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SAT is NP-Complete

In 80’s : Reduce SAT to a problem 

– To show it’s difficuilty

21st century : Reduce a problem to SAT

– To solve it in practice

Industrial SAT solvers : Software/Hardware Verification, cryptography,  AI 

planning, genome rearrangement, constrained scheduling...



SAT Revolution



The Price of Success

● SAT is NP-complete yet solvers 
tend to solve problems involving 
millions of variables

● The solvers of today are very 
complex

● We understand very little why 
SAT solvers work!
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Clause learning can be related with resolution
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The curse of learnt clauses

● Learnt clauses are very useful

● But they consume memory and can slowdown other components of SAT solving

● Not practical to keep all the learnt clauses. We can keep around 5% of the learnt clauses.

● Task : predict whether the current clause will be useful in future.

● Popular heuristics include

– Delete larger clauses

– Delete less used clauses

– Delete clauses based on Literal block distance
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Labelled data
● For inference, we want to do 

supervised learning

● For every clause, we need values of 
different features and a label

● The inference engine should learn 
the model to predict the label

Run a 
Classifier

Decision tree

Code for solver

Generate 
Code
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Run a aided
SAT solver

Data

Labelled 
data
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Labeling

Task : predict whether the current clause will be useful in future.

UNSAT 
instance

PROOF logged in 
DRUP format DRAT - trim

Backward pass to 
construct optimal 
proof.
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Labeling

glue size used_last_10k activity label

10 15 3 top half keep

7 10 1 bottom 
half

throw

3 7 0 bottom 
half

throw

● Look at DRAT-trim’s proof

● Check which learnt clauses are useful

● Label accordingly.

Backward PassForward Pass

Collect Data Label Data
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Inference Engine

glue size
used_las
t_10k label

10 15 3 keep

7 10 1 throw

3 7 0 throw

Create new solver with this heuristic!
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● All the UNSAT instances from SAT 
2014-17.

● The number of learnt clauses for 
different problems varied from few 
hundreds to millions

● In total, we had 422K data points.

● Tested on SAT competition 2019 
benchmarks.

solver # 
solved

Avg. 
Runtime*

CryptoMiniSat 291 9939

PredCryptoMiniSat 299 9710

on 400 SAT ’19 instances
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Benchmark

Solver trained on SATCompetition ’19 SHA-1

SATCompetition 2440 1263

SHA-1 2805 1165

Benchmark

Solver trained on AES

SATCompetition 1474

AES 1340

comparing average runtime in seconds

Benchmark

Solver trained on Grain

SATCompetition 1860

Grain 1973

Rooms for improvement

● Sampling
● Labelling
● Different models to try

...
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● Democritizing SAT solver research : easy to test new features.

● Extend for branching and restarts.

● Create domain specific solvers.

\end{document}

Code : meelgroup.github.io/crystalball



An approach in solving Cryptographic Problems



An approach in solving Cryptographic Problems

Algebraic Cryptanalysis



An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis



An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization



An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem



An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem Solution



An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem Solution

E
N
C
O
D
I
N
G



An approach in solving Cryptographic Problems

Optimize SIMON Family

Algebraic Cryptanalysis

S-Box Optimization

SAT Problem Solution

E
N
C
O
D
I
N
G

S
O
L
V
I
N
G


	Slide: 1
	Slide: 2 (1)
	Slide: 2 (2)
	Slide: 2 (3)
	Slide: 2 (4)
	Slide: 2 (5)
	Slide: 2 (6)
	Slide: 2 (7)
	Slide: 2 (8)
	Slide: 2 (9)
	Slide: 2 (10)
	Slide: 2 (11)
	Slide: 2 (12)
	Slide: 3 (1)
	Slide: 3 (2)
	Slide: 4
	Slide: 5
	Slide: 6 (1)
	Slide: 6 (2)
	Slide: 6 (3)
	Slide: 6 (4)
	Slide: 6 (5)
	Slide: 6 (6)
	Slide: 6 (7)
	Slide: 6 (8)
	Slide: 7 (1)
	Slide: 7 (2)
	Slide: 7 (3)
	Slide: 7 (4)
	Slide: 7 (5)
	Slide: 8 (1)
	Slide: 8 (2)
	Slide: 8 (3)
	Slide: 9 (1)
	Slide: 9 (2)
	Slide: 10 (1)
	Slide: 10 (2)
	Slide: 11 (1)
	Slide: 11 (2)
	Slide: 11 (3)
	Slide: 11 (4)
	Slide: 11 (5)
	Slide: 11 (6)
	Slide: 11 (7)
	Slide: 12 (1)
	Slide: 12 (2)
	Slide: 12 (3)
	Slide: 12 (4)
	Slide: 13 (1)
	Slide: 13 (2)
	Slide: 13 (3)
	Slide: 13 (4)
	Slide: 13 (5)
	Slide: 13 (6)
	Slide: 14 (1)
	Slide: 14 (2)
	Slide: 14 (3)
	Slide: 14 (4)
	Slide: 15 (1)
	Slide: 15 (2)
	Slide: 15 (3)
	Slide: 16 (1)
	Slide: 16 (2)
	Slide: 17 (1)
	Slide: 17 (2)
	Slide: 17 (3)
	Slide: 18 (1)
	Slide: 18 (2)
	Slide: 18 (3)
	Slide: 19 (1)
	Slide: 19 (2)
	Slide: 19 (3)
	Slide: 19 (4)
	Slide: 19 (5)
	Slide: 19 (6)
	Slide: 19 (7)
	Slide: 19 (8)

