Divide and Conquer

Rana Barua

Visiting Scientist, IAI, TCG CREST Kolkata

1 Divide and Conquer

In the Divide and Conquer paradigm, the original problem is sub-divided into smaller problems which
are solved recuresively, and finally the solutionas are combined to obtain a solution of the original
problem. We shall illustrate this with three different types of problem viz Mergesort, Counting
Inversions and finding the Closest Pair of points. We first consider Merge Sort.

1. Merge Sort

This is a sorting problem in which we are given a sequence of numbers and we need to sort it
into a non-decreasing sequence.
In mergesort we are given a sequence of numbers x1, xa, . .., x,. We first divide the sequence into
two sequences of almost equal lengths. We recursively sort the two smaller sequences and then
"merge” them to obtain a single sorted sequence. For simplicity, we assume that n is a power
of 2.
Mergesort makes use of two procedures. The first procedure is MERGE(S, T'), that takes two
sorted sequences S and T as input, and output a sequence consisting of the elements of S and T
in a sorted order. It works by repeatedly selecting the larger of the largest elements remaining
on S and T and then deleting the element selected. Ties may be broken in favour of S. Since
both S and T are sorted, this procedure requires at most |S| + |T'| — 1 comparisons.
Our next procedure is SORT(i,j) which sorts the subsequence z;,...,z;. The procedure is
described below. Here also we assume that the length of the subsequence is 2¥, for some integer
k>0.
Procedure SORT (i, j).
if i = j then return z;
else
begin

m< (i+7—1)/2;

S < SORT (i, m);

T < SORT(m +1,j);

return MERGE(S,T)

end

Complexity: Let T'(n) denote the number of comparison required by mergesort for a sequence of
length n. Then we have the following recurrence

T(n) = 0 if n=1
S\ 2T(n/2)+ (n—1)if n>1"
It is not hard to see that the solution of this recurrence is T'(n) = O(nlogn).

Ezercise 1. (a) Write a pseudo-code of the procedure M ERGE.
(b) Give a formal solution of the above recurrence relation.
(¢) In the general case, T'(n) satisfies the following in the worst case.

0 if n=1
< .
In) < {T(an) +T([n/2]) +nif n>1

Show that T'(n) < nllogn].

2. Counting Inversions
Our next example of the divide-and-conquer paradigm is the problem of counting inversions in
a permutation.

Definition 1. Let A[l..n] be an array of n distinct numbers or elements from a linearly ordered
set. If i < j and A[i] > A[j], then the pair (i,7) is called an inversion of A.

Clearly, for a sorted array the count is 0.

Algorithm SORT-AND-COUNT(L).
Input: A list or array. L
Output: The number of inversions in L and L in a sorted order.
If L has one element
then return (0, L)
else Divide the list L into two halves A and B
(ra,A) < SORT-AND-COUNT(A)
(rg, B) «+SORT-AND-COUNT(B)
(ras,L) < MERGE-AND-COUNT(A, B).
return (ry +rg +7rap, L).

How do we combine the two subproblems? The following procedure counts the number of inver-
sions (a,b) with @ € A and b € B, assuming that A and B are sorted.

Procedure MERGE-AND-COUNT(A4, B)

Scan A and B from left to right.

Compare a; and b;.

If a; < b; then a; not inverted with any element left in B.

If a; > bj;, then b; is inverted with every element left in A. Increase the count of inversions
by |A].

e Append the smaller element to the sorted list C.

Theorem 1. The SORT-AND-COUNT algorithm counts the number of inversions in a permu-
tation of size n in O(nlogn) time.

Proof. The worst-case running time 7T'(n) satisfies the recurrence

0 if n=1
T(n)= {T(Ln/2J)+T([”/2D+9(n) if n>1"

The solution of this recurrence is O(nlogn). O

Ezercise 2. (a) Prove the correctness of the algorithm SORT-AND-COUNT.
(b) Prove Theorem 1.

3. Closest Pair of Points
We now consider the problem of finding a closest pair of points in a set @ of n > 2 points in a
plane. A brute-force algorithm will clearly take O(n?) time. Here we will present a divide-and-
conquer algorithm that takes O(nlogn) time.

1.1 The Divide-And-Conquer Algorithm

Each recursive invocation of the algorithm takes as input a subset P C @ and two arrays X
and Y, each of which contains all the points of P. The array X is sorted according to a mono-
tonically increasing x-coordinate. Similarly, the array Y is sorted by monotonically increasing
y-coordinate. Note that we cannot afford to sort in each recursive call of the algorithm; since,
otherwise the running time would be O(nlog®n) (Ezercise).

A given recursive invocation with inputs P, X,Y first checks if |P| < 3. If so, the the recursive
invocation simply uses the brute-force method. Otherwise, the recursive invocation carries out
the divide-and-conquer paradigm as follows.

e Divide: Find a vertical line ¢ that divides the set P into two sets P and Pgr such that
|Pr| = [|P|/2],|Pr| = ||P|/2] and all points in Py, are on or to the left of the line ¢ and
all points in Pgr are on or to the right of £. Divide the array X into two arrays X and Xg
that contains the points of P;, and Pg respectively, each sorted by monotonically increasing
z-coordinate. Similarly, divide the array Y into two arrays Yz and Yy containing the points
of Py, and Py respectively, sorted by monotonically increassing y-coordinate.

e Conquer: We now make two recursive calls, one to find the closest pair of points in Pr, and
the other to find the closest pair of points in Pg. The inputs to the first call are the set Py,
and the arrays X and Y7, while the inputs to the other call are Pr, Xr and Yg. Let the
closest-pair distaces returned for Py, and Pg be d1, and dg respectively. Let 6 = min{dr.,dr}.

e Combine: The closest pair is either the pair with distance § found by one of the recursive
calls or it is a pair of points with one point in P;, and the other point in Pr and whose
distance is less that §. The algorithm will find if there is a pair of points with one point in
P, and the other point in Pr and whose distance is less than 6. Note that if such a pair
exists then both the points must be within ¢ units of the line ¢. Thus both the points must
lie in the 2§-vertical strip centered at the line £. To find such a pair, if one exists, do the
following.

i. Form an array Y’ from Y by removing all the points that are not in the 26 vertical strip.
The array Y’ is sorted w.r.t the y-coordinate.

ii. For each point p in the array Y’ try to find points in Y’ that are within § units of p. We
shall show below that only 7 points in Y’ that follow p need to be considered. Compute
the distance from p to each of these 7 points and keep track of the closest distance &’
found over all pairs of ponits in Y.

iii. If 0’ < 4, then the veritical strip does contain a closer pair of points than those returned
by the recursive calls. Return this pair and its distance ¢§’. Otherwise, return the closest
pair and its distance § returned by the recursive calls.

We now show the correctness of this algorithm

Correctness. Suppose at some stage of the recursion, the closest pair is py, € Pp and pgr € Pg.
and their distance ¢’ < 0. The point py, must be on or to the left of the line ¢ and is less that §
units away from £. Similarly pg is on or to the right of ¢ and is less that ¢ units away. Moreover,
pr and pr cannot be more than ¢ units apart vertically. Thus py, and pgr are within a é x 26
rectangle centered at £.

We now show that at most 8 points of P can lie within this § x 2§ rectangle. Consider the § x §
square to the left of the line £. If 5 points of P lie within this square, then at least two points
would be in a §/2 x §/2 sub-square, and their distance would be < §/v/2 < 6, a contradiction.
Thus at most 4 points of Pr, can reside within this square. Similarly, at most 4 points pf Pr can
reside within the square to the right of £. Thus at most 8 points of P can lie within the § x 24
rectangle.

Assuming that the closest pair is py, and pr and that py, precedes pgr in Y, even if py, occurs early
and pp occurs late, pr is in one of the 7 positions following py. This completes the correctness
proof.

1.2 Implementation and Running Time

Our main aim is to have the recurrence for the running time to be
T(n) = 21(n/2) + O(n),

where T'(n) is the running time for a set of n points. The crucial observation is that in each
recursive call, we need to construct a sorted subset of a sorted array. For instance, a particular
invocations receives a subset and an array Y, sorted by y-coordinate. Having partitioned P into
P, and Pgr, we need to form the arrays Y7, and Yy, which are sorted by y-coordinate in linear
time. This can be done by the following procedure. Let | be the length of the array Y.

1. Let Y1 [1,...,{1] and Yg[1...ls] be the new arrays.
2. ll = 12 = 0
3. fori=1to !l do

4. if Y[i] € P then
5. i<l +1
6. Yi[lh] = Y[i]
7. else [+ 15+1
8. Yr[l2] = Yi]

We simply scan the array Y in order. If a point Y[i] € P, we simply append it to the end of Yr;
otherwise Yi] is appended to the end of array Yg. In the first step, we presort the points i.e.
we sort the points once and for all and then pass on these sorted arrays during the first recursive
call. Presorting adds an O(nlogn) term to the running time. But each recursive call now only
takes linear time. If T'(n) is the running time for the recursive call and 7" (n) is the running time
for the entire algorithm, then we have

T'(n) = T(n) + O(nlogn),

and
2T (n/2)+O(n)if n >3
T(”):{ou) if n<3"
Thus T(n) = O(nlogn) and so T'(n) = O(nlogn). O

Another example: Divide the set of n points in @(n) time into two subsets; one contaning the
leftmost [n/2] points and the other contaning the rightmost |n/2| points. Recursively compute
the convex hulls of these two subsets and then combine the hulls in O(n) time. The running time
is given by the recurrence

T(n) =2T(n/2) + O(n)

and so the running time is O(nlogn).

