
ABSTRACTION IN MATHEMATICS

1. Introduction

What does it mean to say that mathematics is ab-
stract?

Mathematics is a self-contained system separated from the physical
and social world:

• Mathematics uses everyday words, but their meaning is defined
precisely in relation to other mathematical terms and not by
their everyday meaning. Even the syntax of mathematical ar-
gument is different from the syntax of everyday language and
is again quite precisely defined.
• Mathematics contains objects which are unique to itself. For

example, although everyday language occasionally uses symbols
like x and P , objects like x0 and

√
−1 are unknown outside

mathematics.
• A large part of mathematics consists of rules for operating on

mathematical objects and relationships. It is important that
students learn to manipulate symbols using these rules and no
others.

The essence of abstraction in mathematics is that mathematics is
self-contained: An abstract mathematical object takes its meaning
only from the system within which it is defined.

Historically, mathematics has seen an increasing use of axiomatic
methods, especially over the last two centuries. For example, num-
bers were initially mathematical objects based on the empirical idea
of quantity. Then mathematicians such as Dedekind and Peano re-
conceptualized numbers in axiom systems which were independent of
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the idea of quantity. Euclid, Hilbert, and others performed a similar
task for geometry. But, as Kleiner (1991) states, whereas Euclid’s
axioms are idealizations of a concrete physical reality in the modern
view axioms are simply assumptions about the relations among the
undefined terms of the axiomatic system. In other words, mathe-
matics has become increasingly independent of experience, therefore
more self-contained and hence more abstract.

To emphazise the special meaning of abstraction in mathematics,
we may say that mathematical objects are abstract-apart. Their
meanings are defined within the world of mathematics, and they
exist quite apart from any external reference.
So why is mathematics so useful?
Mathematics is used in predicting and controlling real objects and

events, from calculating a shopping bill to sending rockets to Mars.
How can an abstract-apart science be so practically useful?

One aspect of the usefulness of mathematics is the facility with
which calculations can be made: You do not need to exchange coins
to calculate your shopping bill, and you can simulate a rocket journey
without ever firing one. Increasingly powerful mathematical theories
(not to mention the computer) have led to steady gains in efficiency
and reliability.

But calculation facility would be useless if the results did not pre-
dict reality. Predictions are successful to the extent that mathematics
models appropriate aspects of reality, and whether they are appro-
priate can be validated by experience. In fact, one can go further and
claim that the mathematics we know today has been developed (in
preference to any other that might be imaginable) because it does
model significant aspects of reality faithfully.

How is it that the axiomatic method has been so successful in this
way? The answer is, in large part, because the axioms do indeed



ABSTRACTION IN MATHEMATICS 3

capture meaningful and correct patterns. For instance, Euclid’s ax-
ioms try to capture properties of geometric patterns or objects like
triangles, circles, parabola etc that we encounter in real life. These
geometric objects are built from two basic objects viz points and
lines. The axioms are about these basic geometric objects and from
these axioms we derive theorems which are essentially properties of
these geometric objects. Thus, as Kliener has said, Euclid’s axioms
are “idealizations of a concrete physical reality”.

Many fundamental mathematical objects (especially the more ele-
mentary ones, such as numbers and their operations) clearly model
reality. Later developments (such as Combinatorics and differential
equations) are built on these fundamental ideas and so also reflect
reality–even if indirectly. Hence all mathematics has some link back
to reality.
EMPIRICAL ABSTRACTION IN MATHEMATICS

LEARNING
Students learn about many fundamental, abstract mathematical

objects in school. In what follows, we discuss the meaning of ab-
straction in this learning context. We begin by looking at some
examples.
Addition: Between the ages of 3 and 6, most children learn that a

given set of objects contains a fixed number of objects. A little later,
they realize that two sets can be combined and that the number of
objects in the combined set can be determined from the number of
objects in each set–a procedure which later becomes the operation of
addition. Students learn these fundamental arithmetical ideas from
counting experiences: They find that repeatedly counting a given set
of objects always gives the same number, no matter how often it is
done and in which order. As they recognize more and more patterns,
counting a combined set is gradually replaced by counting on.
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Angles: There is good evidence that, at the beginning of elemen-
tary school, students already have knowledge of corners, slopes, and
turns. To acquire a general concept of angle, students need to see
the similarities between them and identify their essential common
features (two lines meeting at a point, with some significance to their
angular deviation). Even secondary students find it difficult to iden-
tify angles in slopes and turns, where one or both arms of the angle
have to be imagined or remembered.
Rate of change: The most fundamental idea in calculus is rate of

change, leading to differentiation. A major reform movement over
the last decade or so has been concerned with making this idea more
meaningful by initially exploring a range of realistic rate of change
situations. In this way, students build up an intuitive idea of rate of
change before studying the topic abstractly.
Characteristics of empirical abstraction
The above examples show how fundamental mathematical ideas

are based on the investigation of real world situations and the identi-
fication of their key common features. Hence, a characteristic of the
learning of fundamental mathematical ideas is similarity recognition.
The similarity is not in terms of superficial appearances but in un-
derlying structure for example, in counting, space, and relationships.

This process of similarity recognition followed by embodiment of
the similarity in a new idea is an empirical abstraction process.

Thus, abstracting is an activity by which we become aware of simi-
larities among our experiences. Classifying means collecting together
our experiences on the basis of these similarities. An abstraction is
some kind of lasting change, the result of abstracting, which enables
us to recognize new experiences as having the similarities of an al-
ready formed class, and to distinguish between abstracting as an
activity and abstraction as its end-product.
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Thus number, addition, angle and rate of change are all empirical
concepts, and they take their place in students’ learning alongside
other empirical concepts such as colour, texure, and taste.

There is a distinction between abstraction on the basis of superficial
characteristics of physical objects and abstraction on the basis of
relationships perceived when the learner manipulates these objects.
But both are based on our physical and social experience, and in
both similarity recognition is essential.
FROM EMPIRICAL CONCEPT TO MATHEMATI-

CAL OBJECT
When students learn a fundamental mathematical idea in the way

described above, three things happen: They learn an empirical con-
cept, they learn about a mathematical object, and they learn about
the relationship between the empirical concept and the mathematical
object. Empirical concepts are often rather fuzzy and difficult to de-
fine. For example, the empirical concept of circle is that of a perfectly
round object–but perfect roundness can only be defined by showing
examples. A circle becomes a mathematical object only when it is
defined as the locus of points equidistant from a fixed point: It is
then clearly defined in terms of other mathematical objects. How-
ever, for this definition to be meaningful, an individual must see that
the locus of points equidistant from a fixed point gives a perfectly
round object and vice versa.

Abstraction in mathematics or in other disciplines is best under-
stood by axiomatic treatment. It helps us to obtain proofs of state-
ment most economically.
But why do we need a proof?
Proofs are the guts of mathematics. Producing a proof of a state-

ment is the basic methodology whereby we can ascertain that the
statement is true. Anyone who wants to know what mathematics
is about must therefore learn how to write down a proof or at least
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understand what a proof is. The sciences also use the same method-
ology to deduce complex phenomena from first principles. Thus all
who want to study science would benefit from learning about proofs
as well.

In a larger context, if anyone has any wish at all to find out how
human beings can rationally distinguish in an empirical sense, right
from wrong or true from false, he or she would find in mathematical
proofs the purest form of how this is done.

One may ask why not put most or all of our weight on experimen-
tally verifying a statement rather than the theorem–proof aspect of
verifying it. Perhaps the argument is that because hands-on experi-
ments are as efficient at arriving at the truth as abstract arguments,
why not bypass this arduous task of writing down proofs altogether?
In case such a statement does not immediately appear as being silly,
let us try to convince ourselves with a simple example.

A standard problem in number theory is to find integer solutions
to equations of the following type (the Fermat-Pell equation):

x2 − 1141y2 = 1.

This is of course the same as looking for positive integers y so that
1 + 1141y2 is a perfect square. (We exclude the obvious solutions:
x = 1, y = 0.) This is a problem tailormade for experimentation on
the calculator. Starting with y = 1, 2, 3, . . . we can work our way
up. The case y = 1 is no good because 1, 142 is not a perfect square,
for the simple reason that the square of any number must end in
1, 4, 5, 6, or 9. In fact, nothing works up to 100. For example, with
y = 99, we get

1 + 1141(99)2 = 11, 182, 942

so that for the same reason it is not a perfect square. Similarly,
nothing works up to y = 100, 000. For example, with y = 23, 456,
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we get

1 + 1141(23, 456)2 = 627, 759, 870, 977,

and because it ends in 7, it is not a square. If you try y = 45, 678,
then

1 + 1141(45, 678)2 = 2, 380, 673, 319, 445,

and

(1, 542, 9432)2 = 2, 380, 673, 101, 249 < 2, 380, 673, 319, 445

< 2, 380, 676, 187, 136 = (1, 542, 9442)2.

In fact, for all integers y all the way up to 1025, 1 + 1141y2 is never
a perfect square. In terms of experimentation, one would have given
up long before this and concluded that this particular Fermat-Pell
equation has no integer solutions in x and y. But in fact, we can
prove that there are an infinite number of integer pairs x and y that
satisfy this equation, the smallest being:

y = 30, 693, 385, 322, 765, 657, 197, 397, 208

and

x = 1, 036, 782, 394, 157, 223, 963, 237, 125, 215.

The above illustration is not to belittle the importance of experi-
mentation, because experimentation is essential in science; rather, it
is just to emphasize that Mathematics is concerned with statements
that are true, forever and without exceptions, and there is no other
way of arriving at such statements except through the construction
of proofs.
What is the axiomatic method?
The axiomatic method is quite straight-forward: –Make some as-

sumptions (axioms) that we cannot prove, but seems plausible e.g.
Euclid’s axioms.
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We then use these axioms to deduce or prove, logically, some state-
ments which are called theorems. Thus theorems are logical conse-
quences of some of the axioms. Once a theorem is proven it can be
used in subsequent proofs.

The modern notion of the axiomatic method developed as a part
of the conceptualization of mathematics starting in the nineteenth
century. The basic idea of the method is the capture of a class of
structures as the models of an axiomatic system. What condition
does an axiom system have to satisfy?

Obviously, the following requirements must be satisfied:

(1) The models of the axiomatic theory have to comprise all and
only the intended structures.

(2) All theorems are logical consequences of the axioms.
(3) The derivation of theorems from axioms must not introduce

any new information into the conclusion.
(4) The logic used must be complete.

The first exposure of an axiomatic treatment that one encounters
is the Eucledian Geometry. Euclid’s works are the first still-existing
record of an attempt to apply the axiomatic method.

Euclid wrote down a number of definitions:

• A point is that which has no part.
• A line is breadthless width.
• The ends of a line segment are points.

and twenty others such definitions.

Euclid also wrote some common notions, which today we describe
as axioms:

• Things which are equal to same thing are also equal to each
other. In other words, if a = c and b = c, then a = b.
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• If equals are added to equals, then the wholes are equal. In
other words, if a = b and c = d, then a + c = b + d.
• Similarly, if equals are subtracted from equals, then the remain-

ders are also equal.
• Things which coincide with each other are equal.
• The whole is greater than the part.

Euclid then introduced five axioms (he called them postulates):

• A straight line segment can be drawn joining any two points.
• Any straight line segment can be extended indefinitely in a

straight line .
• Given any straight line segment, a circle can be drawn having

the segment as radius and one endpoint as center.
• All right angles are congruent.
• If two lines are drawn which intersect a third in such a way

that the sum of the inner angles on one side is less than two
right angles, then the two lines inevitably must intersect each
other on that side if extended far enough. This postulate is
equivalent to what is known as the parallel postulate.

From these axioms he went on to deduce hundreds of propositions–
what we now call theorems.

The next axiomatic treatment that you have seen in your first
course in real analysis is the introduction of real number system as
a complete ordered field.

Thus, given a set of axioms in some specific discipline, we may go
forward and prove as many theorems as possible. Once a theorem is
proved, it can be used in the proof of a subsequent statement. What
is really nice is that if we have another system that satisfy the same
axioms, then all the theorems must also be valid in the new system.

During the course we will briefly touch upon the following examples
of axiomatic treatment.
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(1) From naive set theory to ZFC axioms of Set Theory.
(2) Category Theory– a unified abstract approach to study various

branches of mathematics. A brief introduction to Monoidal
category.

Reference: Kleiner, I. (1991); Rigor and proof in mathematics:
A historical perspective. Mathematics Magazine, 64, 291− 314.


