOF logged in

instance DRUP format

p cnf 1 -2 300

5 30 2 1 300
3-1 200

_i gg 4 -1 -200

L 20 5 1-200

L 5 0 6 2-300

5 -3 0 7-2 0450

3 60 8 3 01230
9 0 6780

Labeling

Task : predict whether the current clause will be useful in future.

UNSAT PROOF logged in ,
instance DRUP format DRAT - trim

p cnf é f Z’ 8 8 Backward pass to
-2 30 S s an construct optimal
_1 2 g 4-1-200 proof.

1 290 5 1-200

1 -20 6 2-300

5 -3 0 7-2 0450

3 60 8 3 01230

9 0 6780

Labeling

o Look at DRAT-trim’s proof
e Check which learnt clauses are useful

o Label accordingly.

Labeling

Look at DRAT-trim’s proof
Check which learnt clauses are useful

Label accordingly.

glue

10
7

size

15
10

used last 10k
3

activity
top half

bottom
half

bottom
half

Labeling

Look at DRAT-trim’s proof
Check which learnt clauses are useful

Label accordingly.

glue

10
7

size

15
10

used last 10k
3

activity
top half

bottom
half

bottom
half

label
keep

throw

throw

Labeling

o Look at DRAT-trim’s proof

glue size used_last_I10k activity label
o Check which learnt clauses are useful 10 15 3 top half keep
« Label accordingly. 7 10 | ';:I‘]';mm throw
3 7 0 bottom throw
half
Forward Pass Backward Pass

Collect Data Label Data

Inference Engine

used las
glue size t_10k label
10 15 3 keep
7 10 | throw

3 7 0 throw

Inference Engine

rdbi1.used for uip_creation < 15.5
8.9%
[0.47,0.53]

clsize < 4.5
17.6%
[0:382, 0.618]

Olsize < 65 rdb0-used_for_ulp_creation < 45
47.6% X
(055, 0.45] [0.667, 0.333]

rdb0.used brﬁpﬁc‘:’aaﬁmqw
3 keep (Tt) T ektion)

rdb1.used _f for wp creation < 46.5
[0583 0417]
[0572 0423]

7 10 | throw
3 7 0 throw

rdb0.used _for_uip_creation < 39.5
9.9%

[0.367, 0.633] 0

i

Inference Engine

rdb1.used_for_uip_creation < 15.5
8.9%
[0.47,0.53]

clsize < 4.5
17.6%
[0.382, 0.618]

e cl.s“igs.: <65 rl:bO.used_for_Lf'ip_creaim <45
[055, 0.45] (0667, 0.333] rdb1.used_f for u|p creation < 46.5] l
rdb0.used for_uip_creation £21.5 e 572 0 = - 533 -
7 10 | throw
3 7 0 throw
o (] (] (] ' T X _ljp_ " <
Create new solver with this heuristic! [mw;mf:]m wﬁ]_m

i

Experimental Setup

e All the UNSAT instances from SAT
2014-17.

e The number of learnt clauses for
different problems varied from few
hundreds to millions

o In total, we had 422K data points.

o Tested on SAT competition 2019
benchmarks.

Experimental Setup

e All the UNSAT instances from SAT

2014-17. on 400 SAT ’19 instances
solver # Avg.

e The number of learnt clauses for N solved Runtime*
different problems varied from few CryptoMiniSat 291 9939
hundreds to millions PredCryptoMiniSat 299 9710

o In total, we had 422K data points.

o Tested on SAT competition 2019
benchmarks.

Domain specific solver

comparing average runtime in seconds
Benchmark

Solver trained on SATCompetition ’19 SHA-1
SATCompetition 2440 1263
SHA-I 2805 1165

Domain specific solver

comparing average runtime in seconds

Benchmark
Solver trained on SATCompetition ’19 SHA-1
SATCompetition 2440 1263
SHA- | 2805 165
Benchmark Benchmark
Solver trained on AES Solver trained on Grain
SAT Competition 1474 SATCompetition 1860

AES 1340 Grain 1973

Domain specific solver

: o e
comparing average runtime in seconds Rooms for improvement
Benchmark
Solver trained on SATCompetition '[9 SHA-1 o Sampling
o« Labelling
SATC titi 2440 1263 .
SMPEHEen « Different models to try
SHA-I 2805 1165
N
Benchmark Benchmark
Solver trained on AES Solver trained on Grain
SAT Competition 1474 SATCompetition 1860

AES 1340 Grain 1973

Conclusion

o First time, white-box access to SAT solvers.
o Democritizing SAT solver research : easy to test new features.

o Extend for branching and restarts.

Conclusion

o First time, white-box access to SAT solvers.
o Democritizing SAT solver research : easy to test new features.
o Extend for branching and restarts.

o Create domain specific solvers.

Conclusion

o First time, white-box access to SAT solvers.
o Democritizing SAT solver research : easy to test new features.
o Extend for branching and restarts.

o Create domain specific solvers.

Code : meelgroup.github.io/crystalball

\end {document}

An approach in solving Cryptographic Problems

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

Optimize SIMON Family l

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

Optimize SIMON Family

S-Box Optimization

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

SAT Problem

Optimize SIMON Family |l

S-Box Optimization

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

SAT Problem q Solution

Optimize SIMON Family |l

S-Box Optimization

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

Optimize SIMON Family

SAT Problem g Solution

OZ—-000Zm

S-Box Optimization

An approach in solving Cryptographic Problems

Algebraic Cryptanalysis

SAT Problem Solution

Optimize SIMON Family

E
N
C
o
D
|
N
G

S-Box Optimization

	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 2 (6)
	Slide: 2 (7)
	Slide: 2 (8)
	Slide: 2 (9)
	Slide: 2 (10)
	Slide: 2 (11)
	Slide: 2 (12)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 6 (7)
	Slide: 6 (8)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 11 (6)
	Slide: 11 (7)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 19 (6)
	Slide: 19 (7)
	Slide: 19 (8)

