On topology of nucleus complex

Apratim Chakraborty (joint work with Anupam Mondal, Sajal Mukherjee and Kuldeep Saha)

April 6, 2022

Apratim Chakraborty (joint work with Anupa

On topology of nucleus complex

April 6, 2022

< 43 > <

∃ ⇒

Apratim Chakraborty (joint work with Anupa

On topology of nucleus complex

April 6, 2022

< 3 > 3

Euler characteristic

V-E+F=2

For any convex polyhedron

Tetrahedron	Cube or hexahedron	Octahedron	Dodecahedron	Icosahedron
V=4, E=6, F=4	V=8, E=12, F=6	V=6, E=12, F=8	V=12, E=30, F=20	V=20, E=30, F=12

Apratim Chakraborty (joint work with Anupa

On topology of nucleus complex

▲ IP ► ▲ IE ► ▲ IE ►
April 6, 2022

Euler formula for planar graph

(Euler's Formula). For any connected planar graph, V - E + F = 2.

(Euler charecteristic is a topological invariant!)

Apratim Chakraborty (joint work with Anupa

On topology of nucleus complex

→ Ξ →

< (17) × <

Simplicial complex

A *k*-simplex is a convex hull of e_1, \dots, e_{k+1} .

A simplicial complex is topological space obtained by gluing simplices.

Apratim Chakraborty (joint work with Anupai On top

On topology of nucleus complex

April 6, 2022

∃ ⇒

< (T) > <

A simplicial complex can thought of as a set of simplices Σ such that (i) face of any simplex in Σ is also in Σ and (ii) if $\sigma_1, \sigma_2 \in \Sigma$ and $\sigma_1 \cap \sigma_2 \neq \emptyset$ then $\sigma_1 \cap \sigma_2$ is a face of both σ_1 and σ_2 .

simplicial complexes

not a simplicial complex

< A > <

An *abstract simplicial complex* is a pair (S, \mathcal{F}) , where S is a finite set and \mathcal{F} is a collection of subsets of S such that any $I \in \mathcal{F}$ and $J \subseteq I$ satisfy $J \in \mathcal{F}$.

Any abstract simplicial complex has a geometric realizaiton.

イロト イヨト イヨト ・

A d-cell is a closed ball of dimension d. A CW complex is a space obtained by gluing cells.

-47 ▶

< ∃⇒

- Given an *n*-dimensional simplicial complex X (or CW complex), we can define abelian groups $H_i(X; F)$, $i = 0, 1, \dots, n$ that is a topological invariant of the space X.
- The *i*'th Betti number $b_i := dim(H_i(X; \mathbb{R}))$.

3

Given a simplicial complex (or a CW complex) Euler charecteristic can be defined as alternating sum of number of simplices (or cells) in each dimension and can be computed in terms of homology. Let c_i be the number of *i* dimensional simplices (or cells) then,

$$\chi(\Sigma) = c_0 - c_1 + c_2 - \cdots = b_0 - b_1 + b_2 - \cdots$$

Apratim Chakraborty (joint work with Anupa

Using topology for counting

An n-1-simplex is homotopy equivalent to a point therefore, $b_0 = 1$ and $b_1 = b_2 = \cdots = 0$.

The number of *i*-dimensional faces in an *n*-simplex is $\binom{n}{i+1}$. Therefore, we from the Euler characteristic formula

$$\binom{n}{1} - \binom{n}{2} + \binom{n}{3} - \cdots (-1)^n \binom{n}{n} = 1.$$

Apratim Chakraborty (joint work with Anupa

Using topology for counting(II)

$$\sum_{k=0}^{m} (-1)^k \binom{n}{k} = (-1)^m \binom{n-1}{m}.$$

To prove this identity we consider the (m-1)-skeleton of an n-1-simplex. Since it is homotopy equivalent to a bouquet of $\binom{n-1}{m}$ m-spheres. $b_m = \binom{n-1}{m}$ and all other betti numbers are 0.

Apratim Chakraborty (joint work with Anupa

Classical morse theory

A morse function is a smooth function from a manifold M to \mathbb{R} having non-degenerate critical points (implies isolated).

Building up a manifold using morse theory

As we pass through a critical point of index i the manifold changes by an attachment of an i-handle.

< A > <

- ∢ ⊒ →

Elementary collapse and collapsiblity

A simplex which is a face of exactly one simplex is called a *free face*. Whenever we have a free face, we can remove it from the complex by a deformation retraction. This is known as *elementary collapse*. If a complex collapses to a point its called collapsible.

Figure: A sequence of elementary collapses.

Gradient vector field

A discrete vector field V on K is a collection of pairs $\{\alpha^{(p)} < \beta^{(p+1)}\}\$ of simplices of K such that each simplex is in at most one pair of V. Given a discrete vector field on K, we can assign arrows on K such that for a pair $\{\alpha^{(p)} < \beta^{(p+1)}\}\$ the tail of the arrow lies in $\beta^{(p+1)}$ and the head of the arrow lies in $\alpha^{(p)}$. A discrete vector field is called a gradient vector field if it is acyclic.

Figure: An example of a discrete gradient vector field.

On topology of nucleus complex

Fundamental theorem of discrete morse theory

Theorem

Suppose K is a simplicial complex with a discrete Morse function. Then K is homotopy equivalent to a CW complex with exactly one cell of dimension p for each critical simplex of dimension p.

Collapsibility and discrete morse functions

Figure: A gradient vector field with only one critical point.

Apratim Chakraborty (joint work with Anupa

On topology of nucleus complex

April 6, 2022

Another example of sequence of elementary collapses

Apratim Chakraborty (joint work with Anupai

On topology of nucleus complex

April 6, 2022

Using discrete morse theory to determine the homotopy type

Apratim Chakraborty (joint work with Anupai

On topology of nucleus complex

April 6, 2022

э

An useful theorem

Theorem

If K has only critical faces of dimension $d (\geq 1)$, then K is homotopy equivalent to a wedge of d-spheres.

Given a connected undirected simple graph G with at least 3 vertices, a nucleus of G is a connected subgraph $N \subseteq G$ such that V(N) is a vertex cover of G. The set of nuclei is denoted by $\mathcal{N}(G)$. The k-th Elser number $els_k(G)$ is defined as follows

$$ext{els}_k(G) = (-1)^{|V(G)|} \sum_{N \in \mathcal{N}(G)} (-1)^{|E(N)|} |V(N)|^k.$$

Elser's conjecture says $els_k(G) \ge 0$ for $k \ge 2$, $els_1(G) = 0$ and $els_0(G) < 0.$

Apratim Chakraborty (joint work with Anupa

Dorpalen-Barry et al. proved Elser's conjecture about sign of Elser's number by interpreting them as certain sums of reduced Euler characteristics of an abstract simplicial complex known as U-nucleus complex.

$$\Delta_U^G = \{E(G) \setminus E(N) : N \in \mathcal{N}(G), \ U \subseteq V(N)\}.$$

Elser's numbers can be seen as sums of reduced Euler characteristics of an abstract simplicial complex known as *U*-nucleus complex.

$$\mathrm{els}_k(G) = (-1)^{|\mathcal{E}(G)|+|V(G)|} \sum_{U \subseteq |V(G)|} \mathrm{Sur}(k,|U|) \; ilde{\chi}(\Delta_U^G).$$

Apratim Chakraborty (joint work with Anupa

An example

Let $G = C_4$ a 4-cycle and $U = \{A\}$. The minimal U-nuclei are $\{\{AB, BD\}, \{AC, AB\}, \{CD, AC\}.$

 $\Delta_{U}^{G} = \{\{AC, CD\}, \{CD, BD\}, \{AB, BD\}, \{AB\}, \{AC\}, \{BD\}, \{CD\}, \emptyset\}$ $\Delta_{U}^{G} \text{ is collapsible.}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

We prove the following theorem about homology of Δ_U^G settling Conjecture 9.1 of Dorpalen-Barry et al., JCT, 2021.

Theorem (C.- Mondal-Mukherjee-Saha)

For |U| > 1, $\tilde{H}_k(\Delta_U^G; \mathbb{R}) \cong 0$ unless k = |E(G)| - |V(G)|.

As a corollary, Elser's conjecture follows.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For $F \subseteq E(G)$, an F-path is a path consisting of edges from F. Now given a vertex $v \in V(G)$, we define Shade_v(F) as follows.

 $\operatorname{Shade}_{v}(F) = \{ e \in E(G) : \text{ There is a } F \text{-path from an endpoint of } e \text{ to } v \}.$

We consider the following abstract simplicial complex

 $\mathcal{A}_{U} = \{F \subseteq E(G) : \text{Shade}_{v}(F) \subseteq E(G) \text{ for some } v \in U\}.$

It can be shown that \mathcal{A}_U is the Alexander dual of Δ_{II}^G .

Step 1: Give an explicit gradient vector field on \mathcal{A}_{U} .

Step 2: Show that unpaired simplices are two component spanning forests.

Step 3: Using Forman's theorem we conclude that the complex is

homotopy equivalent to a bouquet of spheres.

Step 4: Using Alexander duality, prove the conjecture about homology of nucleus complex.

Dorpalen-Barry et al. also made a conjecture about the topology of the nucleus complex in the case of $U = \emptyset$. However, we observed that this conjecture is not true.

Some open questions regarding nucleus complex

- Can we compute the dimension of $\tilde{H}_k(\Delta_U^G; \mathbb{R})$ when k = |E(G)| |V(G)| for any graph G?
- **2** What can we say about the topology of Δ_U^G when $U = \emptyset$?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

29 / 29