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1 Greedy Algorithms

Typically, greedy algorithms apply to optimization problems in which we make a set of choices in
order to arrive at an optimal solution. The idea of greedy algorithm is to make each choice in a
locally optimal manner. For instance, if you want to pay an amount with minimum number of coins,
at each step you would choose a coin with largest denomination available so as not to exceed the
amount to be paid. We cannot always easily tell whether a greedy approach would be effective.
A greedy algorithm makes a locally optimal choice in the hope that this would lead to a globally
optimal solution. A greedy algorithm does not always yield an optimal solution, but in many cases
they do. We first consider the interval scheduling problem which is also known as the scheduling
problem.

1. Scheduling

We have a collection of jobs or tasks to schedule on some machine Each job j has a given
start time sj and a given finish time fj . Thus each job j is associated with an interval [sj , fj ].
If two jobs overlap, we can’t schedule them both.They are called incompatible. Our goal is to
schedule as many jobs as possible on our machine.

Example 1. Suppose the jobs are the following five intervals [1, 3], [2, 4], [3, 5], [4, 6], [5, 7]. Then
best is to schedule the three jobs [1, 3], [3, 5], [5, 7].

Exercise 1. Call a job a candidate job if it has not yet been scheduled and is compatible with
every already-scheduled job. Starting from the empty schedule, so long as one candidate job
exists,
• always add in the shortest candidate job;
• always add in the candidate job with the earliest start time;
• always add in the candidate job with the fewest conflicts with other candidate jobs.

Give counter-examples to show that in each case we do not get an optimal solution.

We shall now show that the early finish time greedy works and gives an optimal solution.
Algorithm EFT

Input: A list of intervals I = {I1, . . . , In}, where Ij = [sj , fj ] with sj < fj for 1 ≤ j ≤ n
Output A maximun subset of pairwise compatible intervals in I.
1. Sort the input list I in non-decreasing order of finish time
2. f := 0
3. S0 = φ
4. for i← 1 to n do
5. if f < si then
6. Si = Si−1 ∪ {Ii}
7. f ← fi
8. endif
9. endfor
10 return Sn



Theorem 1. Algorithm EFT gives an optimal solution in time O(n log n).

Proof. We shall show by induction that, at every step,
• the solution produced by the algorithm so far can be extended to an optimal solution
without removing any of the already-scheduled jobs.

The base step is clearly true. So assume it is true after i jobs have been scheduled. Let S ne the
optimal solution that includes these i jobs sceduled by the algorithm so far. Let j be the job
that the algorithm schedules next. If j ∈ S then we are done. So assume that j 6∈ S. Let j′ be
the job in S with the earliest finish time that is not one of the i jobs scheduled by the algorithm.
Clearly, j′ is a candidate job since it is not in conflict with any other job in S and S includes
the i jobs scheduled by the algorithm so far. Then it must be the case that the finish time of
j′ is greater than equal to the finish time of j (Why?) Thus j is not in conflict with any of the
jobs in S that starts after j′ finishes. Also, j is not in conflict with any job in S that finishes
earlier that the start time of j′, since it must be one of the i jobs scheduled by the algorithm.
This means that S∗ = (S − {j′}) ∪ {j} is an new optimal solution that includes all the i jobs
together with j. So the invariant is maintained.
Thus the invariant is maintained throughout the algorithm so when it halts, the algorithm must
have found an optimal solution. This completes the proof. �

Remark 1. Given a schedule I = {I1, . . . , In} construct a graph G = (V,E) as follows. For
every interval Ii create a vertex vi and two vertices are adjacent i.e. {vi, vj} ∈ E iff their
corresponding intervals overlap. Then computing a maximum subset of pairwise compatible
intervals is equivalent to computing a maximum independent set in G.

2. Minimum Spanning Trees

We shall consider two greedy algorithms for finding a minimum spanning tree of a given weighted
connected graph. The first one is due to Priml and the other due to Krushkal.

Definition 1. Let G = (V,E) be a connected graph. A subgraph (V, T ) is called a spanning
tree if T is a tree. Let w(, ) be a real-valued function on E. T is said to be a minimum spanning
tree if its weight

w(T ) =
∑
e∈E

w(e)

is as small as possible.

We shall construct the minimum spanning tree by successively selecting edges to included in the
tree. We shall ensure that after the inclusion of the new edge, the selected edges X form a subset
of some minimum spanning tree. This is guaranteed by the following cut property.

Lemma 1. Let X ⊆ T . where T is an MST for a graph G = (V,E). Let S ⊆ V such that no
edge in X crosses between S and V − s i.e. there is no edge in E with one end point in S and
the other end point in V − S. Among the edges crossing between S and V − S, let e be the edge
with minimum weight. Then X ∪ {e} ⊆ T ′ for some MST T ′.

Proof. If e ∈ T then we are done. So assume that e 6∈ T . Adding e to T creates a unique cycle.
Since e crosses between S and V − S, as we traverse the cycle, we must cross back along some
other edge to come to the starting point. Thus there is an edge e′ 6= e in the cycle that crosses
between S and V − S. Let T ′ = T ∪ {e} − {e′}. Clearly, T ′ is a spanning tree (why?) By our
choice of e we have w(e′) ≥ w(e). Hence w(T ′) ≤ w(T ). Since T is a minimum spanning tree, T ′

is also an MST and w(e′) = w(e). Since X has no edge crossing between S and V − S, X ⊆ T ′

and hence X ∪ {e} ⊆ T ′. This completes the proof. �
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Prim’s Algorithm

In the case of Prim’s algorithm, X consists of a single tree and S is the set of vertices of
the tree. It grows into single tree adding a vertex at each step until it becomes a minimum
spanning tree. The tree starts from a single arbitrary root. At each step a light edge connecting
a vertex in S to a vertex in V − S is added to the tree.

The key to implementing Prim’s algorithm efficiently is to make it easy to select a new edge to
be added to the tree formed by the edges in X. In the pseudocode below, the connected graph
G and the root r of the minimum spanning tree to be grown are inputs to the algorithm. During
execution of the algorithm, all vertices that are not in the tree reside in a priority queue Q based
on a key field. For each vertex v, key[v] is the minimum weight of any edge connecting v to a
vertex in the tree; by convention, key[v] =∞ if there is no such edge. The field π[v] names the
”parent” of v in the tree. During the algorithm, the set X is kept implicitly as

X = {(v, π[v]) : v ∈ V − r −Q}.

When the algorithm terminates, the priority queue Q becomes empty. The spanning tree is thus

X = {(v, π[v]) : v ∈ V − {r}}.

Algorithm Prim(G,w, r)
Input: A weighted connected graph G = (E, V,w), where w is a weight function
Output: A minimum spanning tree T

1. Q← V

2. for each u ∈ Q

3. do key[u] :=∞

4. key[r] := 0

5. π[r]← NIL

6. while Q 6= φ

7. do u← EXTRACT −MIN(Q)

8. for each v ∈ Adj[u]

9. do if v ∈ Q and w(u, v) < key[v]

10. then π[v]← u

11. key[v]← w(u, v)
Before the execution of the while loop, we have
• X = {)v, π(v)) : v ∈ V − {r} −Q
• V −Q is the set of vertices already placed in the minimum spanning tree.
• For every v ∈ Q, if π[v] 6= NIL, then k[v] is the weight of the light edge (v, k[v]) connecting v
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with a vertex already placed in the tree.
Line 7 identifies a vertex u ∈ Q that is incident with a light edge that crosses the cut V −Q and
Q. Removing u adds it to the set V −Q of vertices of the tree, thus adding the edge (u, π[u]) to
X.
Correctness and Implementation:
The correctness of the algorithm follows from Lemma 1.
The running time of Prim’s algorithm depends on how we implement the priority queue Q. If
Q is implemented as a binary heap, then building a heap takes O(n) time. The loop is executed
n times, and since each EXTRACT-MIN takes O(log n) times, the total time for the execution
of the loop is O(n log n) time. The for loop is executed O(e) times, and since line 11 involves
updating a key, it can be implemented in O(log n) time. Thus the total time for Prim’s algorithm
is O(e log n+ n log n) = O(e log n).

Krushkal’s Algorithm:

Krushkal’s algorithm adopts a different strategy. Instead of growing a single tree, Krushkal’s
algorithm adds the lighest possible edge to the tree at each step. It starts with the edges sorted
by increasing order of weight. Initially X = φ and each vertex of the graph is regarded as a
trivial tree. Each edge in the sorted list is examined in order and if the end points are in the
same tree then it is discarded. Otherwise, it is included in the set X and this causes the two
trees containing the end points of this edge to merge into a single tree. Observe that by this
process we implicitly choose a set S ⊆ V with no edge in X crossing between S and V − S
To implement Krushkal’s algorithm, given a forest of trees, we must decide whether two given
vertices are in the same tree. For the purpose of implementation, each tree is represented as a
set of vertices of that tree. We also need to update our data structure to reflect the merging of
two trees into a single tree. Thus our data structure will maintain a collection of disjoint sets
and support the following three operations.

• MAKESET(x): Create a new set x consisting of a single element x.
• FIND(x): Given an element x, it finds the set containing x.
• UNION(x,y): Replace the set containing x and the set containing y by their union.

Krushkal’s Algorithm(G = (V,E))
X ← φ
Sort E by weight

for u ∈ V
MAKESET (u)

end for
for(u, v) ∈ E in increasing order do

if FIND(u) 6= FIND(v) then
X ← X ∪ {(u, v)}
UNION(u, v)

end for
return X

Correctness and Running Time:
The correctness of the algorithm follows from Lemma 1.
The running time of the algorithm, assuming that the edges are given in sorted order, is domi-
nated by the set operations FIND and UNION. There are n−1 UNION operations and 2e FIND
operations, and these can be implemented by a fast UNION-FIND that takes O(e log n) time. If
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the edges need to be sorted, then it will require O(e log e) time and that is the dominant part of
the running time. �

Exercise 2. (a) Let G = (V,E) be a weighted connected graph. Show that if the weights are
distinct, then there is a unique minimum spanning tree.

(b) Prove the following exchange property satisfied by spanning trees.

Let T and T ′ be spanning trees in G = (V,E). Given an edge e′ ∈ T ′ − T , there exists an
edge e ∈ T − T ′ such that (T − {e}) ∪ {e′} is also a spanning tree.

Use this exchange property to show that one can ”walk” from any spanning tree T to a
minimum spanning tree T̂ .

3. Clustering

Suppose we are given a set of objects e.g. texts, photos, organisms etc and our aim is to organize
or classify them into coherent groups. We shall assume that there is a distance function on the
objects with the understanding that objects that are at a larger distance are less similar to each
other.
Thus, given a distance function on the objects, the clustering problem seeks to divide them in
groups so that objects within the groups are “near” and the objects in diferent groups are ”far
apart”.

Clusterings of Maximum Spacing: Suppose we are given a set U of n objects labeled
p1, p2, . . . , pn. Suppose we are seeking to divide the objects in U into k groups, for a given
parameter k. A partition of U into k non-empty sets C1, C2, . . . , Ck is called a k − clustering
of U . We define the spacing of a k-clustering to be the minimum distance of any pair of points
lying in different clusters. Our goal is to find a k-clustering with the maximum possible spacing.

The Algorithm.
To find a clustering of maximum spacing, we consider growing a graph on the vertex set U .
The connected components will be the clusters. Thus we start by drawing an edge between the
closest pair of points. Then we draw an edge between the next closest pair of points. We keep
adding edges between pair of points, in order of increasing distance d(pi, pj). In this way, we
grow a graph H on U edge by edge, with the connected components corresponding to the clus-
ters. Observe that our graph growing process never creates a cycle, so H is actually a union of
trees. Each time we add a new edge that crosses betwen two trees, we merge the corresponding
clusters. This is known as single-link clustering.
Note that our procedure is exactly Krushkal’s MST Algorithm. The only difference is that we
stop when we obtain the k connected components. Clearly, the k components are obtained by
running Krushkal’s algorithm for n − k steps. In other words, we are running Krushkal’s algo-
rithm but stopping just before adding its last k − 1 edges. This is equivalent to running the
full Krushkal’s algorithm and then deleting the k − 1 most expensive edges. We then define the
k-clustering to be the resulting connected components C1, C2, . . . , Ck.

Correctness and Complexity.
The complexity of the algorithm is exactly that of Krushkal’s algorithm.
To see that the algorithm correctly gives us k-clustering with maximum spacing, we prove the
following.
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Theorem 2. The components C1, . . . , Ck obtained by deleting the k − 1 most expensive edges
from the minimum spanning tree T form a k-clustering of maximum spacing.

Proof. Let C denote the clustering C1, . . . , Ck. The spacing of C is precisely the k − 1st most
expensive edge in the minimum spanning tree i.e. the length of the edge that Krushkal’s algorithm
would have added next, at the moment we stopped it. Denote it by d∗. Let C′ be any other k-
clustering that partitions U into k non-empty sets C ′1, . . . , C

′
k. We must show that the spacing

of C′ is at most d∗.
If every cluster Ci, 1 ≤ i ≤ k of C is a subset of some cluster of C′, then C = C′. (Why?) Since
C 6= C′, there must be a cluster Cr in C which is not a subset of any cluster in C′. Hence there
exists two points pi, pj in Cr which belong to two different clusters in C′. Let pi ∈ C ′s and
pj ∈ C ′t 6= C ′s.
Let P be the path in Cr from pi to pj . Krushkal’s algorithm must have added all the edges of P
before we stopped it. This means that the length of each edge of P is at most d∗. Now, observe
that pi ∈ C ′s and pj 6∈ C ′s. Let p′ be the first node on P that is not in C ′s and let p be the node
on P that comes just before p′. As argued above, d(p, p′) ≤ d∗, since the edge was added by
Krushkal’s algorithm. But p and p′ belong to different clusters of the clustering C′. Thus the
spacing of C′ is at most d(p, p′) ≤ d∗. This completes the proof �

4. Huffman Codes and Data Compression

Since computers operate on bit strings we need an encoding scheme that takes texts written
in a richer alphabet, say the English alphabet, and convert this text into a long string of bits.
For instance, we may represent each letter of the English alphabet by a 5-bit string. In such a
case, to encode a text consisting of 100 letters we would require 500 bits. If however, the letters
a and e occur in that text 45 and 30 times respectively, then if we encode a by 0 and e by 1
then we would be requiring only 200 bits to encode the text. Thus we need a variable length
encoding scheme where frequently occuring strings are encoded with shorter strings and less
frequent letters are encoded with longer strings.
Prefix Codes: If we have an encoding scheme where that there is a pair of letters such that
the encoding of one is a prefix of the encoding of the other, then there would be an ambiguity
while decoding. Thus one prefers a prefix code.

Definition 2. A prefix code on a set of letters S is a function γ : S → {0, 1}∗ such that for any
two distinct letters x, y ∈ S, neither γ(x) nor γ(y) is a prefix of the other.

Thus if we have a text consisting of the sequence of letters x1, . . . , xn, then we can simply encode
it as the bit string γ(x1) . . . .γ(xn). The original text can easily be recovered according to the
following rule.

i. Scan the bit string from left to right
ii If the first few bits is an encoding of a letter, then it must be unique due to the prefix

property. Recover the letter and remove the codeword from the string.
iii Go to step i.

Optimal Prefix Code: Our aim is to have a prefix code γ with more frequently occuring letters
having shorter encodings. Suppose, for each letter x ∈ S, we have the frequency fx representing
the fraction of the letters in the text that are equal to x. Thus if the text consists of n letters,
then nfx of these are equal to x. So the length of the encoding is

∑
x∈S nfx|γ(x)|. So the average

number of bits required per letter is

ABL(γ) =
∑
x∈S

fx|γ(x)|.
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Given an alphabet S and a set of frquencies of the letters in the alphabet, we would like to have
a prefix code such that the average number of bits required per letter is minimum. Such a code
is called an optimal prefix code.
Prefix Code using Binary Trees: Given an alphabet S, consider a binary tree where the
number of leaves is equal to the number of letters. Label each leaf with a letter. We get an
encoding of each letter as follows. Consider a leaf with label x. To get an encoding of x, we
consider the path from the root to the leaf. Each time you traverse left write down a 0 and each
time you traverse right write 1. Then the resulting bit string is an encoding of the letter x. It is
easy to check that the resulting code is a prefix code.

Conversely, given a prefix code we can recursively construct a binary tree as follows. All letters
x ∈ S whose encodings start with a 0 will be labels of the left subtree and all the letters y ∈ S
whose encodings start with a 1 will be labels of the right subtree. We construct these two sub-
trees recursively using this rule.

Thus the length of the encoding of a letter x ∈ S is simply the length of the path from the root
to the leaf with label x. We call this the depth of the leaf and we denote the depth of a leaf
node v in T by depthT (v).

Call a binary tree full, if each node that is not a leaf node has two children. We now prove

Lemma 2. The binary tree corresponding to the optimal prefix code if full.

Proof. Let T be a binary tree corresponding to the optimal binary tree. Let u be a node of T
with exactly one child v. If u was a root node then delete u and make v the root. Otherwise,
let w be the parent of u. Delete u and make v a child of w. Let T ′ be the resulting tree. By
this change the number of bits needed to encode any leaf of the subtree at u decreases. The
encodings of other leaf nodes remain unchanged. Hence the average number of bits per letter
decreases, contradicting the optimality of T . �

Lemma 3. Let T ∗ be the binary tree corresponding to an optimal prefix code. Let u and v be
leaf nodes of T ∗. Suppose depth(u) < depth(v). Let the labels of u, v be y and z respectively,
y, z ∈ S. Then fy ≥ fz.

Proof. Let T be the tree obtained by interchanging the labels of u and v. Then ABL(T ) −
ABL(T ∗) = fydepth(v)−fydepth(u)+fzdepth(u)−fzdepth(v) = (fy−fz)(depth(v)−depth(u)) ≥
0, by the optimality of T ∗. Since depth(u)-depth(v) > 0, we have fy − fz ≥ 0 i.e. fy ≥ fz. �
This lemma shows that the letter with the least frequency will have the maximum depth. This
gives us the following

Lemma 4. There is an optimal prefix code with corresponding tree T ∗, in which the two lowest
frequency letters are assigned to leaves that are siblings in T ∗.

Proof. Let v be a leaf in T ∗ whose depth is as large as possible. Let u be its parent in T ∗. By
Lemma 2, T ∗ is full and hence, u has another child, say w. Clearly, v and w are siblings. Observe
that w must be a leaf node. If not, then w would have a child whose depth would be larger than
v, contradicting our choice of v. Thus v and w are leaves in T ∗ and are siblings. �
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Algorithm for Optimal Prefix Code
Huffman’s Algorithm

Input: An alphabet S with given frquencies {fx;x ∈ S}
Output: A binary tree T representing an optimal prefix code.

If S contaings two letters then
encode one letter with 0 and the other letter with 1

Else
Let y∗ and z∗ be the letters with the lowest frquency
Form a new alphabet S′ by deleting the letters y∗, z∗ and

replacing them with a new letter w of frquency fy∗ + fz∗ .
Recursively construct a prefix code γ′ for S′ with tree T ′

Define a prefix code γ for S as follows:
Start with T ′

Take the leaf node labeled w and add two children below it
Label them y∗ and z∗

Endif

Theorem 3. The Huffman code for a given alphabet achieves the minimum average number of
bits per letter of any prefix code.

Proof. We shall prove this by induction on the size of the alphabet. If the alphabet contains two
letters then clearly, the code is optimal. So assume that the algorithm yields optimal prefix code
for every alphabet of size k − 1 and let S be an alphabet of size k.
Observe that the algorithm merges two lowest frequency letters y∗, z∗ ∈ S into a single letter
w to obtain an alphabet of smaller size. By induction hypothesis, the algorithm produces an
optimal prefix code represented by the tree T ′. We now claim that

ABL(T ′) = ABL(T )− fw. (1)

First observe that the depth of each letter other than y∗, z∗ are the same in both T and T ′. Also
the depth of each of y∗, z∗ is one more than the depth of w in T ′. Hence

ABL(T ) =
∑
x∈S

fxdepthT (x)

= fy∗depthT (y∗) + fz∗depthT (z∗) +
∑

x 6=y∗,z∗

fxdepthT ′(x)

= (fy∗ + fz∗)(1 + depthT ′(w)) +
∑

x 6=y∗,z∗

fxdepthT ′(x)

= fw(1 + depthT ′(w) +
∑

x6=y∗,z∗

fxdepthT ′(x)

= fw + fwdepthT ′(w) +
∑

x 6=y∗,z∗

fxdepthT ′(x)

= fw +
∑
x∈S′

fxdepthT ′(x)

= fw +ABL(T ′).

Hence the claim.
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Now suppose that T obtained by Huffman’s algorithm is not optimal. Then there is a labeled
binary tree Z such that ABL(Z) < ABL(T ). By Lemma 4, the leaves representing y∗ and z∗

are siblings in Z. If we delete the leaves labeled y∗ and z∗ from Z and label their parent with w,
we obtain a prefix code for S′. Note that Z ′ is obtained from Z in the same way T ′ was obtained
from T . Hence, by (1), we have ABL(Z ′) = ABL(Z)− fw. By our assumption

ABL(Z) < ABL(T ).

Therefore, ABL(Z)− fw < ABL(T )− fw i.e. ABL(Z ′) < ABL(T ′). This contradicts the opti-
mality of T ′ and the proof is complete. �

Exercise 3. Show that the complexity of Huffman’s algorithm is O(n2).
Show that by usibng priority queue it can be improved to On log n).

5. Fractional Knapsack

Given K and a set of n items with weights w1, . . . , wn and value v1, . . . , vn respectively, find
0 ≤ xi ≤ 1, i = 1, 2, . . . , n such that

n∑
i=1

xiwi ≤ K

and the following is maximized
n∑

i=1

xivi.

Greedy Algorithm for Fractional Knapsack

• Calculate the value-per-unit ρi = vi/wi, i = 1, 2, . . . , n
• Sort the items by decreasing ρi.

Let the sorted item sequence be 1, 2, . . . , n and for each i
the corresponding value-per-unit and weight be ρi and wi respectively.

• Let k be the current weight limit. Initially k = K.
In each iteration we chose item i from the head of the unselected list.
• If k ≥ wi set xi := 1(item i is chosen) and set k ← k − wi.
• If k < wi set xi := k/wi (we take a fraction k/wi of item i) and halt.

Theorem 4. The greedy algorithm gives an optimal solution in time O(n log n).

Proof. Given a set of n item {1, 2, . . . , n}, assume items sorted by per-unit values:

ρ1 ≥ ρ2 ≥ . . . ≥ ρn.

Let the greedy solution be X = (x1, x2, . . . , xn).
•xi denote the fraction of item i taken.

Consider any optimal solution O = (y1, y2, . . . , yn).
•yi is the fraction of item i in O.
• The knapsack must be full in both X and O.

n∑
i=1

xiwi =

n∑
i=1

yiwi = K.
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If X = O, then X is an optimal solution. So assume that X 6= O. Let i be the smallest index such
that xi 6= yi. Since our greedy algorithm always take as much as it can, xi > yi. Let x = xi− yi.
Consider the following new solution O′ constructed from O.
For j < i, set y′j = yj = xj . Set y′i = xi
In O, from items i+ 1 to n remove weights εi1 , . . . , εn such that the total weight removed equals
xwi. This results in decrease in value by εi+1ρi+1+. . .+εnρn ≤ εi+1ρi+. . .+εnρi = xwiρi = xvi,
the value added to item i in O′. Hence, the total value in solution O′ is greater or equal to the
total value of solution O. Since, O is an optimal solution, the two values are the same. Thus O′

is also optimal. Repeating this process, we will eventually convert O to X without changing the
total value. Thus X is also optimal. �

6. Single Source Shortest Paths

Definition 3. Let G = (E, V ) be a weighted directed graph with weight function w : E → R.
The weight of a path in G is the sum of the weights of the edges of the path.
The single source shortest path problem is to find, for each v ∈ V , the smallest weight path from
the source s to v i.e. the shortest path from s to v. We define

δ(s, v) =

{
the shortest path from s to v if v is reachable from s
∞ if there is no path from s to v

.

Dijkstra’s Algorithm

We assume here that weight on each edge is non-negative. Dijkstra’s algorithm constructs a
set S of vertices whose shortest distances from the source is known. At each step, we add to S
that remaining vertex v whose distance from the source is the shortest of the remaining vertices.
If all edges have non-negative weights, then one can show that the path from the source to v
passes only through vertices in S. Thus it is only necessary to record, for each vertex v, the
shortest distance from the source to v along a path that passes only through vertices in S.
Dijkstra’s Algorithm
Input: A directed graph G = (V,E), a source s ∈ V and weight function w : E → R+ from the
edges to the non-negative reals. We take w(vi, vj) = +∞ if (vi, vj) is not an edge, vi 6= vj and
w(v, v) = 0.
Output: For each v ∈ V , the minimum over all paths p from s to v of the sum of the weights of
the edges of p.
Method: We construct a set S ⊆ V such that the shortest path from the source to each vertex v
in S lies wholly in S. The array D[v] contains the weight of the current shortest path from s to
v passing only through vertices of S.

begin
1. S ← {s}
2. D[s]← 0
3. for each v in V − {s} do D[v]← w(s, v)
4. while S 6= V

begin
5. choose a vertex z ∈ V − S such that D[z] is minimum.
6. add z to S
7. for each v in V − S do
8. D[v]←Min{D[v], D[z] + w(z, v)}

end
end
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Theorem 5. Dijkstra’s algorithm computes the weight of the shortest path in O(n2) time.

Proof. Lines 1–3 clearly require O(n) time. The for loop of lines 7-8 requires O(n) steps as does
the selection of z at line 5. Since the while loop is executed in O(n) time, the total cost is O(n2).
Correctness. By induction on |S| we prove that for each v ∈ S, D[v] is equal to the length of
the shortest path from s to v. Moreover, for all v ∈ V − S, D[v] is the length of the shortest
path from s to v that lies wholly within S, except for v itself.
Basis: |S| = 1. The shortest path from s to itself has length 0, and a path from s to v, wholly
within S except for v, consists of a single edge (s, v). Thus lines 2 and 3 correctly initialize the
D array.
Inductive step: Suppose vertex z is selected at line 5. If D[z] is not the length of the shortest
path, then there must be a path p from s to z that contains a vertex, other than z, outside S.
Let v be the first such vertex. The distance of s to v is shorter than D[z]. Moreover, the shortest
path from s to v lies wholly within S except for v. By induction hypothesis D[v], is the length
of the shortest path from s to v. Hence

D[v] ≤ length of p < D[z],

contrary to our choice of z. Such a path p does not exist and D[z] is the length of the shortest
path from s to z.
The second part of the induction hypothesis holds in view of line 8. �
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