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1 Modular Arithmetic, Elementary Properties

Let Z denote the set of all natural numbers and N the set of natural numbers. For a,b € Z we write
alb if a divides b.

Definition 1. Let n be a fized positive integer. For two integers a,b € Z, we say that a is congruent
to b modulo n, and we write

a=bmodn
if n|(a —b).

Ezxercise 1.
Show that = is an equivalence relation on Z

Exercise 2.
Suppose a = bmod n and ¢ = d mod n. Then show that (a + ¢) = (b + d) modn, (a —¢c) =
(b — d) mod n and ac = bd mod n.

Ezercise 3.
Let p(x) € Z[z] be a polynomial with integer coefficients. Show that if @ = b mod n, then p(a) =
p(b) mod n.

Hence show that an m digit number is divisible by 3 iff the sum of the digits is divisible by 3.

We know that when an integer a € Z is divided by n it leaves a remainder r» where 0 < r <n—1.
Let Z,, denote the set of these remainders i.e. Z,, = {0,1,...,n—1}. Clearly, for any integer a € Z, 3
a unique integer r € Z,, such that a = r mod n and a = b mod n iff their remainders are the same
on dividing by n.

On Z,, we shall define two binary operations + and x or . as follows.

For a,b € Z,, let ¢ € Z,, be the unique integer s.t. a + b = ¢ mod n. Then we define

at+b=c

in Z,,.
Similarly, let d € Z,, be the unique integer s.t. ab = d mod n. Then in Z, we define

a.b=d.

Clearly, in Z,, a + b =ciff a +b = cmod n and a.b = d iff ab = d mod n.

Exercise 4. Write down the addition and multiplication tables for Z; and Zg.

Exercise 5. Show that Z,, with the binary operations + and x defined above forms a commutative
ring with identity 1.



1.1 Euclidean Algorithm
We now state a result that is fundamental and useful and is known as the Division Algorithm.

Lemma 1. Let a be an integer and b a positive integer. Then there exist unique integers q,r such
that 0 <r < b and
a=qgb+r.

Proof. First assume that a > 0. If ¢ = 0, then set ¢ = 0 and r = 0. So assume that a > 0. If a < b
then set ¢ = 0 and r = a. So assume a > b. Now the set of positive integers ¢ such that ib < a is
non-empty and finite. Let ¢ be the largest such integer. Set r = a — ¢b. By our choice of ¢, 0 < r < q.
The case when a < 0 is left as an exercise. The uniqueness is not hard to see. (|
q is called the quotient and r the remainder. We denote r by a mod b. We now define

Definition 2. Let a,b € Z. The greatest common divisor of a and b, denoted by GCD(a,b), is the
largest of all common divisors of a and b. In other words, GCD(a,b) = d if dla and d|b, and if c|a
and c|b, then c|d. We define GCD(0,0) = 0.

We now present one of the most celebrated algorithms in Number Theory called the Fuclidean
Algorithm. It computes the GCD of two integers a, b.

Since GCD(a,b) = GCD(]al,|b]), we assume without loss of generality that a and b are non-
negative. If one of them, say a is 0, then GCD(a,b) = b. So assume both a and b are positive. W.l.g.
assume that a > b. Let GCD(a,b) = d and set 79 = a and r; = b. By the division algorithm we
have for some integers q; (quotient), ro (remainder) ,

ro =q1T1 + 72 with 0 <ry <ry.
Repeating this process until the remainder becomes 0, we have
r1 = qory + 13 with 0 <r3 <r9;

ro = q3r3 + 74 with 0 <ry <rs;

Tn—1 = qnTn-

Claim: For all 7,0 <1 < n,
d= GCD(TZ‘, Ti+1).

First note that d = GCD(a,b) = GCD(ry,r1). Let d = GCD(ry,r3). Since d'|ry and d'|rq, from

the first equation it follows that d'|ro. Hence, d'|GCD(rg,r1) i.e. d’|d. On the other hand, from the

first equation, it follows that d|rs. Since d|ry also we have d|GCD(ry,r3) i.e. d|d’. Thus d = d'.
Proceeding as above, one can show( ezercise) by induction on 4,0 <4 < n that d = GCD(r;, riy1

Thus we have d = GCD(ry—1,7p) = 7y.

This yields the following algorithm of Euclid. The inputs a and b are arbitrary non-negative integers.

EUCLID(a, b)

1. Ifb:=0
2. then return a
3. else return EUCLID(b, a mod b)



Correctness and Complexity
The correctness follows from the arguments above. For the complexity, one can prove by induction
on k the following.
e Suppose a > b > 1 and EUCLID(a,b) preforms k recursive calls. The a > Fj49 and b > Fj 41,
where F}, is the kth Fibonacci number.

We may improve the complexity by observing the following.

Lemma 2. Suppose a > b > 1. Then there exist integers q,r such that 0 < |r| < b/2 satisfying
a=bq+r.

Proof. By the division algorithm we have for some integers ¢, r
a=qgb+r.

If r < b/2 then we are done. So asume that r > b/2. Then b — r < b/2 and

a=bg+r=>blg+1)—(b—r). Let v/ = —(b—r) and ¢ = g+ 1. Then a = bg’ + 7', where

|| = (g —r) < b/2. O
Next we observe that

Theorem 1. Let a,b € Z. Suppose GCD(a,b) = d. Then there exist integers A\, u € Z such that
aX+bu =d. (1)

Proof. Wlg assume that a, b are non-negative integers. Arguing as above we have for some integers
7“7;,0 S T < Titl,
ro = q1T1 + 72 with 0 <ry <ry.

TN = QqoT2 + 173 with 0 < r3 < Trog;

To = (@373 + T4 with 0 <ry < I3;

T'n—1 = qnTn,

where 79 = a,m = b and r, = GCD(a,b).
Now we have the following
Claim: For every ¢,0 < i < n,r; is a linear combination of a and b. In other words, for each 4,3
integers \;, pt; € Z such that
T, = (J,Ai + b/h

Clearly true for ¢ = 0, 1. So assume that the claim holds for integers < i. We shall show that it holds
for i + 1. . Now from the ith equation we have

Ti—1 = TiQ; + Tit1-

Hence we have

Ti+1

=T T Tl

= —¢;(aX; + bu;) + (aXj—1 + bpi—1), by induction hypothesis

= a(Ni—1 — Niqi) + b(pio1 — 1iqs)-

Set A\iv1 = Ai—1 — Aiq; and pi41 = pi—1 — piq; and we are done. Thus we have d = r,, = a\, + bfiy,.
This completes the proof. O



Remark 1. The above proof shows that {\;} and {p;} can be defined recursively.
Set Ag = 1,40 =0 and Ay =0, 41 = 1. Define

Air1 = A1 — Nigi,

Hit+1 = Hi—1 — Hiqs
We now obtain the Extended Euclidean Algorithm that expresses the GCD of a,b as a linear
combination.

EXTENDED-EUCLID(a, b)

Input: A pair of non-negative integers.
Output: A triplet of the form (d, A, ) such that d = GCD(a,b) = a) + bp.

1 Ifb:=0

2 then return (a,1,0)

3 else (d',N, /) = EXTENDED-EUCLID(b, a mod b)
4 (d7 )‘7 M) = (d/7 :U’/a N — La/bJ :u/)

5 return (d, A, i)

Correctness and Complexity
If b = 0 then we have GCD(a,b) = a = 1.a + 0.b and the algorithm correctly returns (a,1,0). So
assume b # 0. The algorithm returns (d’, X', i) such that, by induction hypothesis,
d' = GCD(b,a mod b) and
d" = b\ + (a mod b)y/ (2)
Since GC'D(a,b) = GCD(b,a mod b) we have d = d'. Hence, by (2), we have
d=d =b\N + (amod b)y/
— BN+ (a — [a/bJb)
=ap’ + (N — |a/blp)b = aX + bp.
Since the number of recursive calls in EXTENDED-EUCLID is the same as in EUCLID, the proce-
dure makes O(logn) recursive calls.
As an immediate corollary to Theorem 1 we have

Corollary 1. Let a,n € Z such that GCD(a,n) = 1. Then there exists an integer b € Z such that
ab =1 mod n. (3)
In other words, for every integer a co-prime to n, there is an integer b such that ab = 1 mod n.
Proof. By Theorem 1 we have integers A and p such that
aA+nu=1.
This clearly implies that aA = 1 mod n. Set b = X\ and we are done.
Remark 2. The integer b is called a multiplicative inverse of a modulo n.

The following important result is an immediate consequence

Theorem 2. let p be a prime number. Then Z, with + and x defined above is a field.
In fact Z,, is a field iff n is prime.

Proof. 1t is enough to show that Z; = Z, — {0} is a commutative group w.r.t x. The only non-trivial
axiom is to show that every element of of Z; has an inverse. So fix a € Zj. Since GCD(a,p) =1 by
Corollary 1, there is an integer b € Z such that ab = 1 mod p. Clearly b # 0 mod p. Let b’ € Z; be
the unique integer such that b = b’ mod p. Then ab’ = ab = 1 mod p. By definition, 0’ € Zj is the
inverse of a in (Zj, x). .



1.2 The Chinese Remainder Theorem

We now state a result that is useful not only in Number Theory but also in Cryptography. It is
known as the Chinese Remainder Theorem (CRT).

Theorem 3. Let ni,na,...,ni be positive integers that are pairwise relatively co-prime. Set N =
ny...ng. Then the following system of congruence relations

X = ay mod nq,

X = as mod ns.

X = a; mod ny

has a unique solution modulo N for the unknown X.

Proof. Uniqueness. Let Y be another solution. Then X = Y modn;, for ¢ = 1,...,k. Hence
n (X =Y) for ¢ = 1,...,k. Since n;’s are pairwise co-prime, this implies that n[(X —Y) and
soz =Y mod N.

Ezistence. We shall prove it for k = 2. The general solutiion is left as an exercise. Since GC'D(ny, ng) =
1 by Corollary 1, there exists and integer 777 € Z such that ny77; = 1 mod ny. Similarly, there exists
an integer 715 € Z such that ny7s = 1 mod ny. Now consider the integer X = aynons +asnini. Then
X =ainenoe = a;.1 = amod ny. Also X = asniny; = as mod ny. Thus X is a solution. O

Exercise 6. Prove the Chinese Remainder Theorem in its most general form.

(Hints: Set m; = - and find integers m; such that m;m; =1 mod n;.)

We now introduce a very important function known as Euler’s phi-function or totient-function.

Definition 3. Let n be a positive integer. Define
(n) = 1 if n=1
Tl Hr:0<r<nAGCD(r,n)=1}if n>1"

Thus for n > 1, ¢(n) denotes the number of positive integers less that n that are co-prime to n.
Before we enumerate some properties of the phi-function in the following theorem we introduce the
following set that will play an important role later.

Definition 4. Let n be a positive integer. Define
7: ¥ {aeZ,: GCD(a,n) = 1}.
Clearly, by definition of ¢, the cardinality |Z},| = ¢(n). Also for a prime p, Zy = Z, — {0}.

Theorem 4. 1. For any prime p and a positive integer «,

(p™) = p™(1 - ];)-

2. Let m,n be two positive integers such that GCD(m,n) = 1. Then

¢(mn) = ¢(m)o(n).

In other words, ¢ is multiplicative for relatively prime integers.



3. Let n = pi'...pi* be a prime factorisation of n, where py,...,py are distinct prime divisors of
n. Then

Proof. 1. First observe that an integer a € [1,p®] is not co-prime to p® iff a is a multiple of
p. Thus the number of integers a € [1,p*] that are nor co-prime to p® is p®~!. Consequently,
¢(p*) = p* —p*~ =p*(1 - 1)
2. Set N = mn. First observe that |Z%| = ¢(N) and |Z}, x Z%| = ¢(m)¢(n). We shall now define a
bijection between these two sets and that will prove (2). Define F' : Z3, — Z};, X Z, as follows. For
x € Zj; define

F(z) = (x mod m, z mod n),

where x mod m denotes the remainder when x is divided by m. First note that F is well-defined and
moreover, by the Chinese remainder Theorem it is onto and one-one. Thus F' is a bijection and we
are done.

3. By repeatedly applying (2) we have

1 1
=pii(l——) . p(1— )
1 Pk
1 1
=n(l——)..(1- )
P Pk

O
We now obtain a useful result of Algebra.

Theorem 5. Let n be a positive integer. Consider the binary operation X defined on Z,, restricted
to Z%. Then (Z%, X) is a commutative group of order ¢(n).

Proof. Clearly |Z%| = ¢(n). We now show closure property. So fix a,b € Z}. Let ¢ € Z,, be such that
ab = ¢ mod n. Suppose p is a prime divisor of both ¢ and n. Then since n|(ab — ¢) it follows that
p|(ab— ¢) and hence p|ab, This implies that p|a or p|b. In either case we obtain a contradiction. This
shows that GCD(¢,n) = 1. So ab = ¢ € Z¥. Associativity is immediate and 1 is the multiplicative
identity of Z;,. It remains to show that each element of Z; has a multiplicative inverse. So fix a € Z7,,
By Corollary 1, there is an integer b € Z such that ab = 1 mod n. Let ¢ be the unique integer in Z,
such that b = ¢ mod n. Clearly, ab = 1 + kn for some k € Z. If p is a prime divisor of both b and n
the p|(ab — kn) i.e. p divides 1. This contradiction shows that GCD(b,n) = 1.. Since b = ¢ mod n,
it is not hard to see that c is co-prime to n. Thus ac = ab = 1 mod n. This shows that c € Z;, is the
multiplicative inverse of a € Z;,. This completes the proof. O

¥ is a prime. Then one can show that Z is a cyclic group. power

Remark 8. Suppose n = p
We now state(without proof) a result in Algebra that is a consequence of Lagrange’s Theorem.
Theorem 6. Let (G,.) be a finite group of order n with identity e. Then for a € G

a =e.
The following is known as Euler’s Theorem

Theorem 7. Let a be an integer that is co-prime to n. Then

a®™ =1 mod n.



Proof. Since GCD(a,n) = 1, there is an x € Z¥ such that a = x mod n. By Theorem 6, z?(™) = 1
in Z* and hence z#(™ =1 mod n. Thus we have

a®™ = ™M) = 1 mod n.

This completes the proof. O
As an immediate consequence we have Fermat’s Theorem.

Theorem 8. Let p be a prime. For any integer a #Z 0 mod p
a?~ ! =1 mod p.
Proof. In Theorem 7, take n = p so that ¢(n) = ¢(p) = p — 1. Thus we have

a?~! =1 mod p.

2 Quadratic Residues, Legendre and Jacobi Symbols

We now introduce a concept that has played an important role in Public Key Cryptography.

Definition 5. Let p be an odd prime. An integer a % 0 mod p is said to be a quadratic residue
modulo p if the exist an integer x € 7 such that

z? = a mod p.
Otherwise, a is said to be a quadratic non-residue modulo p.

Remark 4. For any positive integer m and a co-prime to m one can define quadratic residuocity of
a modulo m.

Since a and a + p are both quadratic residue or non-residue modulo p, we usually confine ourselves
to Zy. Thus a € Zj; is a quadratic residue modulo p iff it has a square root in Z, iff it is a square
modulo p. We denote the set of quadratic residues modulo p in Z; by QR,,. Thus in Z7 we have

12 =1;22 =4;3* = 2,4 = 2,5 = 4,6 = 1.

Hence 1,2,4 are the 3 quadratic residues modulo 7. The number of quadratic residues is given by
the following

. . ) . . (p—1)
Proposition 1. Let p be an odd prime. Then the number of quadratic residues modulo p is pT,

Proof. Consider the function F': Z; — Z; defined as follows. For z € Z7,
f(z) = 2% mod p.

Clear the function  — x2 is well-defined whose range is the set of quadratic residues QR,,. Also
if f(x) = a ie. 22 = a mod p, then (p — 2)?> = (—r)? = a mod p and hence f(p — x) = a Thus the
function f is a 2 — 1 function and so |Range(f)| = [QR,| = (pgl). O
Testing whether a given integer is a quadratic residue or non-residue modulo p is given by the
following Euler’s Criterion




Theorem 9. Let p be an odd prime. An integer a is a quadratic residue modulo p iff

p—

a"T =1 mod D. (4)

Proof. Suppose a is a quadratic residue modulo p. Then for integer z, we have 22 =

a mod p. First
—1
note that « # 0 mod p. Thus a"z = 2P~! =1 mod p by Fermat’s Theorem. (Corollary 1)
Conversely, suppose a satisfies equation (3). It is well-know Z, is a cyclic group w.r.t. X. Hence

there exits a € Z;, that generates Z;. Thus we have
Z, =11, a0, aP 72,

Suppose a = o' mod p for some i,0 < i < (p — 2). Then

p—1 (p—1)

a?z =a" 2 modp.

Thus a2®=1 =1 mod p. Since the order of a is p— 1, it follows that %(p— 1) is a multiple of (p—1)
and hence 2|i. Set ¢ = 2j. Hence

(aj)2 = a mod p.

This shows that a is a quadratic residue modulo p. O
As a corollary we have

Corollary 2. An integer a is a quadratic non-residue iff

p—1

a 2 = —1mod p.
Proof. By Fermat’s Theorem we have
a?~' =1 mod p.

This implies
a?' —1=0modp

or, (aT — 1) (ap%1 + 1) = 0 mod p.

The result now follows from Theorem 9. O

Ezercise 7. (a) Write a program for testing whether an integer a is a quadratic residue modulo p or
not. Check whether 3 is a quadratic residue modulo 7/ modulo 13.

(b) Show that if a,b are quadratic residues (or, non-residues) modulo p, then so is ab.

(c) Let N = pq, where p,q are odd primes. Show that the following equation has 4 solutions.

z? =1 mod N.
For an odd prime p we now define Legendre symbol ( ) as follows.

a
P

p

= ¢ +1if aisaquadraticresidue
—1if aisaquadraticnon — residue

(a) 0 if a=0modp

From Theorem 9 and Corollary 2 we have

Theorem 10. Let p be an odd prime. Then

p—1



The following lists some properties of the Legendre symbol and is an easy consequence of Theorem
10.

Theorem 11. Let p be an odd prime. Then

L(3)=0)6)

2. a = bmod p implies that (%) =
L ()1 () -0

We now compute the value of (%)

b
p)o

Theorem 12. Let p be an odd prime. Then

(+)

Proof. Let p = 4n + 1. We shall compute ((p — 1)!) mod p as follows

p+

(—1)112l mod p if p=1mod 4
(fl)T1 mod pif p=3mod4

1.2.3.4.5.... (4n)
=(1.3.5.....(4n —1)).(24..... 4n) mod p
= (1.35.....(4n — 1)).((2n)").2%" mod p
=(1.3..... 2n—1)).(2n+1)..... (4n —1)).((2n)").22" mod p
=((=1)(=3)...(=2n+ 1))(=D)".(2n + 1) ... (4n — 1)).((2n)")2%" mod p
=(4n)(dn —2)...(2n+2)).(=1)".((2n + 1) ... (4n — 1))((2n)")2%" mod p
=(2n+1)(2n+2)...(4n)).(—=1)".((2n)").2%" mod p
=(1.2.3.....(4n)).(=1)™.2%" mod p.

Here we have used the fact that —1 = 4n; —3 = 4n — 2 etc. On cancellation we have,

1= (-1)"2*" = (—1)1%12}72;1 mod p.

p—1 p—1

i.e. 272 =(=1)"* modp.

(;) = (-1)"F mod p.

By a similar argument(exercise) one can show that

2 ptl
- —1)"* mod p,
(2)=c p

Thus

when p = 3 mod 4.

Ezercise 8. 1. Show that ( ) =1iff p= 41 mod 8.

2
p
2. Show that )
2) - 7
(p) (1) ™)

We now state( without proof ) the celebrated Law of Quadratic Reciprocity due to Gauss.



Theorem 13. If p and q are distinct odd primes, then

(£))-co

if p,q=3mod4

Ezercise 9. 1. Show that

RS
ISH k]

~_
I

+

DR VIR
—~
©
S~—

otherwise

2. Compute (37) , (_6—%2).

59

2.1 Jacobi Symbol
The Legendre symbol can be extended to any odd positive integer a follows.

Definition 6. Let Q be an odd positive integer. Suppose Q = IIX_,q;, be a prime factorisation,
where the primes q; are odd and not necessarily distinct. Then the Jacobi Symbol (%) is defined

by
k
P P
(Q) a E (%‘) 7
where each (5) 1s the Legendre symbol.

Remark 5. Clearly, if GCD(P,Q) > 1, then ( ) — 0 while if GCD(P,Q) = 1 then ( ) — 41,

P P
Q Q
The following follows from definition.

Theorem 14. Suppose P,Q are odd positive integers. Then

1(8) (&)= (%)
2 (6) (%)= (%)

3. P = P’ mod Q implies that (g) = (%) .

Exercise 10. Let @ be an odd positive integer. Then show that
1.

(;) _ (S (11)

Hints: For (1) use the fact that 231 + 51 = 92=1 mod 2 and for (2) note that a2§1 + b2§1 =
“2b82_1 mod 2.

The Gaussian Reciprocity Law gives us the following

Theorem 15. Let P,Q be odd primes. Then

(B



Proof. Let P = [];_; pi and Q = [];_, g;. Then

= <g) (—1) G=122i=1 ;)12;1(1]771

Note that
- pi—1 q; 1 o d pi—1 q; — 1
Z Z 9 9 - Z 9 Z 9
j=11i=1 i=1 j=1
P—-1 1
= ————mod?2
2
Therefore we have
E _ 9 (_1) P Q2—1
Q P
This completes the proof O

Ezxercise 11. 1. Evaluate (_9—?;5) ; (%) ; (11121314151) .

2. Write an algorithm for computing the Jacobi symbol without factorisation.

2.2 Primality Tests

1. Miller-Rabin Primality Test
We have already seen that if n is a prime, then by Fermat’s little theorem, a”~! = 1 mod n, for
any a € [1,n — 1]. The Miller-Rabin test tries to find a “witness” to the compositeness of n by
choosing a random a,1 < a < n—1 such that a” ! # 1 mod n. The pseudo-code for Miller-Rabin
is given below.

Miller-Rabin(n, s)

Write n — 1 = 2%m, where m is odd.
Choose a random integer a,1 <a <n—1
b+ a™ mod n
If b=1modn

then return ("n is prime”)

fori+ Otok—1
Ifb=—-1modn

do{ then return ("n is prime”) }
else b+ b>mod n
return ("n is composite”)
Repeat s times.

‘We now show

11



Theorem 16. The Miller-Rabin algorithm for composites is a Yes-baised Monte Carlo algo-
rithm.

Proof. Assume that Miller-Rabin returns "n is composite”. Then we claim that n must be

composite. Assume that n is prime. Observe that in the for loop we are testing for the values
b

a™,a®™, ..., a> 'm_Since the algorithm returns ”n is composite”, we have for all 7,0 < i < k—1

a?™ % —1 mod n.

n—1 —

Also, by Fermat’s theorem, a 1modn i.e.

k
a®>™ =1 mod n.

Thus a2~ '™ is a square root of 1 modulo n. Since, by our assumption, n is prime, 1 has exactly
two square roots modulo nviz +1 and —1. But a2 'm # —1 mod n. So

k—1
a®> ™ =1modn.

Repeating this argument we ultimately obtain
a™ =1 mod n.

But this is a contradiction since, otherwise, Miller-Rabin would have retuned ”n is prime”. Thus
n must be composite. O
We have just shown that if n is prime, then Miller-Rabin algorithm would always return ”n is
prime”. However, if Miller-Rabin returns "n is prime” then it is likely to make an error. We now
compute the error probability.

Theorem 17. Ifn is an odd composite number, then the number of witnesses to the composite-
ness of n is at least (n —1)/2.

Proof. * Tt suffices to show that the number of non-witnesses is at most (n — 1)/2. We first
show that all non-witnesses are in Z,. Fix a non-witness a. Then we msut have a”~! = 1 mod n
and hence a"~! = 1 + tn, for some integer . Now GCD(a,n)|a”"1 and GCD(a,n)|tn and so
GCD(a,n)|(a"! — tn) i.e. GCD(a,n)|1. Thus GCD(a,n) = 1 and so a € Z}. We now show
that all non-witnesses are in a proper sub-group of Z}. We shall consider two cases.

Case 1: There exists z € Z7 such that 2"~ ! # 1 mod n.

Let B = {b € Z: : b» ! = 1 mod n}. Clearly, B is non-empty. Also B is closed under multi-
plication modulo n. Hence, B is a subgroup of Z?. Also all non-witnesses are in B and, by our
assumption, x € Z} — B. So B is a proper subgroup of Z . Hence

number of non-witnesses < |B| < |Z;|/2 < (n —1)/2.

Case 2: For all z € Z}, 2"~ = 1 mod n.

In other words, n is a Carmicheal Number.

We first show that n is not a prime power. Suppose n = p®, where p is an odd prime and e > 1.
Then Z is a cyclic group. Suppose g is a generator of Z%. By our assumption ¢"~! = 1 mod n.
Hence, the order of g divides n — 1. But, the order of g = |Z*| = ¢(n) = p~!(p — 1). So
p°~t(p —1)|(p® — 1), a contradiction, since p® — 1 is not divisible by p. Hence n = nj.ny, where
n1,ny are odd primes greater than 1 and GCD(ny,ns) = 1.

Note that n — 1 = 2"m and that on input a € Z* Miller-Rabin computes the sequence

_ m 2m 2°m 28m
X =(a™a""a*™,...;a" ™).

12



Now fix a pair (¢, j) where ¢ € Z%,0 < j < k and

@™ = —1 mod n. (13)
Such a pair exists, since for j = 0, we have (n — 1)™ = (—=1)™ = —1 mod n. Choose j as large
as possible. Let v

B={zxeZ :z¥™ =41 mod n}.

Clearly, B is closed under multiplication modulo n. Hence, B is a sub-group of Z}. Also every
non-witness must be in B, since for a non-witness a, the sequence X computed by the algorithm
must all be 1 or for some j' < j,a? ™ = —1 mod n, by maximality of j.
We claim that B is a proper sub-group of Z; . To see this, by CRT, fix an integer w such that

w = ¢ mod ny

w = 1 mod ns.

Observe that, if w = +1 mod n, then w = +1 mod n;. This would imply that w? ™ = ¢2'™ mod
ny. But by (13), ™ = —1 mod n;. So w?™ = —1 mod n4, a contradiction. This contradiction
shows that w # +1 mod n. Similarly, if w = —1 mod n then w = —1 mod ny, which is a
contradiction again. Hence w ¢ B. To complete the proof, we show that w € Z}. Since w =
c¢mod n; and GCD(¢,ny) = 1 it follows that GCD(w,ny) = 1. Further w = 1 mod ny and so
GCD(w,nz) = 1. Consequently GCD(w,niny) = GCD(w,n) = 1. Hence w € Z; — B and so B
is a proper sub-group of Z} . In this case also

number of non-witnesses < |B| < |Z;|/2 < (n —1)/2.

This completes the proof. O
We now compute the probability of error.

Theorem 18. For any odd integer n > 2 and any positive integer s, the probabilty that Miller-
Rabin(n,s) errs is at most 1/2°.

Proof. If n is composite, in each execution, Miller-Rabin is likely to err if it chooses a non-
witness. Hence, Miller-Rabin will err with probability at most 1/2 Thus the probability of erring
s times is at most 1/2%. O

2 Solovay-Strassen Primality Test

Recall that for an odd integer n, ( ) denote the Jacobi symbol of a w.r.t. n.

SOLOVAY-STRASSEN (n)

choose an random integer a such that 1 <a <n—1
o (2)
ifx=0

then return ("n is composite”)
Y a™= mod n
if t=ymodn

then return ("n is prime”)

else return ("n is composite) O

We shall now show that the Solovay-Strassen algorithm is a yes-biased Monte Carlo algorithm
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for composite. To see this, note that if n is prime, then by Theorem 10 of Elementary Number
Theory I (ENT-I), the condition "2 = y mod n” will always hold and hence the algorithm will
return "n is prime”. This means that if the algorithm returns ”n is composite”, then n must
be composite with probability 1. Furthermore, observe that if n is composite and the algorithm
returns "n is prime”, then it must be the case that for some integer a with 1 < a < n —1 we

have

(%) = ¢"T" mod n. (14)

In this case n is called an Euler pseudo-prime to the base a. For example one can check that

<91> = 10* mod 91.

Thus, 91 is an Euler pseudo-prime to the base 10.

For an odd composite n, if n is an Euler pseudo-prime to the base a, then one may view a as a
witness to the fact that n is an Euler pseudo-prime. If the number of witnesses is not too large,
then the probability of error will not be large. In fact, the next theorem shows that the error
probability is at most 1/2.

Theorem 19. Let n be an odd composite integer. Recall that Z;, is a multiplicative group of
order ¢(n). Define
G(n) = {a €L : (E) =a"7 mod n}
n

Then G(n) is a proper subgroup of Z,. Consequently, |G(n)| < 25*.

Proof. ! Tt is not hard to see that if a,b € G(n) then a.b € G(n). Since G(n) is finite, this shows
that G(n) is a subgroup of Z . We now show that it is a proper subgroup.

We have two cases.

Case 1. n is not a product of distinct primes. In this case, for some prime p we have n = pg,
where k > 2 and ¢ is odd. Let a = 1 + p*~'q. Now using Theorem 14 of ENT-I, we see that

(=) ()-G) ()=
n ) \« ) \4 ’
since a = 1 mod p and a = 1 mod gq.

On the other hand,

n—1 n—1
2

ot = (1+p"1g) =1+ 5 (p"~1q) + terms which are multiples of n.

Thus we have

1 -1
a2z =1+ nTpk_lq mod n. (15)

Now if "=" = 1 mod n, then from (2), we would have

This would imply that p\"T_l This is easily seen to be false. Hence, we have
o' # 1 mod n,

and so a »
(7) Za 2 mod n.
n

! May be omitted
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Thus a € Z — G(n) and so G(n) is a proper subgroup of Z.
Case 2. n is a product of distinct primes. Suppose

n=pip2...pPk,

where the p;’s are distinct odd primes. Let u be a fixed quadratic non-residue modulo p;. By
the Chinese remainder theorem, find an integer a such that

a =u mod py

and
a=1modps....pk.

(=G &) = () ) = o=

Also,trivially, we have

Observe that

n—1
a2 =1modps...pg. (16)
This implies that

n—

a"T % —1 mod n.
For, if this equation does not hold, then we would have

a2 =-1modps...pk,

contradicting equation (3). Consequently, we have

n—1

az # (%) mod 7.

Therefore, a € Z), — G(n). So G(n) is a proper subgroup of Z..
Hence, by Lagrange’s theorem, |G(n)| is a proper divisor of |Z}| = ¢(n). Therefore, |G(n)| <
$(n) < n=1

2 P

This Zompletes the proof O

The above theorem tells us that, given that n is composite, the probability that the algorithm
will return ”n is prime” is at most 1/2. If the algorithm returns ”n is prime” m times in succes-
sion, how sure can we be that n is indeed prime? To compute the required probability, consider
the following two events.

A: 7arandom odd integer n of specified size is composite”

B: 7the algorithm returns 'n is prime’ m times in succession”

Clearly, Pr[B | A] < 5. By Bayes’s theorem,

Pr[B | A]Pr[A] Pr[B | A]Pr[A]
Pr[B] ~ Pr[B | A]Pr[A]+Pr[B |A]Pr[4]

Pr[A | B] = (17)

Now suppose N < n < 2N. Then by the Prime number theorem, the number of primes in the
interval [N, 2N] is approximately

2N N _ N _ m
log2N  logn ~ logn ~ logn’
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where log z denotes log, . Since there are N/2 =~ n/2 odd integers in the interval [N,2N], we

have the following estimate.
2

logn’

Pr[A]l~1-—
Thus from (4) we have

Pr[B | A](1 - ;)

“ logn

Pr[B | A](1 — 2-) + Pr[B |A] -2

~ Togn logn

Pr[A | B] =

Pr[B | Al(l - 12;)

~ logn
Pr[B | A(1 — —2-) + 2

logn logn

. Pr[B| A](logn —2)
“ Pr[B | Al(logn —2) +2

5= (logn — 2) < logn —2
S %(logn — 2) +2 = (logn _ 2) 4 gm+1
logn
~ logn + 2m+1’

which is very small for sufficiently large m. Thus if the algorithm returns ”n is prime” m times
in succession, then for sufficiently large m, n is prime with high probability.

Complexity: One can evaluate "= mod n in time O((logn)?). Also, it is not hard to show that
the Jacobi symbol (%) can be computed in polynomial time. In fact, using the properties listed
in Theorem 14 and Theorem 15 of ENT-I, one can show that the Jacobi symbol can be computed
in O((logn)3) time. Thus the time complexity of the Solovay-Strassen algorithm is O((logn)?).00
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