Elementary Number Theory for Public Key Cryptography I

Rana Barua

Visiting Scientist IAI, TCG CREST, Kolkata

1 Modular Arithmetic, Elementary Properties

Let \mathbb{Z} denote the set of all natural numbers and \mathbb{N} the set of natural numbers. For $a, b \in \mathbb{Z}$ we write a|b if a divides b.

Definition 1. Let n be a fixed positive integer. For two integers $a, b \in \mathbb{Z}$, we say that a is congruent to b modulo n, and we write

$$a \equiv b \mod n$$

if n|(a-b).

Exercise 1. Show that \equiv is an equivalence relation on \mathbb{Z}

Exercise 2.

Suppose $a \equiv b \mod n$ and $c \equiv d \mod n$. Then show that $(a + c) \equiv (b + d) \mod n$, $(a - c) \equiv (b - d) \mod n$ and $ac \equiv bd \mod n$.

Exercise 3.

Let $p(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. Show that if $a \equiv b \mod n$, then $p(a) \equiv p(b) \mod n$.

Hence show that an m digit number is divisible by 3 iff the sum of the digits is divisible by 3.

We know that when an integer $a \in \mathbb{Z}$ is divided by n it leaves a remainder r where $0 \le r \le n-1$. Let \mathbb{Z}_n denote the set of these remainders i.e. $\mathbb{Z}_n = \{0, 1, \ldots, n-1\}$. Clearly, for any integer $a \in \mathbb{Z}, \exists$ a unique integer $r \in \mathbb{Z}_n$ such that $a \equiv r \mod n$ and $a \equiv b \mod n$ iff their remainders are the same on dividing by n.

On \mathbb{Z}_n we shall define two binary operations + and \times or . as follows. For $a, b \in \mathbb{Z}_n$ let $c \in \mathbb{Z}_n$ be the unique integer s.t. $a + b \equiv c \mod n$. Then we define

$$a+b=c$$

in \mathbb{Z}_n .

Similarly, let $d \in \mathbb{Z}_n$ be the unique integer s.t. $ab \equiv d \mod n$. Then in \mathbb{Z}_n we define

a.b = d.

Clearly, in \mathbb{Z}_n , a + b = c iff $a + b \equiv c \mod n$ and $a \cdot b = d$ iff $ab \equiv d \mod n$.

Exercise 4. Write down the addition and multiplication tables for \mathbb{Z}_7 and \mathbb{Z}_8 .

Exercise 5. Show that \mathbb{Z}_n with the binary operations + and \times defined above forms a commutative ring with identity 1.

1.1 Euclidean Algorithm

We now state a result that is fundamental and useful and is known as the Division Algorithm.

Lemma 1. Let a be an integer and b a positive integer. Then there exist unique integers q, r such that $0 \le r < b$ and

$$a = qb + r$$
.

Proof. First assume that $a \ge 0$. If a = 0, then set q = 0 and r = 0. So assume that a > 0. If a < b then set q = 0 and r = a. So assume a > b. Now the set of positive integers i such that $ib \le a$ is non-empty and finite. Let q be the largest such integer. Set r = a - qb. By our choice of q, $0 \le r < q$. The case when a < 0 is left as an exercise. The uniqueness is not hard to see.

q is called the **quotient** and r the **remainder**. We denote r by $a \mod b$. We now define

Definition 2. Let $a, b \in \mathbb{Z}$. The greatest common divisor of a and b, denoted by GCD(a, b), is the largest of all common divisors of a and b. In other words, GCD(a, b) = d if d|a and d|b, and if c|a and c|b, then c|d. We define GCD(0,0) = 0.

We now present one of the most celebrated algorithms in Number Theory called the *Euclidean* Algorithm. It computes the GCD of two integers a, b.

Since GCD(a, b) = GCD(|a|, |b|), we assume without loss of generality that a and b are nonnegative. If one of them, say a is 0, then GCD(a, b) = b. So assume both a and b are positive. W.l.g. assume that a > b. Let GCD(a, b) = d and set $r_0 = a$ and $r_1 = b$. By the **division algorithm** we have for some integers q_1 (quotient), r_2 (remainder),

$$r_0 = q_1 r_1 + r_2$$
 with $0 \le r_2 < r_1$.

Repeating this process until the remainder becomes 0, we have

$$r_{1} = q_{2}r_{2} + r_{3} \text{ with } 0 \le r_{3} < r_{2};$$

$$r_{2} = q_{3}r_{3} + r_{4} \text{ with } 0 \le r_{4} < r_{3};$$

$$\vdots$$

$$r_{n-1} = q_{n}r_{n}.$$

Claim: For all $i, 0 \leq i < n$,

$$d = GCD(r_i, r_{i+1}).$$

First note that $d = GCD(a, b) = GCD(r_0, r_1)$. Let $d' = GCD(r_1, r_2)$. Since $d'|r_1$ and $d'|r_2$, from the first equation it follows that $d'|r_0$. Hence, $d'|GCD(r_0, r_1)$ i.e. d'|d. On the other hand, from the first equation, it follows that $d|r_2$. Since $d|r_1$ also we have $d|GCD(r_1, r_2)$ i.e. d|d'. Thus d = d'.

Proceeding as above, one can show (*exercise*) by induction on $i, 0 \le i < n$ that $d = GCD(r_i, r_{i+1})$ Thus we have $d = GCD(r_{n-1}, r_n) = r_n$.

This yields the following algorithm of Euclid. The inputs a and b are arbitrary non-negative integers.

$\mathrm{EUCLID}(a, b)$

- 1. **If** b := 0
- 2. then return a
- 3. else return $\text{EUCLID}(b, a \mod b)$

Correctness and Complexity

The correctness follows from the arguments above. For the complexity, one can prove by induction on k the following.

• Suppose $a > b \ge 1$ and EUCLID(a, b) preforms k recursive calls. The $a \ge F_{k+2}$ and $b \ge F_{k+1}$, where F_k is the kth Fibonacci number.

We may improve the complexity by observing the following.

Lemma 2. Suppose $a > b \ge 1$. Then there exist integers q, r such that $0 \le |r| \le b/2$ satisfying a = bq + r.

Proof. By the division algorithm we have for some integers q, r

$$a = qb + r.$$

If $r \le b/2$ then we are done. So asume that r > b/2. Then b - r < b/2 and a = bq + r = b(q + 1) - (b - r). Let r' = -(b - r) and q' = q + 1. Then a = bq' + r', where |r'| = (q - r) < b/2.

Next we observe that

Theorem 1. Let $a, b \in \mathbb{Z}$. Suppose GCD(a, b) = d. Then there exist integers $\lambda, \mu \in \mathbb{Z}$ such that

$$a\lambda + b\mu = d. \tag{1}$$

Proof. Wlg assume that a, b are non-negative integers. Arguing as above we have for some integers $r_i, 0 \le r_i < r_{i+1},$

$$\begin{aligned} r_0 &= q_1 r_1 + r_2 \text{ with } 0 \leq r_2 < r_1, \\ r_1 &= q_2 r_2 + r_3 \text{ with } 0 \leq r_3 < r_2; \\ r_2 &= q_3 r_3 + r_4 \text{ with } 0 \leq r_4 < r_3; \\ &\vdots \\ r_{n-1} &= q_n r_n, \end{aligned}$$

where $r_0 = a, r_1 = b$ and $r_n = GCD(a, b)$. Now we have the following

Claim: For every $i, 0 \le i \le n, r_i$ is a linear combination of a and b. In other words, for each i, \exists integers $\lambda_i, \mu_i \in \mathbb{Z}$ such that

$$r_i = a\lambda_i + b\mu_i.$$

Clearly true for i = 0, 1. So assume that the claim holds for integers $\leq i$. We shall show that it holds for i + 1. Now from the *i*th equation we have

$$r_{i-1} = r_i q_i + r_{i+1}.$$

Hence we have

 $\begin{array}{l} r_{i+1} \\ = -q_i r_i + r_{i-1} \\ = -q_i (a\lambda_i + b\mu_i) + (a\lambda_{i-1} + b\mu_{i-1}), \text{ by induction hypothesis} \\ = a(\lambda_{i-1} - \lambda_i q_i) + b(\mu_{i-1} - \mu_i q_i). \\ \text{Set } \lambda_{i+1} = \lambda_{i-1} - \lambda_i q_i \text{ and } \mu_{i+1} = \mu_{i-1} - \mu_i q_i \text{ and we are done. Thus we have } d = r_n = a\lambda_n + b\mu_n. \\ \text{This completes the proof.} \\ \Box \end{array}$

Remark 1. The above proof shows that $\{\lambda_i\}$ and $\{\mu_i\}$ can be defined recursively. Set $\lambda_0 = 1, \mu_0 = 0$ and $\lambda_1 = 0, \mu_1 = 1$. Define

$$\lambda_{i+1} = \lambda_{i-1} - \lambda_i q_i,$$
$$\mu_{i+1} = \mu_{i-1} - \mu_i q_i$$

We now obtain the **Extended Euclidean Algorithm** that expresses the GCD of a, b as a linear combination.

EXTENDED-EUCLID(a, b)

Input: A pair of non-negative integers. Output: A triplet of the form (d, λ, μ) such that $d = GCD(a, b) = a\lambda + b\mu$. 1 If b := 0

2 then return (a, 1, 0)

3 else $(d', \lambda', \mu') = \text{EXTENDED-EUCLID}(b, a \mod b)$

4 $(d, \lambda, \mu) = (d', \mu', \lambda' - \lfloor a/b \rfloor \mu')$

5 return (d, λ, μ)

Correctness and Complexity

If b = 0 then we have GCD(a, b) = a = 1.a + 0.b and the algorithm correctly returns (a, 1, 0). So assume $b \neq 0$. The algorithm returns (d', λ', μ') such that, by induction hypothesis, $d' = GCD(b, a \mod b)$ and

$$d' = b\lambda' + (a \mod b)\mu' \tag{2}$$

Since $GCD(a, b) = GCD(b, a \mod b)$ we have d = d'. Hence, by (2), we have $d = d' = b\lambda' + (a \mod b)\mu'$ $= b\lambda' + (a - \lfloor a/b \rfloor b)\mu'$ $= a\mu' + (\lambda' - \lfloor a/b \rfloor \mu')b = a\lambda + b\mu$. Since the number of recursive calls in EXTENDED-EUCLID is the same as in EUCLID, the proce-

dure makes $O(\log n)$ recursive calls.

As an immediate corollary to Theorem 1 we have

Corollary 1. Let $a, n \in \mathbb{Z}$ such that GCD(a, n) = 1. Then there exists an integer $b \in \mathbb{Z}$ such that

$$ab \equiv 1 \mod n.$$
 (3)

In other words, for every integer a co-prime to n, there is an integer b such that $ab \equiv 1 \mod n$.

Proof. By Theorem 1 we have integers λ and μ such that

 $a\lambda + n\mu = 1.$

This clearly implies that $a\lambda \equiv 1 \mod n$. Set $b = \lambda$ and we are done.

Remark 2. The integer b is called a multiplicative inverse of a modulo n.

The following important result is an immediate consequence

Theorem 2. let p be a prime number. Then \mathbb{Z}_p with + and \times defined above is a field. In fact \mathbb{Z}_n is a field iff n is prime.

Proof. It is enough to show that $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$ is a commutative group w.r.t \times . The only non-trivial axiom is to show that every element of of \mathbb{Z}_p^* has an inverse. So fix $a \in \mathbb{Z}_p^*$. Since GCD(a, p) = 1 by Corollary 1, there is an integer $b \in \mathbb{Z}$ such that $ab \equiv 1 \mod p$. Clearly $b \not\equiv 0 \mod p$. Let $b' \in \mathbb{Z}_p^*$ be the unique integer such that $b \equiv b' \mod p$. Then $ab' \equiv ab \equiv 1 \mod p$. By definition, $b' \in \mathbb{Z}_p^*$ is the inverse of a in (\mathbb{Z}_p^*, \times) .

1.2 The Chinese Remainder Theorem

We now state a result that is useful not only in Number Theory but also in Cryptography. It is known as the **Chinese Remainder Theorem (CRT)**.

Theorem 3. Let n_1, n_2, \ldots, n_k be positive integers that are pairwise relatively co-prime. Set $N = n_1 \ldots n_k$. Then the following system of congruence relations

$$X \equiv a_1 \bmod n_1,$$
$$X \equiv a_2 \bmod n_2.$$

÷

 $X \equiv a_k \mod n_k$

has a unique solution modulo N for the unknown X.

Proof. Uniqueness. Let Y be another solution. Then $X \equiv Y \mod n_i$, for i = 1, ..., k. Hence $n_i|(X - Y)$ for i = 1, ..., k. Since n_i 's are pairwise co-prime, this implies that n|(X - Y) and so $x \equiv Y \mod N$.

Existence. We shall prove it for k = 2. The general solutiion is left as an exercise. Since $GCD(n_1, n_2) = 1$ by Corollary 1, there exists and integer $\bar{n_1} \in \mathbb{Z}$ such that $n_1\bar{n_1} \equiv 1 \mod n_2$. Similarly, there exists an integer $\bar{n_2} \in \mathbb{Z}$ such that $n_2\bar{n_2} \equiv 1 \mod n_1$. Now consider the integer $X = a_1n_2\bar{n_2} + a_2n_1\bar{n_1}$. Then $X \equiv a_1n_2\bar{n_2} \equiv a_1.1 \equiv a \mod n_1$. Also $X \equiv a_2n_1\bar{n_1} \equiv a_2 \mod n_2$. Thus X is a solution. \Box

Exercise 6. Prove the Chinese Remainder Theorem in its most general form. (Hints: Set $m_i = \frac{n}{n_i}$ and find integers \overline{m}_i such that $m_i \overline{m}_i \equiv 1 \mod n_i$.)

We now introduce a very important function known as Euler's **phi-function** or **totient-function**.

Definition 3. Let n be a positive integer. Define

$$\phi(n) = \begin{cases} 1 & \text{if } n = 1 \\ |\{r: 0 < r < n \land GCD(r, n) = 1\}| & \text{if } n > 1 \end{cases}.$$

Thus for n > 1, $\phi(n)$ denotes the number of positive integers less that n that are co-prime to n. Before we enumerate some properties of the phi-function in the following theorem we introduce the following set that will play an important role later.

Definition 4. Let n be a positive integer. Define

$$\mathbb{Z}_n^* \stackrel{\text{def}}{=} \{ a \in \mathbb{Z}_n : GCD(a, n) = 1 \}.$$

Clearly, by definition of ϕ , the cardinality $|\mathbb{Z}_n^*| = \phi(n)$. Also for a prime $p, \mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$.

Theorem 4. 1. For any prime p and a positive integer α ,

$$\phi(p^{\alpha}) = p^{\alpha}(1 - \frac{1}{p}).$$

2. Let m, n be two positive integers such that GCD(m, n) = 1. Then

$$\phi(mn) = \phi(m)\phi(n).$$

In other words, ϕ is multiplicative for relatively prime integers.

3. Let $n = p_1^{e_1} \dots p_k^{e_k}$ be a prime factorisation of n, where p_1, \dots, p_k are distinct prime divisors of n. Then

$$\phi(n) = n(1 - \frac{1}{p_1})\dots(1 - \frac{1}{p_k}).$$

Proof. 1. First observe that an integer $a \in [1, p^{\alpha}]$ is **not** co-prime to p^{α} iff a is a multiple of p. Thus the number of integers $a \in [1, p^{\alpha}]$ that are nor co-prime to p^{α} is $p^{\alpha-1}$. Consequently, $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha}(1 - \frac{1}{p})$

2. Set N = mn. First observe that $|\mathbb{Z}_N^*| = \phi(N)$ and $|\mathbb{Z}_m^* \times \mathbb{Z}_n^*| = \phi(m)\phi(n)$. We shall now define a bijection between these two sets and that will prove (2). Define $F : \mathbb{Z}_N^* \longrightarrow \mathbb{Z}_m^* \times \mathbb{Z}_n^*$ as follows. For $x \in \mathbb{Z}_N^*$ define

$$F(x) = (x \bmod m, x \bmod n),$$

where $x \mod m$ denotes the remainder when x is divided by m. First note that F is well-defined and moreover, by the Chinese remainder Theorem it is onto and one-one. Thus F is a bijection and we are done.

3. By repeatedly applying (2) we have

$$\phi(n) = \phi(p_1^{e_1}) \dots \phi(p_k^{e_k})$$
$$= p_1^{e_1}(1 - \frac{1}{p_1}) \dots p^{e_k}(1 - \frac{1}{p_k})$$
$$= n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k}).$$

We now obtain a useful result of Algebra.

Theorem 5. Let n be a positive integer. Consider the binary operation \times defined on \mathbb{Z}_n restricted to \mathbb{Z}_n^* . Then (\mathbb{Z}_n^*, \times) is a commutative group of order $\phi(n)$.

Proof. Clearly $|\mathbb{Z}_n^*| = \phi(n)$. We now show closure property. So fix $a, b \in \mathbb{Z}_n^*$. Let $c \in \mathbb{Z}_n$ be such that $ab \equiv c \mod n$. Suppose p is a prime divisor of both c and n. Then since n|(ab - c) it follows that p|(ab - c) and hence p|ab, This implies that p|a or p|b. In either case we obtain a contradiction. This shows that GCD(c, n) = 1. So $ab = c \in \mathbb{Z}_n^*$. Associativity is immediate and 1 is the multiplicative identity of \mathbb{Z}_n^* . It remains to show that each element of \mathbb{Z}_n^* has a multiplicative inverse. So fix $a \in \mathbb{Z}_n^*$, By Corollary 1, there is an integer $b \in \mathbb{Z}$ such that $ab \equiv 1 \mod n$. Let c be the unique integer in \mathbb{Z}_n such that $b \equiv c \mod n$. Clearly, ab = 1 + kn for some $k \in \mathbb{Z}$. If p is a prime divisor of both b and n the p|(ab - kn) i.e. p divides 1. This contradiction shows that GCD(b, n) = 1.. Since $b \equiv c \mod n$, it is not hard to see that c is co-prime to n. Thus $ac \equiv ab \equiv 1 \mod n$. This shows that $c \in \mathbb{Z}_n^*$ is the multiplicative inverse of $a \in \mathbb{Z}_n^*$. This completes the proof.

Remark 3. Suppose $n = p^k$ is a prime. Then one can show that \mathbb{Z}_n^* is a cyclic group. power We now state(without proof) a result in Algebra that is a consequence of Lagrange's Theorem. **Theorem 6.** Let (G, .) be a finite group of order n with identity e. Then for $a \in G$

$$a^n = e.$$

The following is known as **Euler's Theorem**

Theorem 7. Let a be an integer that is co-prime to n. Then

$$a^{\phi(n)} \equiv 1 \mod n.$$

Proof. Since GCD(a, n) = 1, there is an $x \in \mathbb{Z}_n^*$ such that $a \equiv x \mod n$. By Theorem 6, $x^{\phi(n)} = 1$ in \mathbb{Z}_n^* and hence $x^{\phi(n)} \equiv 1 \mod n$. Thus we have

$$a^{\phi(n)} \equiv x^{\phi(n)} \equiv 1 \mod n.$$

This completes the proof.

As an immediate consequence we have **Fermat's Theorem**.

Theorem 8. Let p be a prime. For any integer $a \not\equiv 0 \mod p$

 $a^{p-1} \equiv 1 \mod p.$

Proof. In Theorem 7, take n = p so that $\phi(n) = \phi(p) = p - 1$. Thus we have

 $a^{p-1} \equiv 1 \mod p.$

2 Quadratic Residues, Legendre and Jacobi Symbols

We now introduce a concept that has played an important role in Public Key Cryptography.

Definition 5. Let p be an odd prime. An integer $a \not\equiv 0 \mod p$ is said to be a quadratic residue modulo p if the exist an integer $x \in \mathbb{Z}$ such that

$$x^2 \equiv a \mod p.$$

Otherwise, a is said to be a quadratic non-residue modulo p.

Remark 4. For any positive integer m and a co-prime to m one can define quadratic residuocity of a modulo m.

Since a and a + p are both quadratic residue or non-residue modulo p, we usually confine ourselves to \mathbb{Z}_p^* . Thus $a \in \mathbb{Z}_p^*$ is a quadratic residue modulo p iff it has a square root in \mathbb{Z}_p iff it is a square modulo p. We denote the set of quadratic residues modulo p in \mathbb{Z}_p^* by \mathbf{QR}_p . Thus in \mathbb{Z}_7 we have

$$1^2 = 1; 2^2 = 4; 3^2 = 2; 4^2 = 2; 5^2 = 4; 6^2 = 1.$$

Hence 1, 2, 4 are the 3 quadratic residues modulo 7. The number of quadratic residues is given by the following

Proposition 1. Let p be an odd prime. Then the number of quadratic residues modulo p is $\frac{(p-1)}{2}$.

Proof. Consider the function $F : \mathbb{Z}_p^* \longrightarrow \mathbb{Z}_p^*$ defined as follows. For $x \in \mathbb{Z}_p^*$,

$$f(x) \equiv x^2 \mod p$$

Clear the function $x \mapsto x^2$ is well-defined whose range is the set of quadratic residues \mathbf{QR}_p . Also if f(x) = a i.e. $x^2 \equiv a \mod p$, then $(p-x)^2 \equiv (-x)^2 \equiv a \mod p$ and hence f(p-x) = a Thus the function f is a 2-1 function and so $|Range(f)| = |\mathbf{QR}_p| = \frac{(p-1)}{2}$. \Box Testing whether a given integer is a quadratic residue or non-residue modulo p is given by the following **Euler's Criterion**

Theorem 9. Let p be an odd prime. An integer a is a quadratic residue modulo p iff

$$a^{\frac{p-1}{2}} \equiv 1 \bmod p. \tag{4}$$

Proof. Suppose a is a quadratic residue modulo p. Then for integer x, we have $x^2 \equiv a \mod p$. First note that $x \neq 0 \mod p$. Thus $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \mod p$ by Fermat's Theorem. (Corollary 1)

Conversely, suppose a satisfies equation (3). It is well-know \mathbb{Z}_p^* is a cyclic group w.r.t. \times . Hence there exits $\alpha \in \mathbb{Z}_p^*$ that generates \mathbb{Z}_p^* . Thus we have

$$\mathbb{Z}_p^* = \{1, \alpha, \alpha^2, \dots, \alpha^{p-2}\}.$$

Suppose $a \equiv \alpha^i \mod p$ for some $i, 0 \leq i \leq (p-2)$. Then

$$a^{\frac{p-1}{2}} \equiv \alpha^{i\frac{(p-1)}{2}} \bmod p.$$

Thus $\alpha^{\frac{i}{2}(p-1)} \equiv 1 \mod p$. Since the order of α is p-1, it follows that $\frac{i}{2}(p-1)$ is a multiple of (p-1) and hence 2|i. Set i = 2j. Hence

$$\left(\alpha^j\right)^2 \equiv a \bmod p.$$

This shows that a is a quadratic residue modulo p. As a corollary we have

Corollary 2. An integer a is a quadratic non-residue iff

$$a^{\frac{p-1}{2}} \equiv -1 \bmod p.$$

Proof. By Fermat's Theorem we have

$$a^{p-1} \equiv 1 \mod p.$$

This implies

$$a^{p-1} - 1 \equiv 0 \mod p$$

or, $\left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \mod p$

The result now follows from Theorem 9.

Exercise 7. (a) Write a program for testing whether an integer a is a quadratic residue modulo p or not. Check whether 3 is a quadratic residue modulo 7/ modulo 13.

- (b) Show that if a, b are quadratic residues (or, non-residues) modulo p, then so is ab.
- (c) Let N = pq, where p, q are odd primes. Show that the following equation has 4 solutions.

$$x^2 \equiv 1 \bmod N$$

For an odd prime p we now define **Legendre symbol** $\left(\frac{a}{p}\right)$ as follows.

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \mod p \\ +1 & \text{if } a \text{ isaquadratic residue} \\ -1 & \text{if } a \text{ isaquadratic non - residue} \end{cases}$$

From Theorem 9 and Corollary 2 we have

Theorem 10. Let p be an odd prime. Then

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \mod p.$$
 (5)

The following lists some properties of the Legendre symbol and is an easy consequence of Theorem 10.

Theorem 11. Let p be an odd prime. Then

1.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right),$$

2. $a \equiv b \mod p$ implies that $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right),$
3. $\left(\frac{1}{p}\right) = 1; \quad \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}.$

We now compute the value of $\left(\frac{2}{p}\right)$

Theorem 12. Let p be an odd prime. Then

$$\left(\frac{2}{p}\right) \equiv \begin{cases} (-1)^{\frac{p-1}{4}} \mod p \ if \ p \equiv 1 \mod 4\\ (-1)^{\frac{p+1}{4}} \mod p \ if \ p \equiv 3 \mod 4 \end{cases}.$$
 (6)

Proof. Let p = 4n + 1. We shall compute $((p - 1)!) \mod p$ as follows

$$1.2.3.4.5....(4n)$$

$$\equiv (1.3.5....(4n-1)).(2.4....4n) \mod p$$

$$\equiv (1.3.5....(4n-1)).((2n)!).2^{2n} \mod p$$

$$\equiv (1.3....(2n-1)).((2n+1)....(4n-1)).((2n)!).2^{2n} \mod p$$

$$\equiv ((-1)(-3)...(-2n+1))(-1)^{n}.((2n+1)...(4n-1)).((2n)!)2^{2n} \mod p$$

$$\equiv ((4n)(4n-2)...(2n+2)).(-1)^{n}.((2n+1)...(4n-1))((2n)!)2^{2n} \mod p$$

$$\equiv ((2n+1)(2n+2)...(4n)).(-1)^{n}.((2n)!).2^{2n} \mod p$$

$$\equiv (1.2.3....(4n)).(-1)^{n}.2^{2n} \mod p.$$

Here we have used the fact that $-1 \equiv 4n; -3 \equiv 4n - 2$ etc. On cancellation we have,

$$1 \equiv (-1)^n 2^{2n} \equiv (-1)^{\frac{p-1}{4}} 2^{\frac{p-1}{2}} \mod p.$$

i.e. $2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{4}} \mod p.$

Thus

$$\left(\frac{2}{p}\right) \equiv (-1)^{\frac{p-1}{4}} \bmod p.$$

By a similar argument (exercise) one can show that

$$\left(\frac{2}{p}\right) \equiv (-1)^{\frac{p+1}{4}} \bmod p,$$

when $p \equiv 3 \mod 4$.

Exercise 8. 1. Show that $\left(\frac{2}{p}\right) = 1$ iff $p \equiv \pm 1 \mod 8$. 2. Show that

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.$$
(7)

We now state(without proof) the celebrated Law of Quadratic Reciprocity due to Gauss.

Theorem 13. If p and q are distinct odd primes, then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$
(8)

Exercise 9. 1. Show that

$$\left(\frac{p}{q}\right) = \begin{cases} -\left(\frac{q}{p}\right) & \text{if } p, q \equiv 3 \mod 4 \\ +\left(\frac{q}{p}\right) & \text{otherwise} \end{cases}$$
(9)

2. Compute $\left(\frac{37}{59}\right), \left(\frac{-42}{61}\right)$.

Jacobi Symbol $\mathbf{2.1}$

The Legendre symbol can be extended to any odd positive integer a follows.

Definition 6. Let Q be an odd positive integer. Suppose $Q = \prod_{i=1}^{k} q_i$, be a prime factorisation, where the primes q_i are odd and not necessarily distinct. Then the **Jacobi Symbol** $\left(\frac{P}{Q}\right)$ is defined by

$$\left(\frac{P}{Q}\right) = \prod_{i=1}^{k} \left(\frac{P}{q_i}\right),$$

where each $\left(\frac{P}{q_i}\right)$ is the Legendre symbol.

Remark 5. Clearly, if GCD(P,Q) > 1, then $\left(\frac{P}{Q}\right) = 0$ while if GCD(P,Q) = 1 then $\left(\frac{P}{Q}\right) = \pm 1$.

The following follows from definition.

Theorem 14. Suppose P, Q are odd positive integers. Then

1.
$$\left(\frac{P}{Q}\right)\left(\frac{P}{Q'}\right) = \left(\frac{P}{QQ'}\right).$$

2. $\left(\frac{P}{Q}\right)\left(\frac{P'}{Q}\right) = \left(\frac{PP'}{Q}\right).$
3. $P \equiv P' \mod Q$ implies that $\left(\frac{P}{Q}\right) = \left(\frac{P'}{Q}\right)$

Exercise 10. Let Q be an odd positive integer. Then show that

$$\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}},\tag{10}$$

2.

$$\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2 - 1}{8}}.$$
(11)

Hints: For (1) use the fact that $\frac{a-1}{2} + \frac{b-1}{2} \equiv \frac{ab-1}{2} \mod 2$ and for (2) note that $\frac{a^2-1}{8} + \frac{b^2-1}{8} \equiv \frac{a^2b^2-1}{8} \mod 2$. The Gaussian Reciprocity Law gives us the following

Theorem 15. Let P, Q be odd primes. Then

$$\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = (-1)^{\frac{P-1}{2}\frac{Q-1}{2}}.$$
(12)

Proof. Let $P = \prod_{i=1}^{r} p_i$ and $Q = \prod_{j=1}^{s} q_j$. Then

$$\left(\frac{P}{Q}\right) = \prod_{j=1}^{s} \left(\frac{P}{q_j}\right)$$
$$= \prod_{j=1}^{s} \prod_{i=1}^{r} \left(\frac{p_i}{q_j}\right) = \prod_{j=1}^{s} \prod_{i=1}^{r} \left(\frac{q_j}{p_i}\right) (-1)^{\frac{p_i - 1}{2} \frac{q_j - 1}{2}}$$
$$= \left(\frac{Q}{P}\right) (-1)^{\sum_{j=1}^{s} \sum_{i=1}^{r} \frac{p_i - 1}{2} \frac{q_j - 1}{2}}.$$

Note that

$$\sum_{j=1}^{s} \sum_{i=1}^{r} \frac{p_i - 1}{2} \frac{q_j - 1}{2} = \sum_{i=1}^{r} \frac{p_i - 1}{2} \sum_{j=1}^{s} \frac{q_j - 1}{2}$$
$$\equiv \frac{P - 1}{2} \frac{Q - 1}{2} \mod 2.$$
$$\left(\frac{P}{Q}\right) = \left(\frac{Q}{P}\right) (-1)^{\frac{P - 1}{2} \frac{Q - 1}{2}}.$$

Therefore we have

This completes the proof

Exercise 11. 1. Evaluate $\left(\frac{-35}{97}\right)$; $\left(\frac{7411}{9283}\right)$; $\left(\frac{12345}{11111}\right)$. 2. Write an algorithm for computing the Jacobi symbol without factorisation.

2.2 Primality Tests

1. Miller-Rabin Primality Test

We have already seen that if n is a prime, then by Fermat's little theorem, $a^{n-1} \equiv 1 \mod n$, for any $a \in [1, n-1]$. The Miller-Rabin test tries to find a "witness" to the compositeness of n by choosing a random $a, 1 \le a \le n-1$ such that $a^{n-1} \not\equiv 1 \mod n$. The pseudo-code for Miller-Rabin is given below.

Miller-Rabin(n, s)

```
Write n - 1 = 2^k m, where m is odd.

Choose a random integer a, 1 \le a \le n - 1

b \leftarrow a^m \mod n

If b \equiv 1 \mod n

then return ("n is prime")

for i \leftarrow 0 to k - 1

do \begin{cases}
If b \equiv -1 \mod n \\
then return ("<math>n is prime") }
else b \leftarrow b^2 \mod n

return ("n is composite")

Repeat s times.
```

We now show

Theorem 16. The Miller-Rabin algorithm for **composites** is a Yes-baised Monte Carlo algorithm.

Proof. Assume that Miller-Rabin returns "n is composite". Then we claim that n must be composite. Assume that n is prime. Observe that in the **for** loop we are testing for the values $a^m, a^{2m}, \ldots, a^{2^{k-1}m}$. Since the algorithm returns "n is composite", we have for all $i, 0 \le i \le k-1$

$$a^{2^i m} \not\equiv -1 \mod n.$$

Also, by Fermat's theorem, $a^{n-1} \equiv 1 \mod n$ i.e.

$$a^{2^{\kappa}m} \equiv 1 \mod n.$$

Thus $a^{2^{k-1}m}$ is a square root of 1 modulo *n*. Since, by our assumption, *n* is prime, 1 has exactly two square roots modulo nviz + 1 and -1. But $a^{2^{k-1}m} \not\equiv -1 \mod n$. So

$$a^{2^{\kappa-1}m} \equiv 1 \bmod n.$$

Repeating this argument we ultimately obtain

$$a^m \equiv 1 \mod n.$$

But this is a contradiction since, otherwise, Miller-Rabin would have retuned "n is prime". Thus n must be composite.

We have just shown that if n is prime, then Miller-Rabin algorithm would always return "n is prime". However, if Miller-Rabin returns "n is prime" then it is likely to make an error. We now compute the error probability.

Theorem 17. If n is an odd composite number, then the number of witnesses to the compositeness of n is at least (n-1)/2.

Proof. * It suffices to show that the number of non-witnesses is at most (n-1)/2. We first show that all non-witnesses are in \mathbb{Z}_n^* . Fix a non-witness a. Then we must have $a^{n-1} \equiv 1 \mod n$ and hence $a^{n-1} = 1 + tn$, for some integer t. Now $GCD(a,n)|a^{n-1}$ and GCD(a,n)|tn and so $GCD(a,n)|(a^{n-1} - tn)$ i.e. GCD(a,n)|1. Thus GCD(a,n) = 1 and so $a \in \mathbb{Z}_n^*$. We now show that all non-witnesses are in a proper sub-group of \mathbb{Z}_n^* . We shall consider two cases.

Case 1: There exists $x \in \mathbb{Z}_n^*$ such that $x^{n-1} \neq 1 \mod n$. Let $B = \{b \in \mathbb{Z}_n^* : b^{n-1} \equiv 1 \mod n\}$. Clearly, B is non-empty. Also B is closed under multiplication modulo n. Hence, B is a subgroup of \mathbb{Z}_n^* . Also all non-witnesses are in B and, by our assumption, $x \in \mathbb{Z}_n^* - B$. So B is a proper subgroup of \mathbb{Z}_n^* . Hence

number of non-witnesses $\leq |B| \leq |\mathbb{Z}_n^*|/2 \leq (n-1)/2$.

Case 2: For all $x \in \mathbb{Z}_n^*, x^{n-1} \equiv 1 \mod n$.

In other words, n is a **Carmicheal Number**.

We first show that n is not a prime power. Suppose $n = p^e$, where p is an odd prime and e > 1. Then \mathbb{Z}_n^* is a cyclic group. Suppose g is a generator of \mathbb{Z}_n^* . By our assumption $g^{n-1} \equiv 1 \mod n$. Hence, the order of g divides n-1. But, the order of $g = |\mathbb{Z}_n^*| = \phi(n) = p^{e-1}(p-1)$. So $p^{e-1}(p-1)|(p^e-1)|$, a contradiction, since p^e-1 is not divisible by p. Hence $n = n_1.n_2$, where n_1, n_2 are odd primes greater than 1 and $GCD(n_1, n_2) = 1$.

Note that $n-1=2^km$ and that on input $a \in \mathbb{Z}_n^*$ Miller-Rabin computes the sequence

$$X = (a^m, a^{2m}, a^{2^2m}, \dots, a^{2^km})$$

Now fix a pair (c, j) where $c \in \mathbb{Z}_n^*, 0 \leq j \leq k$ and

$$c^{2^j m} \equiv -1 \bmod n. \tag{13}$$

Such a pair exists, since for j = 0, we have $(n - 1)^m \equiv (-1)^m \equiv -1 \mod n$. Choose j as large as possible. Let

$$B = \{ x \in \mathbb{Z}_n^* : x^{2^j m} \equiv \pm 1 \mod n \}.$$

Clearly, *B* is closed under multiplication modulo *n*. Hence, *B* is a sub-group of \mathbb{Z}_n^* . Also every non-witness must be in *B*, since for a non-witness *a*, the sequence *X* computed by the algorithm must all be 1 or for some $j' \leq j, a^{2^{j'}m} \equiv -1 \mod n$, by maximality of *j*.

We claim that B is a proper sub-group of \mathbb{Z}_n^* . To see this, by CRT, fix an integer w such that

$$w \equiv c \bmod n_1$$

$$w \equiv 1 \mod n_2$$

Observe that, if $w \equiv +1 \mod n$, then $w \equiv +1 \mod n_1$. This would imply that $w^{2^j m} \equiv c^{2^j m} \mod n_1$. But by (13), $c^{2^j m} \equiv -1 \mod n_1$. So $w^{2^j m} \equiv -1 \mod n_1$, a contradiction. This contradiction shows that $w \not\equiv +1 \mod n$. Similarly, if $w \equiv -1 \mod n$ then $w \equiv -1 \mod n_2$, which is a contradiction again. Hence $w \notin B$. To complete the proof, we show that $w \in \mathbb{Z}_n^*$. Since $w \equiv c \mod n_1$ and $GCD(c, n_1) = 1$ it follows that $GCD(w, n_1) = 1$. Further $w \equiv 1 \mod n_2$ and so $GCD(w, n_2) = 1$. Consequently $GCD(w, n_1n_2) = GCD(w, n) = 1$. Hence $w \in \mathbb{Z}_n^* - B$ and so B is a proper sub-group of \mathbb{Z}_n^* . In this case also

number of non-witnesses
$$\leq |B| \leq |\mathbb{Z}_n^*|/2 \leq (n-1)/2$$
.

This completes the proof.

We now compute the probability of error.

Theorem 18. For any odd integer n > 2 and any positive integer s, the probability that Miller-Rabin(n, s) errs is at most $1/2^s$.

Proof. If n is composite, in each execution, Miller-Rabin is likely to err if it chooses a nonwitness. Hence, Miller-Rabin will err with probability at most 1/2 Thus the probability of erring s times is at most $1/2^s$.

2 Solovay-Strassen Primality Test

Recall that for an odd integer n, $\left(\frac{a}{n}\right)$ denote the Jacobi symbol of a w.r.t. n.

SOLOVAY-STRASSEN(n)

choose an random integer a such that $1 \le a \le n-1$ $x \leftarrow \left(\frac{a}{n}\right)$ if x = 0then return ("n is composite") $y \leftarrow a^{\frac{n-1}{2}} \mod n$ if $x \equiv y \mod n$ then return ("n is prime") else return ("n is composite)

We shall now show that the Solovay-Strassen algorithm is a yes-biased Monte Carlo algorithm

for composite. To see this, note that if n is prime, then by Theorem 10 of Elementary Number Theory I (ENT-I), the condition " $x \equiv y \mod n$ " will always hold and hence the algorithm will return "n is prime". This means that if the algorithm returns "n is composite", then n must be composite with probability 1. Furthermore, observe that if n is composite and the algorithm returns "n is prime", then it must be the case that for some integer a with $1 \le a \le n-1$ we have

$$\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \mod n. \tag{14}$$

In this case n is called an **Euler pseudo-prime** to the base a. For example one can check that

$$\left(\frac{10}{91}\right) \equiv 10^{45} \bmod 91.$$

Thus, 91 is an Euler pseudo-prime to the base 10.

For an odd composite n, if n is an Euler pseudo-prime to the base a, then one may view a as a witness to the fact that n is an Euler pseudo-prime. If the number of witnesses is not too large, then the probability of error will not be large. In fact, the next theorem shows that the error probability is at most 1/2.

Theorem 19. Let n be an odd composite integer. Recall that \mathbb{Z}_n^* is a multiplicative group of order $\phi(n)$. Define

$$G(n) = \left\{ a \in \mathbb{Z}_n^* : \left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \bmod n \right\}.$$

Then G(n) is a **proper** subgroup of \mathbb{Z}_n^* . Consequently, $|G(n)| \leq \frac{n-1}{2}$.

Proof. ¹ It is not hard to see that if $a, b \in G(n)$ then $a.b \in G(n)$. Since G(n) is finite, this shows that G(n) is a subgroup of \mathbb{Z}_n^* . We now show that it is a proper subgroup. We have two cases.

Case 1. *n* is not a product of distinct primes. In this case, for some prime *p* we have $n = p^k q$, where $k \ge 2$ and *q* is odd. Let $a = 1 + p^{k-1}q$. Now using Theorem 14 of ENT-I, we see that

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)^k \left(\frac{a}{q}\right) = \left(\frac{1}{p}\right)^k \left(\frac{1}{q}\right) = 1,$$

since $a \equiv 1 \mod p$ and $a \equiv 1 \mod q$. On the other hand,

$$a^{\frac{n-1}{2}} = (1+p^{k-1}q)^{\frac{n-1}{2}} = 1 + \frac{n-1}{2}(p^{k-1}q) + \text{terms which are multiples of n.}$$

Thus we have

$$a^{\frac{n-1}{2}} \equiv 1 + \frac{n-1}{2} p^{k-1} q \mod n.$$
(15)

Now if $a^{\frac{n-1}{2}} \equiv 1 \mod n$, then from (2), we would have

$$\frac{n-1}{2}p^{k-1}q \equiv 0 \bmod n$$

This would imply that $p|\frac{n-1}{2}$. This is easily seen to be false. Hence, we have

$$a^{\frac{n-1}{2}} \not\equiv 1 \mod n,$$

and so

$$\left(\frac{a}{n}\right) \not\equiv a^{\frac{n-1}{2}} \bmod n.$$

¹ May be omitted

Thus $a \in \mathbb{Z}_n^* - G(n)$ and so G(n) is a proper subgroup of \mathbb{Z}_n^* .

Case 2. n is a product of distinct primes. Suppose

$$n=p_1p_2\ldots p_k,$$

where the p_i 's are distinct odd primes. Let u be a fixed quadratic non-residue modulo p_1 . By the Chinese remainder theorem, find an integer a such that

 $a \equiv u \mod p_1$

and

 $a \equiv 1 \mod p_2 \dots p_k.$

Observe that

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2\dots p_k}\right) = \left(\frac{u}{p_1}\right)\left(\frac{1}{p_2\dots p_k}\right) = (-1).1 = -1.$$

Also, trivially, we have

$$a^{\frac{n-1}{2}} \equiv 1 \mod p_2 \dots p_k. \tag{16}$$

This implies that

$$a^{\frac{n-1}{2}} \not\equiv -1 \mod n.$$

For, if this equation does not hold, then we would have

$$a^{\frac{n-1}{2}} \equiv -1 \bmod p_2 \dots p_k,$$

contradicting equation (3). Consequently, we have

$$a^{\frac{n-1}{2}} \not\equiv \left(\frac{a}{n}\right) \mod n.$$

Therefore, $a \in \mathbb{Z}_n^* - G(n)$. So G(n) is a proper subgroup of \mathbb{Z}_n^* . Hence, by Lagrange's theorem, |G(n)| is a proper divisor of $|\mathbb{Z}_n^*| = \phi(n)$. Therefore, $|G(n)| \leq \frac{\phi(n)}{2} \leq \frac{n-1}{2}$. This completes the proof

The above theorem tells us that, given that n is composite, the probability that the algorithm will return "n is prime" is at most 1/2. If the algorithm returns "n is prime" m times in succession, how sure can we be that n is indeed prime? To compute the required probability, consider the following two events.

A: "a random odd integer n of specified size is composite"

B: "the algorithm returns 'n is prime' m times in succession"

Clearly, $\Pr[\mathbf{B} \mid \mathbf{A}] \leq \frac{1}{2^m}$. By Bayes's theorem,

$$\mathbf{Pr}[\mathbf{A} \mid \mathbf{B}] = \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}]\mathbf{Pr}[\mathbf{A}]}{\mathbf{Pr}[\mathbf{B}]} = \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}]\mathbf{Pr}[\mathbf{A}]}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}]\mathbf{Pr}[\mathbf{A}] + \mathbf{Pr}[\mathbf{B} \mid \bar{A}]\mathbf{Pr}[\bar{A}]}$$
(17)

Now suppose $N \leq n \leq 2N$. Then by the Prime number theorem, the number of primes in the interval [N, 2N] is approximately

$$\frac{2N}{\log 2N} - \frac{N}{\log n} \approx \frac{N}{\log n} \approx \frac{n}{\log n},$$

where $\log x$ denotes $\log_e x$. Since there are $N/2 \approx n/2$ odd integers in the interval [N, 2N], we have the following estimate.

$$\Pr[\mathbf{A}] \approx 1 - \frac{2}{\log n}.$$

Thus from (4) we have

$$\begin{split} \mathbf{Pr}[\mathbf{A} \mid \mathbf{B}] &\approx \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n})}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n}) + \mathbf{Pr}[\mathbf{B} \mid \overline{A}]]\frac{2}{\log n}} \\ &\approx \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n})}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n}) + \frac{2}{\log n}} \\ &\approx \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](\log n - 2)}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](\log n - 2) + 2} \\ &\leq \frac{\frac{1}{2^m}(\log n - 2)}{\frac{1}{2^m}(\log n - 2) + 2} \leq \frac{\log n - 2}{(\log n - 2) + 2^{m+1}} \\ &\leq \frac{\log n}{\log n + 2^{m+1}}, \end{split}$$

which is very small for sufficiently large m. Thus if the algorithm returns "n is prime" m times in succession, then for sufficiently large m, n is prime with high probability.

Complexity: One can evaluate $a^{\frac{n-1}{2}} \mod n$ in time $O((\log n)^3)$. Also, it is not hard to show that the Jacobi symbol $\left(\frac{a}{n}\right)$ can be computed in polynomial time. In fact, using the properties listed in Theorem 14 and Theorem 15 of ENT-I, one can show that the Jacobi symbol can be computed in $O((\log n)^3)$ time. Thus the time complexity of the Solovay-Strassen algorithm is $O((\log n)^3)$.

References

- 1. J.Stillwell, Elements of Number Theory, Springer.
- 2. I. Niven, H.S. Zukerman and H.L. Montgomary, An Introduction to the Theory of Numbers, Wiley.