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Agenda

« Part I: Nowcasting models
e Nowcasting models

e Real time information flow
« High growth sectors

« Corporate sentiments
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Part - I: Nowcasting
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Central Bank forward looking view

® Forward guidance by Central Banks
® Qutlook on growth, inflation and interest rate path
® Short term vs long term forecast

"Fan Chart" Total Inflation
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Forecasting - Short term vs Long term

® | ong term forecast - driven by fundamentals
® Short term forecast - lacks fundamentals

® Mechanism behind short term forecast - data generating process and information
impact

Time series models used for forecasting
® Univariate models - AR, MA and ARMA

® Multivariate models - VAR, VECM
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Why time series models fail

Figure: Actual vs Forecast
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Why time series models fail

Figure: Challenges to forecasting
Mebdi e leitnpadeadbnind 0
pandemic, financial crisis, sovereign debt crises
Large outliers in macroeconomic variables

Structural breaks

Large policy shocks, e.g. unprecedented monetary
and fiscal policy stimulus

Slow-moving trends, e.g. climate change

Elevated volatility, e.g. policy uncertainty
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(Source: ECB's 11th Conference on Forecasting Techniques)
8/38



Other challenges

High growth sectors like real estate

High volatility - investment growth

Lack of timely data

® Base year changes

Aggregate forecast vis-a-vis component series forecast
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Possible solution

Figure: Possible way out

Big data

Nonlinear models

New high-frequency indicators
Models accounting for tail events
Modelling volatility
Advancements in VARs

Heterogeneity (e.g., across firms / households)

Complementary survey information
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(Source: ECB's 11th Conference on Forecasting Techniques)
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Short term forecasting

Why time series models fail
® Time series models - based on lagged values

® [agged values - persistence effect

Way out

® Time varying models

Yt = Qo + Q1tye—1 + Q2tye—2 + ... + €t

Q= ar-1 + Nt

® Nowcasting - Incorporates news in forecasting
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Nowcasting

® Forecasting in real time = Nowcasting

Gather information from high frequency indicators

Curse of dimensionality (Hence factors)

Combine high frequency indicators using dynamic factor model

Challenges
® Data release calendar differs

® Not all data releases at same time
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Nowcasting - Dynamic factor models

Framework by Giannone et. al. (2006)

X =ag+ arFt + €

_ (2)
Ft—Athl—‘—BT]t
Bridge equation
Ye = Do+ B1Ye-1+ 72Fe + G (3)
® ¢, idiosyncratic error (noise)
e Assumption: €; ~ N(0, X)
2 . .
o2 = o; if data avallabl.e (@)
/ oo if data not available
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High frequency indicators used

¢ Industrial production (I1P)
Eight Core (EC)

e Consumer price index (CPI)
® Wholesale price index (WPI)

® Money and credit

® Payment system indicators

PMI and forward looking survey
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Variable selection

e Using all variables (Bai & Ng (2002))
® Use a subset of variables
® Variable selection - LASSO, RIDGE or Elastic Net

Elastic Net framework
Y =7 + 71Xt + € (5)

min Z(Yt — \A/t)2 + A1 Z Iy1i] + A2 Z |’Y1i’2 (6)
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Corporate

sales: Forecast performance
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Corporate sales: Forecast performance

Table 5. Rolling RMSE of nowcasting model and ARIMA.

Rolling RMSE
4 quarters 6 quarter 8 quarter 10 quarter
ARIMA 144 13.2 13.7 13.7
3-factor model 5.0 43 49 6.0
4-factor model 2.7 49 5.8 6.0
Table 6. Rolling RMSE of combination forecast.
Rolling RMSE
Nowcasting models 4 quarter 6 quarter 8 quarter 10 quarter
3-factor model 5.0 43 49 6.0
4-factor model 2.7 49 5.8 6.0
Forecast combination 3.0 4.0 47 55

18/38



Forecast performance

Non Agri GVA

Forecast Performance
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Non Agri GVA: Forecast performance

Chart 2: Improvement in Forecast Performance over Data Releases
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Forecast performance

Non Agri GVA

Forecast Performance of Two-factor Model

Chart 3
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Non Agri GVA: Forecast performance

Table 4: Rolling RMSE — Nowcasting Model vs Naive Model

Model | 1-Q | 2-Q \ 3-Q | 4-Q
Naive Models
ARIMA 1.6 3.0 1.8 2.0
Holt Winters 1.7 22 23 24
SETAR - 3 Regime 1.1 12 15 2.2
SETAR - 2 Regime 1.3 29 2.6 2.0
LSTAR 1.2 1.9 1.9 14
AAR 1.6 32 3.0 32
Neural Network 1.5 2.5 24 2.8
Time Varying VAR 0.8 1.1 12 1.7
Nowcasting Model
DFM-1 0.3 09 12 13
DFM-2 0.2 0.7 1.1 1.2

Note: 1-Q = 1 quater ahed forecast; similarly 2-Q, 3-Q, 4-Q.
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Forecasting high growth sectors

Reference

® Mitra, Pratik, Anirban Sanyal and Sohini Chowdhury, " Nowcasting real estate
activity in India using Google trend data”, RBI Occasional Paper, 2017
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Real estate sector
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Real estate sector
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Nominal Sales Growth of Real Estate Compan
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Challenges in Forecasting

Lack of high frequency indicators from NSSO/ CSO

Landscape changes frequently

Other indicators lacks tracking property

Solution: Google Trend, Social media feeds and news coverage

26/38



Using Google trends data

Google trend: Search intensity data from google across locations

Using Google Correlate (Choi and Varian (2012), Kholodin et al., (2010))

® Define search intensity
R = Ne - x 100
> N
: (7)
i Ri
S, = -
max R}

Bootstrapping to remove sampling variation (1000 instances of search frequency)
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Selection of keywords

Chart 2: Keyword Selection Framework
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Combining search intensity

Simple average

weighted average (weights being inverse of variance)

Principal component analysis

Dynamic factor estimates

29/38



Nowcasting

Xe =+ a1F: + e

_ (8)
Ft—AFt_1+B771_-
Bridge equation
Yi=PBo+ B1Ye-1+72Fe + G (9)
® ¢, idiosyncratic error (noise)
® Assumption: € ~ N(0, X)
2 . .
03 _ }oj ff data ava||ab|fa (10)
oo if data not available
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Search intensity

Search Intensity
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Search intensity
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Search intensity

Chart 7: Rolling Forecast Performance with and without Google Data
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Corporate sentiment and nowcasting
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Why nowcasting

Lack of high frequency data

Corporates report quarterly financial statement with lag of 45 days

No timely data during Monetary policy strategy meeting

Nowcasting for current state assessment
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Sentiment analysis

® Sentiment analysis using newspaper reports

Introduced in 2015-16

Positive and negative keywords from different dictionary
® Liu and Hu opinion lexicon: 60K keywords

® SentiWordNet - 155K keywords (3 point scale)

® WordStat - more than 9164 negative and 4847 positive word patterns

News API used: Business Standard (since 2000 onward)

® Sentiment index using relative occurrence frequency
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Nowcasting - new frontier after COVID

Xt:()é0+OélFt+€t

(11)
Ft = AFi_1 + Bn;

Bridge equation

Y: = Bot + Bt Ye—1 + v2eFe + (t

12
= Otht + €+ ( )
Coefficient dynamics

oy = o1+ 77%
ht = /Og(O't) (13)
hy = 0h; 1 + 77?
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Thank you
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