Dynamic Symmetric Searchable Encryption for Conjunctive Queries

Bibhas Chandra Das JRF, IAI, TCG CREST

Who Am I?

Bibhas Chandra Das

Working as JRF in IAI, TCG CREST Kolkata

Supervisor: Nilanjan Dutta, Assistant Professor, IAI Co-Supervisor: Avijit Dutta, Postdoc, IAI

With Support: Avishek Majumder, PhD, ISI

Problem of our Interest:

Where to Store the "BIG" Data

•

Problem of our Interest:

Where to Store the "BIG" Data

Data Outsourcing is a MUST.

Problem of our Interest:

But, there is a **BIG** BUT...

But, there is a **BIG** BUT...

A Quick Solution..

Encrypt the Data and then Store.

A Quick Solution..

Encrypt the Data and then Store.

Consequently **Decrypt** the Response and then **Use**.

A Quick Solution..

Encrypt the Data and then Store.

Consequently **Decrypt** the Response and then **Use**.

Need HUGE computation for each search

Need a Tradeoff..

Efficiency

- Fully Homomorphic Encryption
- Oblivious RAM

Leakage

Need a Tradeoff..

- Deterministic Encryption
- Order Preserving Encryption

Efficiency

Need a Tradeoff..

Efficiency

Documents

 Documents tagged by Key words

 Boolean Query Over Keywords

 Range Query over Keywords A research paper in the area of Cryptogrpahy will have keywords:

- Cryptography
- Symmetric/Public Key
- Cryptanalysis
- Security

Documents

 Documents tagged by Key words

Boolean Query
 Over Keywords

 Range Query over Keywords

- Find all documents containing "Symmetric Key"
- Find all documents containing "Symmetric Key" and "Cryptanalysis"
- Find all documents containing either "Symmetric Key" or "Public Key" but not "Cryptanalysis"

Documents

 Documents tagged by Key words

 Boolean Query Over Keywords

 Range Query over Keywords

- Find all documents published after "2020"
- Find all documents published before "2004"
- Find all documents published between "2006" and "2012"

Documents

- Find all employees whose "Salary" is "25000"
- Find all employees whose "Salary" is "25000" and "Age" is "30"
- Find all employees whose "Salary" is "25000" or "Age" is "25" but "Gender" is not "Female"

- Each record associated with attribute value pair
- Boolean Query overattribute-value pair
- Range Query over attribute value pair

Documents

- Find all employees whose "Salary" is more than "25000"
- Find all the employees whose "Salary" is less than "50000"
- Find all the employees whose "Age" is between "25" and "45"

- Each record associated with attribute value pair
- Boolean Query over attribute-value pair
 - Range Query over attribute value pair

As of now our interest is "General Boolean Queries" for both kind of database.

To achieve this, literature shows the path:

Single Keyword Search

Area of our Focus..

As of now our interest is "General Boolean Queries" for both kind of database.

To achieve this, literature shows the path:

Single Keyword Search \longrightarrow Conjunctive Keyword Search

Area of our Focus..

As of now our interest is "General Boolean Queries" for both kind of database.

To achieve this, literature shows the path:

Single Keyword Search \longrightarrow Conjunctive Keyword Search Efficient Schemes Exists Schemes Exists but Not Efficient What does not exists at all:

Any scheme for General Boolean Query and that is our Final Target

Static Schemes:

- Consists of Two Algorithms: SETUP and SEARCH
- Once the database is **STORED** in the cloud **NO UPDATE** is allowed.
- LESS use for its STATIC nature.

Static Schemes:

- Consists of Two Algorithms: SETUP and SEARCH
- Once the database is **STORED** in the cloud **NO UPDATE** is allowed.
- LESS use for its STATIC nature.
- Examples:
 - Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries (2013) by [3] David Cash et. al.

Introduced the concept of **TSET** and **XSET** to achieve solution for conjunctive query.

Keeps information about (keyword,file) pair

Interlinks files containing same keywords

Static Schemes:

- Consists of Two Algorithms: SETUP and SEARCH
- Once the database is **STORED** in the cloud **NO UPDATE** is allowed.
- LESS use for its STATIC nature.
- Examples:
 - 1. Highly-Scalable Searchable Symmetric Encryption with Support for Boolean Queries (2013) [3] by David Cash et. al.
 - 2. Forward secure Conjunctive Keyword Searchable Encryption (2019) [4] Chengyu Hu et. al.

by

Used **Bloom_Filter** and **Inner Product Encryption** to achieve Conjunctive Search

Takes most of the time of implementation

False Positive results

Dynamic Schemes:

- Consists of Three Algorithms: SETUP, UPDATE and SEARCH
- Can ADD or DELETE files while the database is in use.
- WIDE area of use.

Dynamic Schemes:

- Consists of Three Algorithms: SETUP, UPDATE and SEARCH
- Can ADD or DELETE files while the database is in use.
- WIDE area of use.
- Examples:
 - 1. Forward and Backward Private Conjunctive Searchable Symmetric Encryption [1] (2020) by Sikhar Patranabis and Debdeep Mukhopadhyay

Based on the idea of **TSET** and **XSET** of **Cash et. al**.

Dynamic Schemes:

- Consists of Three Algorithms: **SETUP**, **UPDATE** and **SEARCH**
- Can ADD or DELETE files while the database is in use.
- WIDE area of use.
- Examples:
 - 1. Forward and Backward Private Conjunctive Searchable Symmetric Encryption [1] (2020) by Sikhar Patranabis and Debdeep Mukhopadhyay
 - Forward and Backward Private Dynamic Searchable Symmetric Encryption for Conjunctive Queries [2] (2021) by Shi-Feng Sun et. al.

Used Bitmap Index and Symmetric Encryption with Homomorphic Addition

Security Notions:

• Forward Privacy

Server cannot learn Updated Document matches a Keyword previously Searched for.

Backward Privacy

Type I: Leaks the Documents currently Matching w, when they were Inserted, and the total number of Updates on w.

Type II: Leaks the Documents currently Matching w, when they were Inserted, and When all the Updates on w happened(but Not their Content).

Type III: Leaks the Documents currently Matching w, when they were Inserted, When all the Updates on w happened, and which Deletion Update Canceled which Insertion Update.

Let's Compare:

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 5 PRF evaluation 1 Group Exponentiation 1 Group Multiplication 1 Group Inverse 				

Scheme [1]

Let's Compare:

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 5 PRF evaluation 1 Group Exponentiation 1 Group Multiplication 1 Group Inverse 	 w1 (n+1) PRF evaluations w1 (n-1) Group Exponentiations 			

Scheme by [1]

Let's Compare:

Scheme by [1]

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Flivacy	Flivacy
 5 PRF evaluation 1 Group Exponentiation 1 Group Multiplication 1 Group Inverse 	 w1 (n+1) PRF evaluations w1 (n-1) Group Exponentiations 	 <u>Client Sends:</u> w1 many sets of (n-1) group elements <u>Server Sends:</u> matchw1 many tuples containing encrypted identifiers 		
Computation on Client Side		Communication	Forward	Backward
---	--	--	--	---
Update	Search	Communication	TTVACy	FIIVACY
 5 PRF evaluation 1 Group Exponentiation 1 Group Multiplication 1 Group Inverse 	 w1 (n+1) PRF evaluations w1 (n-1) Group Exponentiations 	 <u>Client Sends:</u> w1 many sets of (n-1) group elements <u>Server Sends:</u> matchw1 many tuples containing encrypted identifiers 	Achieved for TSET, but Not Achieved for XSET	Provavbly Achieved Type II Privacy

Computation on Client Side			Forward	Backward
Update	Search	Communication	Privacy	Privacy
 3 Hash Computations 				
 1 Symmetric Encryption 				

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
3 Hash Computations	 n(w1 + w2 + + wn) many Hash Computations n(w1 + w2 + + wn) many 			
• 1 Symmetric Encryption	 Additions 1 Symmetric Decryption 			

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 3 Hash Computations 1 Symmetric Encryption 	 n(w1 + w2 + + wn) many Hash Computations n(w1 + w2 + + wn) many Homomorphic Additions 1 Symmetric Decryption 	 Client Sends: n many Search Tokens Server Sends: 1 Encrypted Bit String of length DB log W 		

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 3 Hash Computations 1 Symmetric Encryption 	 n(w1 + w2 + + wn) many Hash Computations n(w1 + w2 + + wn) many Homomorphic Additions 1 Symmetric Decryption 	 Client Sends: n many Search Tokens Server Sends: 1 Encrypted Bit String of length DB log W 	Achieved	Provavbly Achieved Type III Privacy

- Huge Communication in the scheme [2] BUT Not in the scheme [1]
 - 0

• Huge Communication in the scheme [2] BUT Not in the scheme [1]

• Huge Computation in the scheme [1] BUT Not in the scheme [2]

• Huge Communication in the scheme by [2] BUT Not in the scheme [1]

• Huge Computation in the scheme [1] BUT Not in the scheme [2]

• Partial Forward Privacy in the scheme [1] BUT Complete in the scheme [2]

- Huge Communication in the scheme [2] BUT Not in the scheme [1]
- Huge Computation in the scheme [1] BUT Not in the scheme [2]
- Partial Forward Privacy in the scheme [1] BUT Complete in the scheme [2]
- Type III Backward Privacy in the scheme [2] BUT Type II in the scheme [1]

- Huge Communication in the scheme [2] BUT Not in the scheme [1]
- Huge Computation in the scheme [1] BUT Not in the scheme [2]
- Partial Forward Privacy in the scheme [1] BUT Complete in the scheme [2]
- Type III Backward Privacy in the scheme [2] BUT Type II in the scheme [1]
- And Most Shockingly Partial Correctness in the scheme [1]

Scheme by Patranabis et. al. [1]

Client

- 1. Parse $sk = (K_T, K_X, K_Y, K_Z)$ and st = UpdateCnt
- 2. If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0
- 3. Set UpdateCnt[w] = UpdateCnt[w] + 1
- 4. Set $\operatorname{addr} = F(K_T, w || \mathsf{UpdateCnt}[w] || 0)$
- 5. Set val = (id||op) $\oplus F(K_T, w||UpdateCnt[w]||1)$
- 6. Set $\alpha = F_p(K_Y, \mathsf{id}||\mathsf{op}) \cdot (F_p(K_Z, w||\mathsf{UpdateCnt}[w]))^{-1}$
- 7. Set $\mathsf{xtag} = g^{F_p(K_X, w) \cdot F_p(K_Y, \mathsf{id}||\mathsf{op})}$
- 8. Send $(addr, val, \alpha, xtag)$ to the server

Server

- 1. Parse $\mathbf{EDB} = (\mathsf{TSet}, \mathsf{XSet})$
- 2. Set $\mathsf{TSet}[\mathsf{addr}] = (\mathsf{val}, \alpha)$
- 3. Set XSet[xtag] = 1

Update

Scheme by Patranabis et. al. [1]

Client

- 1. Parse $sk = (K_T, K_X)$ and st = UpdateCnt
- 2. Use UpdateCnt to identify keyword with least updates (assumed to be w_1 w.l.o.g)
- 3. Initialize stokenList to an empty list
- 4. Initialize xtokenList₁,..., xtokenList_{UpdateCnt[w_1]} to empty lists
- 5. For j = 1 to UpdateCnt[w_1]:
 - (a) Set saddr_j = $F(K_T, w_1||j||0)$
 - (b) Set stokenList = stokenList \cup {saddr_j}
 - (c) **For** i = 2 **to** n:
 - i. Set $\mathsf{xtoken}_{i,j} = q^{F_p(K_X,w_i) \cdot F_p(K_Z,w_1||j)}$
 - ii. Set xtokenList_j = xtokenList_j \cup {xtoken_{i,j}}
 - (d) End For
 - (e) Randomly permute the tuple-entries of xTagList_i
- 6. End For
- 7. Send (stokenList, xtokenList₁,..., xtokenList_{UpdateCnt[w1]}) to the server

Server

- 1. Parse $\mathbf{EDB} = (\mathsf{TSet}, \mathsf{XSet})$
- 2. Initialize ${\sf sEOpList}$ to an empty list
- 3. For j = 1 to stokenList.size:
 - (a) Set $\operatorname{cnt}_j = 1$
 - (b) Set $(sval_j, \alpha_j) = TSet[stokenList[j]]$
 - (c) **For** i = 2 **to** n:
 - i. Set $xtoken_{i,j} = xtokenList_j[i]$
 - ii. Compute $\mathsf{xtag}_{i,j} = (\mathsf{xtoken}_{i,j})^{\alpha_j}$
 - iii. If $XSet[xtag_{i,j}] = 1$, then set $cnt_j = cnt_j + 1$
 - (d) End For
 - (e) Set sEOpList = sEOpList $\cup \{(j, sval_j, cnt_j)\}$
- 4. End For
- 5. Send sEOpList to the client

Client: Final Output Computation

- 1. Initialize IdList to an empty list
- 2. For $\ell = 1$ to sEOpList.*size*:
 - (a) Let (j, sval_j, cnt_j) = sEOpList[ℓ]
 (b) Recover (id_j||op_j) = sval_j ⊕ F(K_T, w₁||j||1)
 - (c) If op_i is add and $cnt_i = n$ then set $sldList = sldList \cup \{id_i\}$
 - (d) Else if op_i is del and $cnt_j > 0$ then set $sldList = sldList \setminus \{id_j\}$

00

3. End For

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Computation:

Set UpdateCnt[w] = UpdateCnt[w] + 1 Set addr = $F(K_T, w||UpdateCnt[w]||0)$ Set val = (id||op) $\oplus F(K_T, w||UpdateCnt[w]||1)$ Set $\alpha = F_p(K_Y, id||op) \cdot (F_p(K_Z, w||UpdateCnt[w]))^{-1}$

	Location	Value
	addr ₁ [w1]	$\operatorname{Val}_{1}[w1], \alpha_{1}[w1]$
	addr ₁ [w3]	$\operatorname{Val}_{1}[w3], \alpha_{1}[w3]$
	addr ₁ [w2]	$\operatorname{Val}_{1}[w2], \alpha_{1}[w2]$
	addr ₂ [w1]	$\operatorname{Val}_2[w1], \alpha_2[w1]$
SET	addr ₃ [w3]	$Val_3[w3], \alpha_3[w3]$
Ë.	addr ₂ [w3]	$Val_{2}[w3], \alpha_{2}[w3]$
-	addr ₃ [w2]	Val ₃ [w2], α_{3} [w2]
	addr ₂ [w2]	$Val_{2}[w2], \alpha_{2}[w2]$
	addr ₃ [w1]	Val ₃ [w1], α_{3} [w1]

Computation:

Set $\mathsf{xtag} = g^{F_p(K_X, w) \cdot F_p(K_Y, \mathsf{id}||\mathsf{op})}$

	Location	Value
	xtag ₁ [w1]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
-	xtag ₂ [w1]	1
SET	xtag ₃ [w3]	1
×	xtag ₂ [w3]	1
	xtag ₃ [w2]	1
	xtag ₂ [w2]	1
	xtag ₃ [w1]	1

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1 Aw2

For j = 1 to UpdateCnt[w_1]:

(a) Set saddr_j =
$$F(K_T, w_1||j||0)$$

(b) Set stokenList = stokenList
$$\cup$$
 {saddr_j}

(c) **For**
$$i = 2$$
 to n :

i. Set xtoken_{i,j} =
$$q^{F_p(K_X, w_i) \cdot F_p(K_Z, w_1 || j)}$$

ii. Set xtokenList_j = xtokenList_j
$$\cup$$
 {xtoken_{i,j}}

(d) End For

(e) Randomly permute the tuple-entries of $\times \mathsf{TagList}_j$

End For

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1 Aw2

Set $(sval_j, \alpha_j) = \mathsf{TSet}[\mathsf{stokenList}[j]]$

	Location	Value
	addr ₁ [w1]	$\operatorname{Val}_{1}[\operatorname{w1}], \alpha_{1}[\operatorname{w1}]$
	addr ₁ [w3]	$Val_1[w3], \alpha_1[w3]$
	addr ₁ [w2]	$\operatorname{Val}_{1}[w2], \alpha_{1}[w2]$
	addr ₂ [w1]	$\operatorname{Val}_2[w1], \alpha_2[w1]$
SET .	addr ₃ [w3]	$Val_3[w3], \alpha_3[w3]$
F	addr ₂ [w3]	$Val_{2}[w3], \alpha_{2}[w3]$
	addr ₃ [w2]	$Val_3[w2], \alpha_3[w2]$
	addr ₂ [w2]	$Val_{2}[w2], \alpha_{2}[w2]$
	addr ₃ [w1]	$Val_{3}[w1], \alpha_{3}[w1]$

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1Aw2

- i. Set $xtoken_{i,j} = xtokenList_j[i]$
- ii. Compute $\mathsf{xtag}_{i,j} = (\mathsf{xtoken}_{i,j})^{\alpha_j}$

iii. If $XSet[xtag_{i,j}] = 1$, then set $cnt_j = cnt_j + 1$

	Location	Value
	xtag ₁ [w1]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w1]	1
SET	xtag ₃ [w3]	1
×	xtag ₂ [w3]	1
	xtag ₃ [w2]	1
	xtag ₂ [w2]	1
	xtag ₃ [w1]	1

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1 Aw2

Set $(sval_j, \alpha_j) = \mathsf{TSet}[\mathsf{stokenList}[j]]$

	Location	Value
	addr ₁ [w1]	$\operatorname{Val}_{1}[w1], \alpha_{1}[w1]$
	addr ₁ [w3]	$Val_{1}[w3], \alpha_{1}[w3]$
	addr ₁ [w2]	$\operatorname{Val}_{1}[w2], \alpha_{1}[w2]$
	addr ₂ [w1]	$\operatorname{Val}_2[w1], \alpha_2[w1]$
SET	addr ₃ [w3]	$Val_{3}[w3], \alpha_{3}[w3]$
F	addr ₂ [w3]	$Val_{2}[w3], \alpha_{2}[w3]$
	addr ₃ [w2]	$Val_{3}[w2], \alpha_{3}[w2]$
	addr ₂ [w2]	$Val_{2}[w2], \alpha_{2}[w2]$
	addr ₃ [w1]	$Val_3[w1], \alpha_3[w1]$

Suppose:

- File 1 has keyword w1, w2 and w3
- File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1/w2

- i. Set $xtoken_{i,j} = xtokenList_j[i]$
- ii. Compute $\operatorname{xtag}_{i,j} = (\operatorname{xtoken}_{i,j})^{\alpha_j}$
- iii. If $XSet[xtag_{i,j}] = 1$, then set $cnt_j = cnt_j + 1$

	Location	Value
	xtag ₁ [w1]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w1]	1
SET	xtag ₃ [w3]	1
×	xtag ₂ [w3]	1
	xtag ₃ [w2]	1
	xtag ₂ [w2]	1
	xtag ₃ [w1]	1

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1 Aw2

Final Output: Identifier for File 1 and File 2

For $\ell = 1$ to sEOpList.*size*:

- (a) Let $(j, sval_j, cnt_j) = sEOpList[\ell]$
- (b) Recover $(\mathsf{id}_j || \mathsf{op}_j) = \mathsf{sval}_j \oplus F(K_T, w_1 || j || 1)$
- (c) If op_j is add and $cnt_j = n$ then set $sldList = sldList \cup \{id_j\}$
- (d) Else if op_j is del and $cnt_j > 0$ then set $sldList = sldList \setminus \{id_j\}$

End For

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1/w2

Final Output: Identifier for File 1 and File 2

Now Suppose:

For j = 1 to UpdateCnt[w_1]:

(a) Set saddr_j =
$$F(K_T, w_1||j||0)$$

(b) Set stokenList = stokenList
$$\cup$$
 {saddr_j}

(c) **For**
$$i = 2$$
 to n :

i. Set
$$\mathsf{xtoken}_{i,j} = q^{F_p(K_X,w_i) \cdot F_p(K_Z,w_1||j)}$$

ii. Set xtokenList_j = xtokenList_j \cup {xtoken_{i,j}}

(d) End For

(e) Randomly permute the tuple-entries of xTagList_j

End For

Client Deletes: w2 from File 2 and again Performs Search: w1 A w2

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1 Aw2

Final Output: Identifier for File 1 and File 2

Now Suppose:

For j = 1 to stokenList.size:

(a) Set $\operatorname{cnt}_j = 1$

(b) Set $(sval_j, \alpha_j) = \mathsf{TSet}[\mathsf{stokenList}[j]]$

(c) **For** i = 2 **to** n:

i. Set xtoken $_{i,j} = x$ tokenList $_j[i]$

ii. Compute $\operatorname{xtag}_{i,j} = (\operatorname{xtoken}_{i,j})^{\alpha_j}$

iii. If $XSet[xtag_{i,j}] = 1$, then set $cnt_j = cnt_j + 1$

(d) End For

(e) Set sEOpList = sEOpList
$$\cup \{(j, sval_j, cnt_j)\}$$

End For

Client Deletes: w2 from File 2 and again Performs Search: w1 \w2

Final Output: Identifier for File 1 and File 2

Suppose:

File 1 has keyword w1, w2 and w3

File 2 has keyword w1, w2 and w4

File 3 has keyword w2, w3 and w4

Client Search: All Files containing w1 Aw2

Server Replies: Identifier for File 1 and File 2

Now Suppose:

Client Deletes: w2 from File 2 and again Performs Search: w1 \w2

Correct Reply: Identifier for File 1 and File 2

Ideally Our Target:

- Huge Communication in the scheme [2] BUT Not in the scheme [1]
- Huge Computation in the scheme [1] BUT Not in the scheme [2]
- Partial Forward Privacy in the scheme [1] BUT Complete in the scheme [2]
- Type III Backward Privacy in the scheme [2] BUT Type II in the scheme [1]
- And Most Shockingly Partial <u>Correctness</u> in the scheme [1]

First Observation:

• At the time of **Update Minimal Computation**.

Client

- 1. Parse $sk = (K_T, K_X, K_Y, K_Z)$ and st = UpdateCnt
- 2. If UpdateCnt[w] is NULL then set UpdateCnt[w] = 0
- 3. Set UpdateCnt[w] = UpdateCnt[w] + 1
- 4. Set $\operatorname{addr} = F(K_T, w || \operatorname{UpdateCnt}[w] || 0)$
- 5. Set val = (id||op) $\oplus F(K_T, w||UpdateCnt[w]||1)$
- 6. Set $\alpha = F_p(K_Y, \mathsf{id}||\mathsf{op}) \cdot (F_p(K_Z, w||\mathsf{UpdateCnt}[w]))^{-1}$
- 7. Set $\mathsf{xtag} = g^{F_p(K_X, w) \cdot F_p(K_Y, \mathsf{id}||\mathsf{op})}$
- 8. Send $(addr, val, \alpha, xtag)$ to the server

Server

- 1. Parse $\mathbf{EDB} = (\mathsf{TSet}, \mathsf{XSet})$
- 2. Set $\mathsf{TSet}[\mathsf{addr}] = (\mathsf{val}, \alpha)$
- 3. Set XSet[xtag] = 1

First Observation:

- At the time of **Update Minimal Computation**.
- But at time of Search Huge Computation.

For j = 1 to UpdateCnt[w_1]:

- (a) Set saddr_j = $F(K_T, w_1||j||0)$
- (b) Set stokenList = stokenList \cup {saddr_j}
- (c) **For** i = 2 **to** n:
 - i. Set $\mathsf{xtoken}_{i,j} = g^{F_p(K_X,w_i) \cdot F_p(K_Z,w_1||j)}$
 - ii. Set xtokenList_j = xtokenList_j \cup {xtoken_{i,j}}
- (d) End For
- (e) Randomly permute the tuple-entries of xTagList_j

End For

So, we designed the Update Operation as:

Client

Parse $sk = (K_t, K_X, K_Y, K_Z)$ and st = (CT, Cnt)if $Cnt[w] = \bot$ then $Cnt[w] \leftarrow 0$ $\mathsf{ST}_c \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$, and $\mathsf{CT}[\mathsf{w}] \leftarrow \mathsf{ST}_c$ end if $Cnt[w] \leftarrow Cnt[w] + +$ $\mathsf{ST}_c \stackrel{\$}{\leftarrow} \{0,1\}^{\lambda}$ $CT[w] \leftarrow ST_{c+1}$ $UT_{c+1} \leftarrow H_1(K_T, \mathsf{ST}_{c+1})$ $C_{\mathsf{ST}_c} \leftarrow H_2(K_T, \mathsf{ST}_{c+1}) \oplus \mathsf{ST}_c$ $D_{\mathsf{ST}_{c}} \leftarrow H_{3}(K_{T}, \mathsf{ST}_{c+1}) \oplus \mathcal{E}(\mathsf{id}, \mathsf{op})$ $\alpha_1 \leftarrow F_p(K_Y, \mathcal{E}(\mathsf{id}, \mathsf{op})) \cdot F_p(K_z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}])^{-1}$ $\alpha_2 \leftarrow F_p(K_Z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}])^{-1} \cdot F_p(K_Z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}] - 1)$ $\mathsf{xtag} \leftarrow q^{F_p(K_X,\mathsf{w}) \cdot F_p(K_Y,\mathcal{E}(\mathsf{id}, \mathsf{op}))}$ **Send** $(UT_{c+1}, C_{\mathsf{ST}_c}, D_{\mathsf{ST}_c}, \alpha_1, \alpha_2, \mathsf{xtag})$ to server

And, we immediately get this:

Client

- 1: Parse $\mathsf{sk} = (K_t, K_X, K_Y, K_Z)$ and $\mathsf{st} = (\mathsf{CT}, \mathsf{Cnt})$
- 2: for i = 2 to n do

3:
$$\mathsf{xtoken}_i \leftarrow g^{F_p(K_X,\mathsf{w}_i) \cdot F_p(K_Z,\mathsf{w}_1 \| \mathsf{Cnt}[\mathsf{w}_1])}$$

4: end for

5: Send $(CT[w_1], Cnt[w_1], K_T, xtoken_2, xtoken_3 \cdots, xtoken_n)$ to server

Next Observation:

The problem with Correctness still Exists.

• For Each Cross Term, Must Look for both Addition and Deletion operation in every Identifier matching Short Term.

Next Observation:

The problem with Correctness still Exists.

• For Each Cross Term, Must Look for both Addition and Deletion operation in every Identifier matching Short Term.

$$\alpha_{1T} \leftarrow F_p(K_Y, \mathcal{E}(\mathsf{id}, \mathsf{op})) \cdot F_p(K_z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}])^{-1}$$

$$\alpha_{1F} \leftarrow F_p(K_Y, \mathcal{E}(\mathsf{id}, \mathsf{op}^{\mathsf{c}})) \cdot F_p(K_z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}])^{-1}$$

Next Observation:

The problem with Correctness still Exists.

- For Each Cross Term, Must Look for both Addition and Deletion operation in every Identifier matching Short Term.
- But then, when Server Recomputes the xtags it will Map Addition Operation with Deletion Operation for the Cross Terms in such Identifiers.

- 1: function Client
- 2: $(K_T, K_X, K_Y, K_Z) \leftarrow \mathsf{sk} \text{ and } \mathsf{Cnt} \leftarrow \mathsf{st}$
- 3: if $Cnt[w] = \bot$ then

4:
$$\operatorname{Cnt}[w] \leftarrow 0, \quad \operatorname{ST}_{c} \xleftarrow{\$} \{0, 1\}^{\lambda}$$

5: end if

$$6: \qquad \mathsf{Cnt}[\mathsf{w}] \leftarrow \mathsf{Cnt}[\mathsf{w}] + +$$

7:
$$\mathsf{ST}_{c+1} \xleftarrow{\$} \{0,1\}^{\lambda}$$

8:
$$UT_{c+1} \leftarrow H_1(K_T, \mathsf{ST}_{c+1})$$

9:
$$C_{\mathsf{ST}_c} \leftarrow H_2(K_T, \mathsf{ST}_{c+1}) \oplus \mathsf{ST}_c$$

10:
$$D_{\mathsf{ST}_c} \leftarrow H_3(K_T, \mathsf{ST}_{c+1}) \oplus \mathcal{E}(\mathsf{id}, \mathsf{op})$$

11:
$$\alpha_{1T} \leftarrow F_p(K_Y, \mathcal{E}(\mathsf{id}, \mathsf{op})) \cdot F_p(K_z, \mathsf{w} \|\mathsf{Cnt}[\mathsf{w}])^{-1}$$

12:
$$\alpha_{1F} \leftarrow F_p(K_Y, \mathcal{E}(\mathsf{id}, \mathsf{op}^{\mathsf{c}})) \cdot F_p(K_z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}])^{-1}$$

13:
$$\alpha_2 \leftarrow F_p(K_Z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}])^{-1} \cdot F_p(K_Z, \mathsf{w} \| \mathsf{Cnt}[\mathsf{w}] - 1)$$

14:
$$\mathsf{xtag} \leftarrow q^{F_p(K_X,\mathsf{w} \| \mathsf{op}) \cdot F_p(K_Y, \mathcal{E}(\mathsf{id}, \mathsf{op}))}$$

15: Send
$$(UT_{c+1}, C_{\mathsf{ST}_c}, D_{\mathsf{ST}_c}, \alpha_{1T}, \alpha_{1F}, \alpha_2, \mathsf{xtag})$$
 to server

16: end function

Update

- function Client 1:
- $(K_T, K_X, K_Y, K_Z) \leftarrow \mathsf{sk} \text{ and } \mathsf{Cnt} \leftarrow \mathsf{st}$ 2:

3:
$$UT_{\mathsf{Cnt}[w_1]} \leftarrow H_1(K_T, \mathsf{ST}_{\mathsf{Cnt}[w_1]})$$

for i = 2 to n do 4:

5:
$$\mathsf{xtoken}_{i+} \leftarrow g^{F_p(K_X,\mathsf{w}_i\|+) \cdot F_p(K_Z,\mathsf{w}_1\|\mathsf{Cnt}[\mathsf{w}_1])}$$

6: $\mathsf{xtoken}_{i-} \leftarrow g^{F_p(K_X,\mathsf{w}_i\|-) \cdot F_p(K_Z,\mathsf{w}_1\|\mathsf{Cnt}[\mathsf{w}_1])}$

$$\mathsf{xtoken}_{i-} \leftarrow g^{F_p(K_X,\mathsf{w}_i\|-) \cdot F_p(K_Z,\mathsf{w}_1\|)}$$

- 7: end for
- **Send** $(UT_{Cnt[w_1]}, Cnt[w_1], K_T)$ to server 8:
- **SendPermuted** version of $xtoken_{2+}, xtoken_{3+} \cdots, xtoken_{n+} \rightarrow server$ 9:
- **Send**(Permuted version of $xtoken_{2-}, xtoken_{3-} \cdots, xtoken_{n-}) \rightarrow server$ 10:
- 11: end function

1: function Server

2:	$sEOpList \gets \Phi$	21:
3:	for $j = Cnt[w_1]$ to 1 do	22:
4:	for $k = 1$ to 4 do	23:
5:	$Cnt_{k}[j] \leftarrow 1$	24:
6:	end for	25:
7:	$UT_j \leftarrow H_1(K_T, ST_j)$	26:
8:	$ParseTSet[UT_j] = (C_{ST_{j-1}}, D_{ST_{j-1}}, \alpha_{1T}, \alpha_{1F}, \alpha_{1F})$	27:
9:	$ST_{j-1} \leftarrow C_{ST_{j-1}} \oplus H_2(K_T, ST_j)$	28:
10:	$\mathcal{E}(id_j,op_j) \leftarrow D_{ST_{j-1}} \oplus H_3(K_T,ST_j)$	29:
11:	for $i = 2$ to n do	30:
12:	$xtag_{+T}^{ij} = (xtoken_{i+})^{\alpha_{1T}}$	31:
13:	$\mathbf{if} \ XSet[xtag_{+T}^{ij}] = 1 \ \mathbf{then}$	32:
14:	$Cnt_1[j] \leftarrow Cnt_1[j] + 1$	33:
15:	end if	34:
16:	$xtag_{+F}^{ij} = (xtoken_{i+})^{\alpha_{1F}}$	35:
17:	if $XSet[xtag_{+F}^{ij}] = 1$ then	36:
18:	$Cnt_2[j] \leftarrow Cnt_2[j] + 1$	37:
19:	end if	38:
20:	end for	39:

for i = 2 to n do $xtag_{-T}^{ij} = (xtoken_{i-})^{\alpha_{1T}}$ if $XSet[xtag_{-T}^{ij}] = 1$ then $\mathsf{Cnt}_3[j] \gets \mathsf{Cnt}_3[j] + 1$ end if $\mathsf{xtag}_{-\mathsf{F}}^{\mathsf{ij}} = (\mathsf{xtoken}_{i-})^{\alpha_{1F}}$ if $XSet[xtag_{-F}^{ij}] = 1$ then $Cnt_4[j] \leftarrow Cnt_4[j] + 1$ end if end for for i = 2 to n do $\mathsf{xtoken}_{i+} = (\mathsf{xtoken}_{i+})^{\alpha_2}$ end for for i = 2 to n do $\mathsf{xtoken}_{i-} = (\mathsf{xtoken}_{i-})^{\alpha_2}$ end for $\mathsf{sEOpList} = \mathsf{sEOpList} \cup \{(j, \mathcal{E}(\mathsf{id}, \mathsf{op}), \mathsf{Cnt}_1[j], \mathsf{Cnt}_2[j], \mathsf{Cnt}_3[j], \mathsf{Cnt}_4[j])\}$ end for Send sEOpList to client

Search-Server

Let us try to understand Our Proposed Solution through an Example:

Document Representation
Operation: Add(w1, ID1)

Cnt[w1] = 1

Randomly Sample ST₂

 $UT_2 = H_1(K_T, ST_2)$

 $CT_1 = H_2(K_T, ST_2) \oplus ST_1$ $DT_1 = H_3(K_T, ST_2) \oplus \varepsilon(ID1, add)$

 $\alpha_{1T} = F_{p}(K_{Y}, \epsilon(ID1, add)) * F_{p}(K_{Z}, w1||Cnt[w1])^{-1}$ $\alpha_{1F} = F_{p}(K_{Y}, \epsilon(ID1, del)) * F_{p}(K_{Z}, w1||Cnt[w1])^{-1}$ $\alpha_{2} = F_{p}(K_{Z}, w1||Cnt[w1]-1) * F_{p}(K_{Z}, w1||Cnt[w1])^{-1}$ $xtag = \exp[g, F_{p}(K_{Y}, \epsilon(ID1, add)) * F_{p}(K_{Y}, w1||add)]$

CLIENT

Our Solution:Operation: Add(w1, ID1)

Location	Value		
UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$		

Location	Value
xtag ₂ [w1]	1

XSET

Our Solution: *Operation:* Add(w1, ID3)

Location	Value
UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$
UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$

TSET

Location	Value		
xtag ₂ [w1]	1		
xtag ₁ [w1]	1		

XSET

Operation: Add(w2, ID1)

	Location	Value		Lo
	UT ₂ [w2]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xta
E			E	xta
TSE	UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	XSE	
	UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xta

Location	Value		
xtag ₂ [w1]	1		
xtag ₁ [w1]	1		
xtag ₁ [w2]	1		

Operation: Add(w2, ID2)

XSET

	Location	Value
	UT ₂ [w2]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$
H		
TSE	UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$
	UT ₃ [w2]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$
	UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$

Location	Value
xtag ₂ [w1]	1
xtag ₁ [w1]	1
xtag ₂ [w2]	1
xtag ₁ [w2]	1

Operation: Add(w3, ID2)

	Location	Value		Location	Value
	UT ₂ [w2]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₂ [w1]	1
E				xtag ₁ [w1]	1
TSE	UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	XSE	xtag ₂ [w2]	1
	UT ₃ [w2]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₁ [w3]	1
	UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₁ [w2]	1
	UT ₂ [w3]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$			

Operation: Add(w3, ID3)

			1
	Location	Value	
	UT ₂ [w2]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₃ [w3]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
20	UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	XSEI
	UT ₃ [w2]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₂ [w3]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	

Location	Value
xtag ₂ [w1]	1
xtag ₁ [w1]	1
xtag ₂ [w2]	1
xtag ₁ [w3]	1
xtag ₁ [w2]	1
xtag ₂ [w3]	1

CLIENT

Operation: Search(w1 \land w2 \land w3)

 $UT_{CNT[w1]} = H_1(K_T, ST_{CNT[w1]})$

$$xtoken_{2+} = exp[g, F_p(K_X, w2||add) * F_p(K_Z, w1||CNT[w1])]$$

$$Permute$$

$$xtoken_{3+} = exp[g, F_p(K_X, w3||add) * F_p(K_Z, w1||CNT[w1])]$$

$$xtoken_{2-} = exp[g, F_p(K_X, w2||del) * F_p(K_Z, w1||CNT[w1])]$$

$$Permute$$

$$xtoken_{3-} = exp[g, F_p(K_X, w3||del) * F_p(K_Z, w1||CNT[w1])]$$

TSET	Location	Value		Location	Value
	UT ₂ [w2]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₂ [w1]	1
	UT ₃ [w3]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	² 2 2 2 2 2 2 2	xtag ₁ [w1]	1
	UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₂ [w2]	1
	UT ₃ [w2]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₁ [w3]	1
	UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₁ [w2]	1
	UT ₂ [w3]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$		xtag ₂ [w3]	1

	Location	Value	
	UT ₂ [w2]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₃ [w3]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₂ [w1]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₃ [w2]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₃ [w1]	$CT_2, DT_2, \alpha_{1T}, \alpha_{1F}, \alpha_2$	
	UT ₂ [w3]	$CT_1, DT_1, \alpha_{1T}, \alpha_{1F}, \alpha_2$	

 $ST_2 = H_2(K_T, ST_3) \oplus CT_2$ $\epsilon(ID1, add) = H_3(K_T, ST_3) \oplus DT_2$ $UT_2 = H_1(K_T, ST_2)$

Then:

$$\varepsilon$$
(ID1,add) = H₃(K_T, ST₂) \oplus DT₁

SERVER

$$xtag_{+T} = exp(xtoken_{2+}, \alpha_{1T})$$

	Location	Value
	xtag ₂ [w1]	1
	xtag ₁ [w1]	1
XSET	xtag ₂ [w2]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w3]	1

$$xtag_{+T} = exp(xtoken_{2+}, \alpha_{1T})$$

$$Cnt_{1}[2] = 1$$

$$xtag_{+T} = exp(xtoken_{3+}, \alpha_{1T})$$

$$Cnt_{1}[2] = 1$$

	Location	Value
	xtag ₂ [w1]	1
	xtag ₁ [w1]	1
XSET	xtag ₂ [w2]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w3]	1

$$xtag_{+F} = exp(xtoken_{2+}, \alpha_{1F})$$

Cnt₂[2] = 0

	Location	Value	
	xtag ₂ [w1]	1	
	xtag ₁ [w1]	1	
XSEI	xtag ₂ [w2]	1	
	xtag ₁ [w3]	1	
	xtag ₁ [w2]	1	
	xtag ₂ [w3]	1	

$$xtag_{+F} = \exp(xtoken_{2+}, \alpha_{1F})$$

$$Cnt_{2}[2] = 0$$

$$xtag_{+F} = \exp(xtoken_{3+}, \alpha_{1F})$$

$$Cnt_{2}[2] = 0$$

	Location	Value
	xtag ₂ [w1]	1
	xtag ₁ [w1]	1
XSET	xtag ₂ [w2]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w3]	1

 $xtag_{-T} = exp(xtoken_{2-}, \alpha_{1T})$

Cnt₃[2] = 0

	Location	Value
	xtag ₂ [w1]	1
	xtag ₁ [w1]	1
XSEI	xtag ₂ [w2]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w3]	1

$$xtag_{-T} = exp(xtoken_{2-}, \alpha_{1T})$$

$$Cnt_{3}[2] = 0$$

$$xtag_{-T} = exp(xtoken_{3-}, \alpha_{1T})$$

$$Cnt_{3}[2] = 0$$

	Location	Value
	xtag ₂ [w1]	1
	xtag ₁ [w1]	1
XSET	xtag ₂ [w2]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w3]	1

 $xtag_{-F} = exp(xtoken_{2}, \alpha_{1F})$

 $Cnt_{4}[2] = 0$

Location	Value
xtag ₂ [w1]	1
xtag ₁ [w1]	1
xtag ₂ [w2]	1
xtag ₁ [w3]	1
xtag ₁ [w2]	1
xtag ₂ [w3]	1
	Location $xtag_{2}[w1]$ $xtag_{1}[w1]$ $xtag_{2}[w2]$ $xtag_{1}[w3]$ $xtag_{1}[w2]$ $xtag_{2}[w3]$

$$xtag_{-F} = exp(xtoken_{2-}, \alpha_{1F})$$

$$Cnt_{4}[2] = 0$$

$$xtag_{-F} = exp(xtoken_{3-}, \alpha_{1F})$$

$$Cnt_{4}[2] = 0$$

	Location	Value
	xtag ₂ [w1]	1
	xtag ₁ [w1]	1
XSET	xtag ₂ [w2]	1
	xtag ₁ [w3]	1
	xtag ₁ [w2]	1
	xtag ₂ [w3]	1

Server Computes:

 $Cnt_{1}[2] = 1 \qquad Cnt_{2}[2] = 0 \qquad Cnt_{3}[2] = 0 \qquad Cnt_{4}[2] = 0$ And $Cnt_{1}[1] = 1 \qquad Cnt_{2}[1] = 0 \qquad Cnt_{3}[1] = 0 \qquad Cnt_{4}[1] = 0$

Server Computes:

$$Cnt_{1}[2] = 1 \qquad Cnt_{2}[2] = 0 \qquad Cnt_{3}[2] = 0 \qquad Cnt_{4}[2] = 0$$
$$Cnt_{1}[1] = 1 \qquad Cnt_{2}[1] = 0 \qquad Cnt_{3}[1] = 0 \qquad Cnt_{4}[1] = 0$$

Server Sends Client:

(ϵ (ID1,add), Cnt₁[1], Cnt₂[1], Cnt₃[1], Cnt₄[1])

Client Decrypts:	ε(ID2,add)
Operation:	Add
Chcek:	Cnt ₁ [2] = 2 and Cnt ₄ [2] = 0

Client Decrypts: ɛ(ID2,add)

Operation:

Chcek: $Cnt_{1}[2] = 2 \text{ and } Cnt_{4}[2] = 0$

Add

But

Cnt₁[2] = 1

So,

ID2 is NOT ADDED in Final Result

Client Decrypts:	ε(ID1,add)
Operation:	Add
Chcek:	Cnt ₁ [1] = 2 and Cnt ₄ [1] = 0

Client Decrypts:ε(ID1,add)Operation:Add

Chcek: $Cnt_{1}[1] = 2 \text{ and } Cnt_{4}[1] = 0$

But

 $Cnt_{1}[1] = 1$

So,

ID1 is NOT ADDED in Final Result

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 5 PRF evaluation 1 Group Exponentiation 3 Group Multiplication 1 Group Inverse 3 Hash Computation 				

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 5 PRF evaluation 1 Group Exponentiation 3 Group Multiplication 1 Group Inverse 3 Hash Computation 	 3(n-1) PRF evaluations 2(n-1) Group Exponentiations 			

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Plivacy
 5 PRF evaluation 1 Group Exponentiation 3 Group Multiplication 1 Group Inverse 3 Hash Computation 	 3(n-1) PRF evaluations 2(n-1) Group Exponentiations 	 <u>Client Sends:</u> 2(n-1) group elements <u>Server Sends:</u> matchw1 many tuples containing encrypted identifiers 		

Computation on Client Side		Communication	Forward	Backward
Update	Search	Communication	Privacy	Privacy
 5 PRF evaluation 1 Group Exponentiation 3 Group Multiplication 1 Group Inverse 3 Hash Computation 	 3(n-1) PRF evaluations 2(n-1) Group Exponentiations 	 <u>Client Sends:</u> 2(n-1) group elements <u>Server Sends:</u> matchw1 many tuples containing encrypted identifiers 	Achieved for TSETand probably for XSET (Working)	Provavbly Achieved Type II Privacy

What about Our Target:

- Very Less Communication
- Average Computation
- Probably Complete Forward Privacy
- Type II Backward Privacy
- Correctness

What about Our Target:

- Very Less Communication
- Average Computation
- Probably Complete Forward Privacy
- Type II Backward Privacy

• Correctness

What about Our Target:

- Very Less Communication
- Average Computation
- Probably Complete Forward Privacy
- Type II Backward Privacy

• Correctness

Future Direction:

- Try to achieve Less Computation
 - Planned to Get Rid Off Large Group Operations

Future Direction:

- Try to achieve Less Computation
 - Planned to Get Rid Off Large Group Operations

- Achieve the Complete Forward Privacy
 - Planned to use Private Membership Test

Future Direction:

- Achieve Less Computation
 - Planned to Get Rid Off Large Group Operations
- Achieve the Complete Forward Privacy
 - Planned to use Private Membership Test
- Extend for General Boolean Query
 - Use the Four Different Cnts according to Query

Quick Questions ? Snacks are Waiting

