
Sorting and Searching II

Rana Barua

Visiting Scientist, IAI, TCG CREST Kolkata

1 Search

Before we embark onto some basic search algorithms, let us consider the following fundamental
operations on sets

1.1 Fundamental Operations on Sets

We shall consider the following fundanmental operations on sets.

1. MEMBER(a.S): Determine whether a is a member of the set S; if so print ”ÿes”, else print ”no”.
2. INSERT(a, S): Replace the set S by S ∪ {a}.
3. DELETE(a, S): Replace the set S by S − {a}.
4. UNION(S1, S2, S3): Replace sets S1 and S2 by S3 = S1 ∪ S2. We assume that S1 and S2 are

disjoint when this operation is performed.
5. FIND(a): Print the name of the set of which a is currently a member. If A is in more than one

set then it’s undefined.
6. SPLIT(a, S): Here we assume that S is linearly ordered. This operation partitions the set S into

two sets S1 and S2 such that
S1 = {b ∈ S : b ≤ a},
S2 = {b ∈ S : b > a}.

7. MIN(S): Prints the smallest element of the set S.

1.2 Search Trees and Algorithms

Binary Search: We are given a set S with n elements drawn from a large universal set. We are to
process a sequence σ consisting only of MEMBER instructions. If there is a linear order≤ on S, a
solution is to use binary search.

Here we store the elements of S in an array A. Next we sort the array so that

A[1] < A[2] < . . . < A[n].

Then to determine whether an element a is in S, we compare a with b stored in location bn+1
2 c. If

a = b, we halt and answer ”ÿes”. Otherwise, we repeat the process on the first half of the array if
a < b, or on the last half if a > b. By repeatedly splitting the search area in half, we need not make
more than dlog(n+ 1)e comparisons to find a or to determine it is not in S.
Procedure: SEARCH(a, f, l)
Looks for an element a in locations f, f + 1, . . . , l of the array A. To determine wheter a is in S, we
call SEARCH(a, 1, n).

if f > l then return “no”;
else

if a = A[b f+l
2 c] then return ”yes”;

else
if a < A[b f+l

2 c] then return SEARCH(a, f, b l+f
2 c − 1);

else return SEARCH(a, b f+l
2 c+ 1, l).

Exercise 1. Show that the procedure SEARCH makes at most dlog(n + 1)e comparisons for a set
with n elements.

Binary Search Trees. Suppose we have a set S in which elements are being inserted and from
which elements are being deleted. From time to time we may want to know the smallest element
currently in S. We assume that the elements being added to S comes from a large universal set that
is linearly ordered. This problem can be abstracted as processing a sequence of INSERT, DELETE,
MEMBER and MIN instructions. A data structure that is suitable for all four instructions is the
binary search tree.

Definition 1. A binary search tree for a set S is a labeled binary tree in which each vertex v is
labeled by an element l(v) ∈ S such that

1. For each vertex u in the left subtree of v, l(u) < l(v).
2. For each vertex u in the right subtree of v, l(u) > l(v).
3. For each element a ∈ S, there is a unique vertex v such that l(v) = a.

Searching a Binary Tree: To determine whether an element a is in a set S represented by a
binary search tree T , we first compare a with the label of the root. If they are equal, then clearly
a ∈ S. If a is less than the label of the root, then we search the left subtree of the root, if it exists.
If a is greater than the label of the root then we search the right subtree of the root. If a is in the
tree, then eventually a will be located. Otherwise, the process will terminate when we will have to
search a non-existing subtree.
Procedure SEARCH(a, v)
Input: An element a and the root of the search tree for a set S.
Output: ”yes” if a ∈ S; elese “no”.
1. if a = l(v) then return ”yes”;

else
2. if a < l(v) then;
3. if v has a left son w then return SEARCH(a,w);
4. else return ”no”;

else
5. if v has a right child w then return SEARCH(a,w);
6. else return ”no”.

Executing the Fundamental Operations:

1. MEMBER(a, S): Let v be the root of the search tree representing S. Then call SEARCH(a, S).
2. INSERT (a, S).
• If the tree is empty, we create a root with label a.
• If the tree is non-empty and the lement to be inserted is not found in the tree, then the

procedure SEARCH fails to find a child either at line 3 or at line 5. Instaed of returning
”no” at line 4 or 6, respectively, a new vertex with label a is attached where the missing
child belongs.

• DELETE(a, S): Suppose the element a to be deleted is found at vertex v. The following three
cases can occur.
(a) Vertex v is a leaf. In this case remove vertex v from the tree.
(b) Vertex v has exactly one child. In this case, make the parent of v the parent of the child. If

v is the root, then make the child of v the new root.
(c) Vertex v has two children.

Find the largest element b in the left subtree. Recursively remove the vertex containing b
from the subtree. Then set the label of v to be b.

2

3. MIN : The smallest element in a binary search tree T is found by the following path v0, v1, . . . , vp,
where v0 is the root, vi is the left child of vi−1 and vp has no left child. The label on vp is the
smallest element of T .

1.3 The Union-Find Problem

We shall present a data structure consisting of a forest of trees to represent a collection of sets. This
data structure will allow the processing of O(n)UNION and FIND intruction s in alomost linear
time.

Each set A is represented by a rooted tree TA, where the elements of A correspond to the
vertices of TA. The name of the set is attached to the root of the tree. An intruction of the form
UNION(A,B,C) can be executed by making the root of TA a child of the root of TB and changing
the root of TB to C. An instruction of the form FIND(i) can be executed by locating the vertex
representing the element i in some tree T in the forest and then traversing the path from this vertex
to the root of the tree T , where we find the name of the set containing i.

With such a scheme, the cost of merging two trees is a constant. The cost of a FIND(i) is of the
order of the length of the path from vertex i to its root. Such a path can have length n − 1. Thus
the cost of executing n − 1UNION instructions followed by nFIND intructions could be as high
as O(n2). For example, consider the cost of the following sequence.

UNION(1, 2, 2),

UNION(2, 3, 3),

UNION(3, 4, 4),

...

UNION(n− 1, n, n),

F IND(1),

F IND(2),

...

FIND(n).

Executing the FIND instructions gives us the following tree.

nO

|

n-1O

|

...

2O

|

1O

3

Thus the cost of FIND(1) is n− 1, that of FIND(2) is n− 2 and so on. So the total cost is

n−1∑
i=1

i = O(n2).

The cost can be reduced if the tree can be kept balanced. To achieve this we keeep a count of the
number of vertices in each tree and, while merging two trees, always to attach the smaller tree to
the root of the larger tree.

Lemma 1. If in executing each UNION instruction, the root of the tree with fewer vertices is made
a child of the root of the larger tree, then a tree in the forest with height at least h will have at least
2h vertices.

Proof. By induction on h.
Let T be a tree with fewest number of vertices. Then T must have been obtained by merging two
trees T1 and T2, where T1 has height h−1 and has no more vertices than T2. By induction hypothesis,
T1 has at leat 2h−1 vertices and hence, T2 has at least 2h−1 vertices. This implies that T has at least
2h−1 + 2h−1 = 2h vertices.

Complexity: Consider the worst-case execution time for a sequence of nUNION and FIND in-
structions. Using the forest data structure, with the modification that in aUNION the root of the
smaller tree becomes a child of the root of the larger one. By Lemma 1, no tree can have height
greater than log n.(Why?) Hence the execution of O(n) UNION and FIND instructions takes at
most O(n log n) time.

Remark 1. This bound is tight and can not be improved.

Further modification: We introduce another modification to the algorithm called path compres-
sion. We shall try to reduce the cost of FIND intructions. Each time a FIND(i) instruction is
executed, we traverse the path from vertex i to its root r. Let i, v1, v2, . . . , vk, r be the vertices on
this path. We then make each of i, v1, v2, . . . , vk−1 a child of the root r.

The complete tree-merging algorithm for the UNION-FIND problem, including path compression
is the following.
Fast Disjoint-Set Union Algorithm
Input: A sequence σ of UNION and FIND instructions on a co;;ection of sets whose elements are
integers in [1, n]. Theb set names are also integers from 1b to n. Initially, element i is by itself in a
set named i.
Output: The sequence of responses to the FIND instructions in σ. The response to each FIND is to
be produced before looking at the next instruction in σ.
Method:The algorithm consists of three parts;

1. the initialization,
2. the response to a FIND, and
3. the response to a UNION.

1. Initilization: For each element i, 1 ≤ i ≤ n, we create a vertex vi. We set COUNT [vi] =
1, NAME[vi] = i and FATHER[vi] = 0. Initially, each vertex is a tree by itself. In order to
locate the root of set i, we create an array ROOT with ROOT [i] pointing to vi. To locate the
vertex for element i, we create an array ELEMENT, initially with ELEMENT [i] = vi.

2. Executing FIND(i):
Starting at ELEMENT [i], we follow the path from the root of the tree, making a list of alll the
vertices encountered. At the root the name of the set is printed, and each vertex on the path
traversed is made a child of the root.

4

begin
make LIST empty;
v ← ELEMENT [i];
while FATHER[v] 6= 0 do

begin
add v to LIST ;
v ← FATHER[v]

end
Comment: v is now the root;
PRINT NAME[v];
for each w on LIST do FATHER[w]← v

end
3. Executing UNION(i,j,k):

Via the array ROOT, we find the roots of the trees representing sets i and j. We then make the
root of the smaller tree a child of the root of the larger tree.

begin
wlg assume COUNT [ROOT [i]] ≤ COUNT [ROOT [j]]

otherwise interchange i and j;
begin

LARGE ← ROOT [j];
SMALL← ROOT [i];
FATHER[SMALL]← LARGE;
COUNT [LARGE]← COUNT [LSARGE] + COUNT [SMALL];
NAME[LARGE]← k;
ROOT [k]← LARGE

end
end

Complexity: We shall show that path compression speeds up the algorithm considerably. We in-
troduce two funcytions F and G as follows.

F (0) = 1,

F (i) = 2F (i−1), i > 0.

F (1) = 2, F (2) = 22 = 4, F (3) = 24 = 16, F (4) = 216 = 65536, F (5) = 265536.
G(n) = smallest k such that F (k) ≥ n.
Thus G(0) = G(1) = 1, G(2) = 1, G(3) = G(4) = 2. In fact, for F (k − 1) < n ≤ F (k), G(n) = k.
Thus, for n ≤ 265536, G(n) ≤ 5. Thus for all practical purposes, nG(n) is linear.

We now claim that the above algorithm will execute a sequence σ of cnUNION and FIND
insrructions in at most c′nG(n) time, where c′ is a constant depending on c.

Without loss of generality we assume that the execution of a UNION instruction takes one
”time unit” and the execution of FIND(takes a number of time units proportion to the number of
vertices on the path from i to the root of the tree containing this vertex.

Definition 2. We define rank of a vetex with respect to σ as follows.

1. Delete the FIND instructions from σ.
2. Execute the resulting sequence σ′ of UNION instructions.
3. The rank of a vetex is the height of v in the resulting forest.

5

Lemma 2. There are atmost n/2r vertices of rank r.

Proof. Let R be the number of vertices of rank r. Assume R > n/2r.
Now, by Lemma 1, each vertex of rank r has at least 2r descendants. Also any two distinct

vertices of rank r in a forest has disjoint sets of descendants. Hence the number of vertices is at least
R.2r > n. a contradiction. Hence R ≤ n/2r. �

Corollary 1. No vertex has rank greater that log n.

Proof. The number of vertices of rank log n + 1 ≤ n
2log n+1 = 1

2 . Hence there is no vertex of rank
grater than log n.

Lemma 3. If at some point in the execution of σ, w is a proper descendant of v, then rank of w is
less than the rank of v.

Proof. If at point during the execution of σ, w is made a decendant of v, then w will remain a
descendant v in the forest obtained from the execution of σ′. Hence the height of w must be less
than that of v. So rank of w kis less than rank of v. �
We now partion the ranks onto groups. We put rank r in the group G(r). Thus if F (k − 1) <
r ≤ F (k), then r is put in group k. For n > 1, the largest possible rank, blog nc, is put in group
G(blog nc) ≤ G(n)− 1.
Computing the cost:

Consider the cost of executing a sequence σ of cnUNION and FIND instructions. Since each
UNION instruction can be executed at the cost of one time unit, all UNION instructions in σ can
be executed in O(n) time. We now bound the cost of executing all FIND instructions. The costb of
executing a single FIND is allocated between the FIND instructions itself and certain vertices on the
path in the forest data structure which are actually moved. The total cost is computed by summing
over all FIND insructions, the cost allocated to them; and then summing the cost assigned to the
vertices, over all vertices in the forest.

We charge for the instruction FIND(i) as follows. Let v be a vertex on the path fom i to the
root of the tree containing i.

1. If v is the root or if FATHER[v] is in different rank group from v, then charge one time unit
to the FIND instuction itself.

2. If both v and its father are in the same rank group, then charge one time unit to v

By Lemma 3, vertices going up the path are monotonically increasing in rank, and since there are
G(n) rank group, no FIND instruction is charged more than G(n) time unit under Rule 1.. If Rule
2 applies, verex v will be moved and made a child of a higher rank than its previous father If vertex
v is in rank group g > 0, then v can be moved and charged at most F (g)− F (g − 1) times before it
acquires a father in a different rank group.

To obtain an upper bound on the charges made to the vertices themselves, we multiply the
maximum charge to any vertex in a rank group by the number of vertices in that group and sum
over all rank groups.

Let N(g) be the number of vertices in rank group g > 0. Then by Lemma 2,

6

N(g) ≤
F (g)∑

r=F (g−1)+1

n/2r

≤ n

2F (g−1)+1
{1 +

1

2
+ . . .}

≤ n

2F (g−1) =
n

F (g)
.

Thus the maximun charge to a rank group g = N(g)(F (g) − F (g − 1)) ≤ n. Hence the maximun
charge to all vertices is nG(n).

Hence the total time required to process cn FIND instructions is at most cnG(n) charged to
the FIND insructions and at most nG(n) charged to the vertices. Thus we have,

Theorem 1. Let c be a constant. Then there exist another constant c′ depending on c such that the
above algorithm will execute a sequence σ of cn UNION and FIND instructions on n elements in
at most c′nG(n) time units.

2 Application of Union-Find:

2.1 Kruskal’s Algorithm

Definition 3. Let G = (V,E) be a connected graph. A subgraph S = (V, T) is called a spanning tree
for G if T is a tree. Let c(,) be a cost function on the edges E of G. Then S is called a minimum-cost
spanning treee if the cost of S i.e. the sum of costs on its edges T is as small as possible.

To describe Kruskal’s algorithm, we need the following Lemma.

Lemma 4. Let G = (V,E) be a connected, undirected graph and c(,) a cost function on its edges.
Let (V1, T1), . . . , (Vk, Tk) be any spanning forest with k > 1. Let T = ∪ki=1. Suppose e = v, w is an
edge of lowest cost in E − T such that v ∈ V1 and w 6∈ V1. Then there is a spanning tree which
includes T ∪ {e} and is of as low a cost as any spanning tree that includes T .

Proof. Suppose the result does not hold. Then there is a spanning tree S′ = (V, T ′) for G such that
T ′ includes T but not e and that cost of S′ is lower than any spanning tree that includes T ∪ {e}.

Now addition of e to S′ forms a unique cycle. Since v ∈ V1 and w 6∈ V1, that cycle must include
an edge e′ = (v′, w′) 6= e such that v′ ∈ V1 and w′ 6∈ V1. Now by hypothesis,

c(e) ≤ c(e′).

Now consider the graph S formed by adding e to S′ and deleting e′ from S′. Clearly S has no cycle,
since e′ has been removed from the only cycle. Thus S is a spanning tree. Since c(e) ≤ c(e′), S is no
more costly than S′. But S containg T ∪ {e} This contradicts the minimality of S′. �
Kruskal’s Algorithm: We now describe Kruskal’s algorithm. The algorithm maintains a collection
V S of disjoint sets of vertices. Each set W in V S represents a connected set of vertices that forms a
tree in the spanning forest represented by V S. Edges are chosen from E in order of increasing cost.
We consider each edge {v, w} in turn. If v and s are already in the same set in V S then we discard
the edge. If v and s are in distinct sets W1 and W2, we merge W1 and W2 into a single set and add
{v, w} to T , the set of edges in the final spanning tree. By Lemma 4, at least one minimum cost
spanning tree for G will contain this edge.

7

Minimum-cost Spanning Tree:
Input: An undirected graph G = (V,E) with cost function c(,) on its edges.
Output S = (V, T), a minimum-cost spanning tree for G.

begin
1. T ← φ
2. V S ← φ
3. construct a priority queque Q containing all edges of E
4. for each vertex v ∈ V do add {v} to V S
5. while |V S| > 1 do

begin
6. choose {v, w}, an edge in Q of lowest cost
7. delete {v, w} from Q
8. if v and w are in different sets W1 and W2 in V S then

begin
9. replace W1 and W2 in V S by W1 ∪W2;
10. add {v, w} to T .

end
end

end

Remark 2. One can use the above fast disjoit set union algorithm for Lines 8 and 9 which, for all
practical purposes, can be executed in linear time. Thus the cost of Kruskal’ algorithm depends on
the cost of choosing an edge of lowest cost at Line 6 and the number of times the while loop is
executed.

REFERENCES

1. A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms.
2. E. Horowitz, S. Sahni, Computer Algorithms
3. U. Manber, Introduction to Algorithms–A Creative Approach.

8

