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Why Lattice-based 
cryptography???

1. Post-quantum candidate

2. Worst-case to average-case reduction 

3. Advanced cryptographic primitives (like F.H.E)

4. 12 (9E+3S)/26 (17E+9S) second round candidates of the ongoing NIST post-
quantum standardization process are lattice-based.  5(3E+2S)/7 finalist+2 
(2E+0S)/5 alternative candidates in third round (updated on 22nd July, 
2020) 

For more details: https://csrc.nist.gov/projects/post-quantum-
cryptography/round-3-submissions

Other candidates are code-based, multivariate, hash-based, Zero knowledge 
proofs.

Conclusion Encryption schemes seems to be easy to construct than Signature
schemes.

Pic courtesy:  https://www.britannica.com/quiz/quantum-mechanics

https://www.britannica.com/quiz/quantum-mechanics


Lattice

Given 𝑘 linearly independent vectors 𝑩 = {𝒃1, 𝒃𝟐, … , 𝒃𝒌} in ℤ𝑛, the 
Lattice 𝑳 generated by the vectors 𝑩 is defined as 𝑳 = 𝑳 𝑩 =

{σ𝑖=1
𝑘 𝑎𝑖𝒃𝒊: 𝑎𝑖 ∈ℤ}



Short Integer Solution (SIS) problem [Ajt’96]

• Given uniform 𝐴 ∈ ℤ𝑞
𝑛×𝑚, find non-zero 𝑥 such that 𝐴𝑥 = 0 𝑚𝑜𝑑 𝑞
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Some Observations

• The SIS problem without the norm constraint is “easy” to solve.

• We also can have inhomogenous version (ISIS): 𝐴𝑠 = 𝑡

• SIS <𝑝𝑜𝑙𝑦 ISIS



Learning with Errors (LWE) problem [Reg’05]

• Given uniform 𝐴 ∈ ℤ𝑞
𝑛×𝑛, 𝑏, find non-zero (𝑠, 𝑒) such that 𝐴𝑠 + 𝑒 =

𝑏 𝑚𝑜𝑑 𝑞
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Decision Learning with Errors(LWE) problem 
[Reg05,ACPS09] 

• Given uniform A, 𝑏 ∈ ℤ𝑞
𝑛×𝑛 × ℤq

𝑚, decide if b = 𝐴𝑠 + 𝑒 = 𝑏 𝑚𝑜𝑑 𝑞 or 𝑏 is 
uniform

LWE Distribution                                                                          Uniform distribution
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Search LWE to Decision LWE

• Let 𝑞 be a prime

• For any small k ∈ 𝑍𝑞 , transform (𝒂 + 𝑙, 0, … , 0 , 𝑏 + 𝑙𝑘) for 𝑙 ← 𝑍𝑞
• If 𝑘 = 𝑠0: then LWE samples map to LWE samples 

• Otherwise uniform sample maps to uniform!

• Since 𝒔 is small, we have the right guess in a small number of guesses.

• Repeat it for all coordinates to recover 𝒔 = (𝑠0, … 𝑠𝑛−1)

𝑎0 + 𝑙 𝑎1

𝑠0
𝑠1

𝑒0

𝑒0 b+𝑙𝑠0



Some Observations

• Search LWE <𝑝𝑜𝑙𝑦 Decision LWE

The reduction is non-tight in both running time and advantage 
[Reg’05,MM’11,BLP+13].



SIS/LWE as a lattice problem

• 𝐿𝐴,𝑞
⊥ 𝑥 = {𝑥: 𝐴𝑥 = 0 𝑚𝑜𝑑 𝑞}

SVP on 𝐿𝐴,𝑞
⊥ implies a solution to the SIS problem

• LA,q 𝑥 = {𝑥: 𝑥 = 𝐴𝑠 𝑚𝑜𝑑 𝑞 } for some fixed 𝑠

CVP on 𝐿𝐴,𝑞 implies solution to the LWE problem
Not exactly CVP since 
𝑒 is small. We call it 

BDD problem in 
lattice terminology



SIS/LWE in a nutshell
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(Dis)Advantages of SIS/LWE based 
constructions

• Asymptotic worst-case security 

• Only linear operations required for crypto constructions

• Storing 𝐴 requires 𝑚𝑛 elements of ℤ𝑞

• Long keys 

• Matrix multiplication is slow

• Inefficient crypto constructions



Some Algebraic Variants

• Polynomial Ring LWE/SIS [LPR’10] (Pros: Storage & operations, Cons: 
Slower ring multiplication, worst-case hardness, Probably more 
algebraic): Rotation matrix

• Middle-product LWE [RSSS’17,BDH+20](Pros: Based on the hardness 
of exponentially many Ring LWE, Cons: large dimension, slower 
multiplication): Large Toeplitz matrix

• Module LWE/SIS[LS’16]: Repeated small Circular matrix (Pros: Faster 
ring multiplication,  Cons: Challenge space)

Replace elements of 

𝑍𝑞 by 𝑍𝑞 𝑥 /(𝑥2
𝑘
+ 1)



Polynomial ring 𝑍𝑞 𝑥 /(𝑥4 + 1)

• Addition: Coordinate wise

• Multiplication: Rotation wise (mod 𝑥4 + 1)

Example:
2𝑥2 + 3𝑥 + 1 ∗ 𝑥2 + 2 = 3𝑥3 + 5𝑥2 + 6𝑥 + 1

Note: Reducing by 𝑥4 + 1 doesn’t change the coefficients by much, but 
for some polynomials it can change a lot. Technically this is called 
EXPANSION FACTOR.

Such polynomials are not useful for crypto!!



Module SIS/LWE problem [LS’16]

• Let 𝑅𝑞 = 𝑍𝑞 𝑥 /(𝑓 = 𝑥𝑑 + 1)

• Given uniform 𝐴 ∈ 𝑅𝑞
𝑛×𝑚, 𝑡 ∈ 𝑅𝑞

𝑛, find non-zero 𝑥 ∈ 𝑅𝑞
𝑚 such that 𝐴𝑥 =

𝑡 𝑚𝑜𝑑 𝑞

• Worst-case to average-case connection over 𝑍 𝑥 /(𝑥𝑑 + 1)

𝑅𝑜𝑡𝑓
𝑇(𝑎𝑖)

X
t



Some notes on the ring R = 𝑍 𝑥 /(𝑓)

The polynomial 𝑓(𝑥) must satisfy

• Irreducibility over 𝑍

• Bounded Expansion factor

What else?

Could there be some 𝑓′ 𝑥 that is easier for solving SIS/LWE?

What is the Hardest instantiation?



Expansion factor comparison

Computation done in SageMath



Popular choice of Rq = 𝑍𝑞 𝑥 /(𝑓)

The hardness assumption holds for any 𝑞 and meaningful 𝑓

For practical purpose:

• 𝑓 = 𝑥2
𝑘
+ 1 and any 𝑞 that factors 𝑓 in small degree factors (e.g. 

Linear factors when 𝑞 = 1 𝑚𝑜𝑑 2𝑛). 

• Fast NTT operation



Evaluation attack on RLWE for 𝑓 𝑥 = 𝑥𝑛 − 1

Proof sketch

• 𝑓 1 = 0 𝑚𝑜𝑑 𝑞

• Let 𝑠(𝑥), 𝑒𝑖(𝑥) ← 𝜒

• Let 𝑎𝑖(𝑥), 𝑏𝑖(𝑥) = 𝑎𝑖(𝑥)𝑠(𝑥) + 𝑒𝑖(𝑥) ∈ 𝑅𝑞 = 𝑍𝑞[𝑥]/(𝑓) be a  RLWE sample

• Evaluate 𝑎𝑖 1 , 𝑏𝑖 1 ∈ 𝑍𝑞
• Now 𝑏𝑖 1 = 𝑎𝑖 𝑥 𝑠 𝑥 𝑥=1 + 𝑒𝑖 1 𝑚𝑜𝑑 𝑞

• = 𝑎𝑖 1 𝑠 1 + 𝑒𝑖 1 𝑚𝑜𝑑 𝑞 [since 𝑓 1 = 0𝑚𝑜𝑑 𝑞]

• Then 𝑏𝑖 1 − 𝑎𝑖 1 𝑠 1 = 𝑒𝑖(1)

Check the right 𝑠(1) from the support of 𝜒.

If such 𝑠(1) exits, you will get small 𝑒𝑖(1)



Digital Signatures

Key Generation Algorithm→ (Pub,Sec) = Gen(k)

Signing Algorithm → S=Sign(Sec,M)

Verification Algorithm→ Verify(S,M,Pub)= Yes/No



Digital Signatures

• Correctness: Verify(Pub,M,Sign(Sec,M))= Yes

• Security:  Unforgeability



Lattice-based signatures

• Trapdoor-based signatures[GPV’08]

(Pros: Compact signatures, Cons: Gaussian sampling over lattices)

• Fiat-Shamir transformation from ID schemes (like Schnorr
protocol)[Lyu’09,12,BG’14,…] 

(Pros: Fast, Cons: Rejection Sampling & exact knowledge extraction)

• Modular lattice signatures [DHP+20]

(successor of NTRUSign: Trapdoor-based+Fiat-Shamir transformation)

(Pros: Tradeoff between compactness and fastness, 

Cons: Rejection sampling, Unforgeability security reduction)

3. Modular

(pqNTRUSign)

2. Fiat-Shamir

qTESLA( NIST 2nd

round)+Dilithium (finalist)

1. Trapdoor

FALCON (NIST finalist)



3- round ID schemes

Prover (𝑠𝑘) Verifier  (𝑝𝑘)

Commit

𝑤 ← 𝑃1 (𝑠𝑘)

Challenge

𝑐 ∈ 𝐶 ← 𝑃2(𝑤)

Response 

𝑧 ← 𝑃3(𝑤, 𝑐, 𝑠𝑘)

Accept/Reject



Properties

• Correctness

• Honest Verifier Zero Knowledge (HVZK): A simulator can produce the 
transcript (𝑤, 𝑐, 𝑧) using only 𝑝𝑘 with same distribution as in the real 
protocol. 

• Special Soundness (SS): A verifier can extract the knowledge 𝑠𝑘 using 
a prover who wins the protocol in two different runs on the same 
commitment (rewinding technique).

No information of 𝑠𝑘 is 
leaked

Prover indeed holds 𝑠𝑘



ID to Digital Signatures (Fiat-Shamir 
Transformation)
Signer (𝑠𝑘,𝑀) Verifier (𝑝𝑘)

𝑤 ← 𝑃1 𝑠𝑘

𝑐 = 𝐻(𝑤,𝑀)

𝑧 ← 𝑃3(𝑠𝑘, 𝑐,𝑀) Accept/Reject

Theorem: If the ID is HVZK+SS                            Signature scheme is UF-
CMA secure in (Q)ROM.



Schnorr protocol (using discrete log)

Prover 𝑠𝑘: (𝑔, 𝑠) Verifier pk: (𝑔, 𝑔𝑠 = ℎ)

𝑦 ← 𝑍𝑞

𝑤 = 𝑔𝑦

𝑐 ← 𝑍𝑞

𝑧 = 𝑠𝑐 + 𝑦

Accept if 𝑔𝑧 = ℎ𝑐𝑤

Correctness: 𝑔𝑧 = 𝑔𝑠𝑐+𝑦 = ℎ𝑐𝑤



Schnorr protocol

• HVZK:

𝑐 ← 𝑍𝑞 , 𝑧 ← 𝑍𝑞 and set 𝑤 = 𝑔𝑧/ℎ𝑐

(𝑤, 𝑐, 𝑧) has the original distribution as in the original protocol.

• SS:

Let 𝑤, 𝑐, 𝑧 , (𝑤, 𝑐′, 𝑧′) be two valid transcript from the prover.

𝑔𝑧 = ℎ𝑐𝑤, 𝑔𝑧′ = ℎ𝑐′𝑤, then 
𝑔𝑧

ℎ𝑐
=

𝑔𝑧
′

ℎ𝑐′
, 

Hence 𝑔
𝑠′(=

𝑧−𝑧′

𝑐−𝑐′
)
= ℎ



Lattice Analogue of Schnorr Protocol

Prover 𝑠𝑘: (𝐴 ∈ 𝑅𝑞
𝑛×𝑚, 𝑠) Verifier pk: (𝐴, 𝐴𝑠 = 𝑡)

𝑦 ← 𝑅𝑞
𝑚

𝑤 = 𝐴𝑦

𝑐 ← 𝑅𝑞

𝑧 = 𝑠𝑐 + 𝑦

Accept if Az − tc = 𝑤

Correctness: 𝐴 𝑠𝑐 + 𝑦 = 𝑡𝑐 + 𝑤



Lattice Analogue of Schnorr Protocol

Prover 𝑠𝑘: (𝐴 ∈ 𝑅𝑞
𝑛×𝑚, 𝑠) Verifier pk: (𝐴, 𝐴𝑠 = 𝑡)

𝑦 ← 𝑅𝑞
𝑚

𝑤 = 𝐴𝑦

𝑐 ← 𝑅𝑞

𝑧 = 𝑠𝑐 + 𝑦

Accept if Az − tc = 𝑤

Challenges:

• If 𝑧 is not small, forging 𝑧 is easy.

• Sample small 𝑦, 𝑐 & add smallness condition in the Verification step.

• 𝑧 = 𝑠𝑐 + 𝑦 leaks information about secret 𝑠 (learning parallelepiped type 
attacks)

Additional care is required!!



Lattice Analogue of Schnorr Protocol

Prover 𝑠𝑘: (𝐴 ∈ 𝑅𝑞
𝑛×𝑚, 𝑠) Verifier pk: (𝐴, 𝐴𝑠 = 𝑡)

𝑦 ← 𝑅𝑞
𝑚

𝑤 = 𝐴𝑦

𝑐 ← 𝑅𝑞

𝑧 = 𝑠𝑐 + 𝑦

Accept if 𝑧 is small and Az − tc = 𝑤

Challenges:

• At high level, we want the distribution of 𝑧 ≈𝑠 some distribution 
independent of 𝑠

• Use rejection sampling to achieve it.



Rejection sampling [Lyu’12]

• Let 𝒇, 𝒈 be two distributions such that 𝒇 𝑥 ≤ 𝑀 𝒈(𝑥) for “almost” all 𝑥

Suppose we have access to 𝒈(depends on 𝑠), but we want to output 
according to 𝒇 (independent of 𝑠)

• 𝑧 ← 𝒈 and output with probability 
𝒇 𝑧

𝑀𝒈 𝑧
≈𝑠 𝑧 ← 𝒇 and output with 

probability 1/𝑀
We can aim for the distribution of 𝒇 as
• Uniform distribution in a small interval [Lyu’09]
• Discrete Gaussian distribution [Lyu’12]
• Bimodal Gaussian distribution [DDLL’13]



Lattice Analogue of Schnorr Protocol

Prover 𝑠𝑘: (𝐴 ∈ 𝑅𝑞
𝑛×𝑚, 𝑠) Verifier pk: (𝐴, 𝐴𝑠 = 𝑡)

𝑦 ← 𝑅𝑞
𝑚

𝑤 = 𝐴𝑦

𝑐 ← 𝑅𝑞

𝑧 = 𝑠𝑐 + 𝑦

Apply Rejection sampling

& Re-run (if required)                                             

Accept if 𝑧 is small and Az − tc = 𝑤

Expected number of re-run: 𝑀 times



Lattice Analogue of Schnorr Protocol

• HVZK

Sample small 𝑐, 𝑧 and make 𝑤 = 𝐴𝑧 − 𝑡𝑐 and output the transcript 
with probability 1/𝑀.

The distribution of (𝑤, 𝑐, 𝑧) is identical to the original protocol.



Lattice Analogue of Schnorr Protocol

• SS

Az − tc = 𝑤 = 𝐴𝑧′ − 𝑡𝑐′

Then 𝐴 𝑧 − 𝑧′ = 𝑡(𝑐 − 𝑐′)

We can chose 𝑞 such that 𝑐 − 𝑐′ is invertible in 𝑅𝑞

A
𝑧−𝑧′

𝑐−𝑐′
= 𝑡, but…

𝑧−𝑧′

𝑐−𝑐′
is not small anymore.

So we couldn’t Extract small 𝑠′ such that 𝐴𝑠′ = 𝑡



Lattice Analogue of Schnorr Protocol

• Still a meaningful extraction.

𝐴 𝑧 − 𝑧′ = 𝑡(𝑐 − 𝑐′)

Put 𝑡 = 𝐴𝑠
𝐴 𝑧 − 𝑧′ − 𝑠 𝑐 − 𝑐′ = 0

This is a solution of the SIS problem.



Quotient of small elements in 𝑅𝑞 = 𝑍𝑞 𝑥 /(𝑓)

Computation done in SageMath



Open Problems

• Special Soundness property (important for other applications, like 
proof of proper cipher-text) 

• Eliminate/better understanding of the rejection sampling technique

• Rejection sampling in other metric (e.g. Hamming metric)

• Tight security reductions from search lattice problems

• Lower bound the success probability of small invertible elements in 
some 𝑅𝑞


