
Dynamic Programming

Rana Barua

Visiting Scientist, IAI, TCG CREST Kolkata

1 Dynamic Programming

Typically, dynamic programming apply to optimization problems in which we try to solve a reason-
able number of (overlapping) subproblems whose optimal solutions hopefully yield the intended opti-
mal solutions. The subproblems are solved recursively via some recursive relations. Straight-forward
algorithms for solving these recursive relations will generally yield highly inefficient algorithms. In
the dynamic programming method, the solutions to the recursive calls are stored in a tabular form.
Unlike the Divide-and Conquer paradigm, the subproblems we consider are generally overlapping
and the structure of the optimal solution will suggest what subproblems we need to consoder.

1. Longest Common Subsequence(LCS)
The first problem we shall consider is the longest-common-subsequnce problem.

Definition 1. Given a sequence X =< x1, . . . , xm >, another sequence Z =< z1, . . . , zk > is
said to be a subsequence of X if there exists 1 ≤ i1 < i2 < . . . < ik ≤ m such that xi1 = z1, xi2 =
z2, . . . , xik = zk.
Given two sequences X < x1, . . . , xm > and Y =< y1, . . . , yn >, a sequence Z is a common
subsequence of X and Y if Z is a subsequence of both X and Y ..
The longest-common-subsequence problem is the following.
Given two sequences X and Y as above, find a maximum-length common subsequence of X and
Y .

Characterizing an LCS

Given a sequence X =< x1, . . . , xm >, we define the ith prefix of X as Xi =< x1. . . . , xi >
for i = 0, 1, . . . ,m. Here X0 is the empty sequence. Given two sequences X =< x1, . . . , xm >
and Y =< y1, . . . , yn >, let Z =< z1, . . . , zk > be any LCS of X and Y . Then it is not hard to
see that the following properties hold.
• If xm = yn then zk = xm = yn and Zk−1 is an LCS of Xm−1 and Yn−1.
• If xm 6= yn and yk 6= xm then Z is an LCS of Xm−1 and Y .
• If xm 6= yn and zk 6= yn then Z is an LCS of X and Yn−1.

The above characterization tells us that the LCS problem has, what is called, an optimal sub-
structure property. It also gives rise to the following recursive relations for the subproblems that
we need to consider.
Let c[i, j] denote the length of an LCS of the sequences Xi and Yj for 0 ≤ i ≤ m; 0 ≤ j ≤ n. If
either i = 0 or j = 0, then clearly the LCS has length 0. The above characterization yields the
recursive formula.

c[i, j] =

0 if i = 0 or j = 0
c[i− 1, j − 1] + 1 if i, j > 0 and xi = yj

max(c[i, j − 1], c[i− 1, j]) if i, j > 0 and xi 6= yj

. (1)

Computing the Length of an LCS

Based on equation (1), one could easily write an exponential-time recursive algorithm to com-
pute the length an LCS of two sequences. However, we use dynamic programming to compute
the solutions bottom-up.

Method. Algorithm LCS-Length takes as inputs two sequences X =< x1, . . . , xm >, Y =<
y1, . . . , yn >. It stores the values c[i, j] in a table c[0..m; 0..n] whose entries are computed in a
row-major order. It also maintains table b[0..m; 0..n] to facilitate the construction of an optimal
solution b[i, j] points to the table entry corresponding to the optimal subproblem solution chosen
while computing c[i, j]. The algorithm returns the tables b and c. c[m,n] contains the length of
an LCS of X and Y .

LCS-Length(X,Y)

1. m← Length(X)
2. n← Length(Y)
3. for i← 1 to m
4. do c[i, 0]← 0
5. for j ← 0 to n
6. do c[0, j]← 0
7. for i← 1 to m
8. do for j ← 1 to n
9. do if xi = xj

10. then c[i, j]← c[i− 1, j − 1] + 1
11. b[i, j]←′′↖′′
12. else if c[i− 1, j] ≥ c[i, j − 1]
13. then c[i, j]← c[i− 1, j]
14. b[i, j]←′′↑′′
15. else c[i, j]← c[i, j − 1]
16. b[i, j]←′′←′′
17. return c and b

Constructing an LCS

The following procedure prints out an LCS of X and Y in proper order. The initial invoca-
tion is Print-LCS(b,X,Length(X), Length(Y))

Print-LCS(b,X, i, j)

1. if i = 0 or j = 0
2. then return
3. if b[i, j] =′′↖′′
4. then Print-LCS(b,X, i− 1, j − 1)
5. print xi

6. else if b[i, j] =′′↑′′
7. then Print-LCS(b,X, i− 1, j)
8. else Print-LCS(b,X, i, j − 1)

Exercise 1. (a) Determine an LCS of < 1, 0, 0, 1, 0, 1, 0, 1 > and < 0, 1, 0, 1, 1, 0, 1, 1, 0 >.

2

(b) Show how one can construct an LCS from the completed c table and the sequences
X =< x1, . . . , xm > and < y1, . . . , xn > in O(m + n) time, without using table b.

(c) Give an O(n2)-time algorithm to find the longest monotonically increasing subsequence of a
sequence of n numbers.

2. Matrix-Chain Multiplication

If we are given two matrices of dimension, say, p × q and q × r then the number of multi-
plications required to form the product AB is pqr. If, however, we are given three matrices
A,B,C of order p × q, q × r, r × s respectively, then to form the product ABC we may first
mutiply A and B to obtain the product AB and then AB is multiplied with C; or we may
multiply B and C to obtain the product BC and finally mutiply A with BC. It is easy to see
that the number of mutiplications required in the first case is pqr + prs while the number of
mutiplications required in the second case will be qrs + pqs. One of these can be substantially
larger than the other. For instance, if p = 10, q = 100, r = 5 and s = 50, then the number of
mutiplications in the first case is 7, 500 while the number of multiplications in the second case
will be 75, 000! Thus the manner in which we obtain the product matters.
Matrix-Chain Multiplication
Given a sequence or chain < A1, . . . , An > of n matrices, we wish to form the product

A1A2 . . . An.

We assume that each Ai, 1 ≤ i ≤ n is of dimension pi−1 × pi. It is not hard to check that the
number of ways of obtaining this product is the same as the number of ways of fully parenthesizing
A1 . . . An. A product of matrices is fully parenthesized if it is either a single matrix or the
product of two fully parenthesized matrix products, surrounded by the parentheses (,). For
example, (A1.((A2.A3).A4)) is fully parenthesized. The way the product is fully parenthesized
gives us a way to form the matrix product.
The matrix-chain multiplication problem is the following.
Given a chain < A1, . . . , An > of n matrices, where Ai, 1 ≤ i ≤ n has dimension pi−1 × pi, fully
parenthesize the product A1 . . . An in a way that minimizes the number of scalar multiplications.

The Number of Parenthesizations

Let P (n) denote the number of parenthesizations of a sequence of n matrices. Now observe that
we can split a sequence of n matrices between the kth and k + 1st matrices for any k = 1, . . . , n
and then parenthesize the two resulting subsequence independently to obtain the final parenthe-
sization. Thus we have the following recurrence formula.

P (n) =

{
1 if n = 1∑n−1

k=1 P (k)P (n− k) if n ≥ 2
.

The solution to this recurrence is P (n) = C(n− 1), where

C(n) =
1

n + 1

(
2n
n

)
,

is the nth Catalan number.

Structure of Optimal Parenthesization

Let A[i,j] denote the product Ai . . . Aj , i < j. Note that an optimal parenthesization of A1 . . . An

3

splits the product between Ak and Ak+1 for some k, 1 ≤ k < n. Thus for some k, we first compute
A[1,k] and A[k+1,n] and then multiplying them to obtain the final product A[1,n]. Thus the cost of
this optimal parenthesization is the cost of computing the matrix A[1,k] + the cost of computing
A[k+1,n] + the cost of multiplying them together. Thus to obtain an optimal parenthesization,
we must have used an optimal parenthesizations of both A[1,k] and A[k+1,n].
This leads us to the following recursive solution.
Let m[i, j], i ≤ i ≤ n, be the minimum number of scalar multiplications required to compute
A[i,j]. Then m[1, n] would be the optimal cost to compute A[1,n]. We define m[i, j] recursively as
follows.

m[i, j] =

{
0 if i = j
mini≤k<j{m[i, k] + m[k + 1, j] + pi−1pkpj} if i < j

.

The m[i, j] values give the costs of optimal solutions to subproblems. To keep track of how to
construct an optimal solution we also define

s[i, j] = k ↔ m[i, j] = m[i, k] + m[k + 1, j] + pi−1pkpj.

Computing the Optimal costs

A recursive algorithm based upon the above recurrence to compute A[1,n] will take exponen-
tial time. Instead we compute the optimal cost by using a bottom-up approach. The procedure
assumes that each matrix Ai has dimension pi−1 × pi, 1 ≤ i ≤ n. The input is a sequence
p = (p0, . . . , pn) of length lth[p] = n + 1. The procedure uses an auxiliary table m[1..n; 1..n] for
storing the costs m[i, j] and an auxiliary table s[1..n; 1..n] that records which index k achieved
the optimal cost in computing m[i, j].

Matrix-Chain-Product(p)

1. n← lth(p)− 1
2. for i← 1 to n
3. do m[i.i]← 0
4. for l← 2 to n
5. do for i← 1 to n− l + 1
6. do j ← i + l − 1
7. m[i, j]←∞
8. for k ← i to j − 1
9. do q ← m[i, k] + m[k + 1, j] + pi−1pkpj
10. if q < m[i, j]
11. then m[i, j]← q
12. s[i, j]← k
13. return m and s
The algorithm first computes m[i, i] = 0, 1 ≤ i ≤ n. It then computes m[i, i + 1], 1 ≤ i ≤ n− 1,
during the first execution of the for loop. During the second execution of the loop, it computes
m[i, i+ 2], 1 ≤ i ≤ n− 2 and so forth.The loops are nested three deep and each loop index takes
at most n values. The running time is O(n3).

Constructing the Optimal Solution

We use the table s[1..n; 1..n] to find the best way to mutiply the matrices. Each entry s[i, j]
records the value k such that the optimal parenthesization of A[i,j] splits the product between
Ak and Ak+1. Thus if s[1, n] = k then we know that the final matrix mutiplication in computing
A[1,n] optimally is A[1,k].A[k+1,n]. The earlier ones can be obtained recursively. Thus we have the

4

following recursive procedure, given the matrices A = (A1, . . . , An). The initial call is Matrix-
Chain-Multiply(A, s, 1, n).

Matrix-Chain-Multiply(A, s, i, j)

1. if j > i
2. then X ←Matrix− Chain−Multiply(A, s, i, s[i, j])
3. Y ←Matrix− Chain−Multiply(A, s, s[i, j] + 1, j)
4. return X × Y
5. else return Ai.

Exercise 2. (a) Find an optimal parenthesization of a matrix-chain product whose sequence of
dimensions is < 5, 10, 3, 12, 5, 50, 6 >.

(b) Let R(i, j) be the number of times that table entry m[i, j] is referred by Matrix-Chain-
Product in computing other table entries. Show that the total number of references for the
entire table is

n∑
i=1

n∑
j=1

R(i, j) =
n3 − n

3
.

(c) Show that a full parenthesization of an n-element expression has exactly n − 1 pair of
parentheses.

3. Subset Sums and Knapsacks

Subset Sum Problem. Given a bound W and n items 1, 2, . . . , n with non-negative weights
w1, w2, . . . , wn respectively, find a subset S ⊆ {1, . . . , n} such that∑

i∈S
wi ≤W,

and
∑

i∈S wi is as large as possible.
A related problem is the knapsack problem.
Knapsack Problem. Given a bound W and n items 1, . . . , n of weights w1, . . . , wn and values
v1, . . . , vn respectively, find a subset S ⊆ {1, . . . , n} such that∑

i∈S
wi ≤W

and
∑

i∈S vi is as large as possible.
We shall first consider the subset sum problem and look at the structure of an optimal solution.
Assume that the weights are intergers as also the bound W . Let S ⊆ {1, . . . , n} be an optimal
solution. If n 6∈ S then clearly S is an optimal solution of the corresponding knapsack problem
consisting of the first n − 1 items. If n ∈ S, then S′ = S − {n} is an optimal solution of the
knapsack problem with n − 1 items 1, . . . , n − 1 with weight-bound W − wn.(Why?) Thus we
need to consider subproblems consisting of the first i items 1, . . . , i, for 1 ≤ i ≤ n with maximum
allowed weight w, where 1 ≤ w ≤W . Let M [i, w] denote the value of the optimal solution using
a subset of the items {1, . . . , i} with maximum allowed weight w. Thus

M [i, w] = max
T

∑
j∈T

wj ,

where the maximum is taken over all subsets T ⊆ {1, . . . , i} that satisfy
∑

j∈T wj ≤ w. The final
solution to our problem would be M [n,W]. A similar argument as above yields the following

5

recurrence for M [i, w].

M [i, w] =

{
M [i− 1,W] if W < wi

max{M [i− 1, w], wi + M [i− 1, w − wi]} if otherwise
.

As before, we will design an algorithm to build up a table of all M [i, w] values while computing
each of them at most once.

Subset-Sum(n,W)

Array M [0..n; 0..W]
Initilize M [0, w] := 0 for all w = 0, . . . ,W .
for i← 1 to n

for w ← 0 to W
do if W < wi

then M [i, w]←M [i− 1, w]
else M [i, w]← max{M [i− 1, w], wi + M [i− 1, w − wi]}

endfor
endfor
return M [n,W].

Using the above recurrence, one can show that M [n,W] is the optimal solution weight for
the items 1, . . . , n with available weight W . Also, each value M [i, w] is computed in constant
time using the previous values. Thus the running time is O(nW). Thus we have

Theorem 1. The Subset-Sum(n,W) correctly computes the value of the optimal solution in time
O(nW).

Exercise 3. Obtain a recurrence relation for the knapsack problem. Show that the knapsack
problem can be solved in O(nW) time

6

