
Formal Languages and Automata Theory IV

Rana Barua

Visiting Scientist
IAI, TCG CREST, Kolkata

1 Turing Machines

Turing machine (TM) was introduced by Alan Turing as a model of ”any possible computation”. It
consists of an infinite tape with cells, a finite control and a tape-head scanning the content of a cell
at any given instant. Depending on the state of the finite control and the letter being scanned by
the tape-head, the the TM in one move can print a symbol in place of the scanned letter, move the
tape-head one cell to the right or left and enters, perhaps, a new state. Initially, the input string w
is placed in consecutive cells with all other cells occupied by the blank symbol B.The TM starts at
an initial state scanning the first letter of the input string w. If after finitely many moves, the TM
enters an accepting state then the TM accepts the input w. Formally,

Definition 1. A Turing machine M is a 7-tuple (Σ,Γ,Q, q0, δ, B, F), where

1. Σ ⊆ Γ : is the input alphabet not containing B,
2. Γ : is the tape alphabet,
3. Q: is the finite set of states,
4. q0 ∈ Q: is the initial state,
5. δ : Q× Γ → Q× Γ × {L,R}, is the transition function,
6. B ∈ Γ : is the blank symbol,
7. F ⊆ Q: is the set of accepting or final states.

Instantaneous Description(ID): Gives the configuration of a TM at any given instant. It should
give information about

1. the state of the Turing machine
2. the contents of the tape and
3. the position of the tape-head.

Hence, it is encoded by
w1qw2

with the TM in state q scanning the first letter of w2. Here w1 is the portion of the string to the left
of the tape-head starting from the first non-blank symbol, while w2 is the portion of the string star-
ing from the symbol being scanned by the tape-head till the last non-blank symbol. If the first/last
non-blank symbol is to the right/left of the tape-head, then w1/w2 is λ/B.
For instance, the configuration

← | B | a1 | B | a2 | a3 | B →
−−−−−−−−− ↑ −−−−−−−−−
. |q|

is encoded by a1Ba2qa3.
Initial configuration or ID: Clearly, the starting configuration/ID is q0w, where w is the input
string.

Final or accepting ID: If a configuration contains an accepting state then the ID is an accepting
or final ID. For IDs I, J , if I yields J in one move of M then we write

I `M J.

If ID I yields ID J in 0 or more steps then we write I `∗M J .(If M is clear from the context we
omit M.) Thus I `∗ J if I = J or there is a sequence of ID’s I0, I1, . . . , In such that I0 = I, In = J
and for each k < n, Ik ` Ik+1.

A string w ∈ Σ∗ is accepted by M, if starting from the initial configuration, in finitely many
moves, M enters an accepting state.
The language accepted by M is

L(M) = {w ∈ Σ∗ : q0w `∗ I, for some accepting ID I}.

Thus L(M) is the set of all strings over Σ accepted by M. Such languages are called Turing-
recognizable or recursively enumerable (re).

Remark 1. We may w.l.g. assume that a TM M halts whenever it enters an accepting state. This
may be done as follows. Add a new ”halting state” qh. Modify the transition function such that
from any accepting stateM enters the state qh. Thus wheneverM enters an accepting state, it then
immediately enters qh and halts i.e. it has no next move.

Definition 2. A language is said to be decidable or recursive if it is accepted by a Turing machine
that halts on every input.

Simple examples:

Example 1. We shall construct a TM M that accepts all palindromes over the alphabet {0, 1}. We
first given an informal description of M. Given an input, M reads the first letter of the input and
”marks” it. If it is a 0 (respectively 1) it marks it with an X (respectively Y). It then moves right
skipping over the 0’s and 1’s until it finds the last unmarked letter. If it matches with the letter
already marked, then it replaces it with an X or a Y as the case may be. It then moves left skipping
over the 0’s and 1’s until it finds the first unmarked letter of the input.M then repeats the process.
If after marking the last unmarked letter, M does not find any unmarked letter, then the input is
an even palindrome and M accepts. If after marking the first unmarked symbol, M does not find
any unmarked letter, then the input is an odd palindrome and M accepts.

Exercise 1. Give a formal definition of the transition function of M.
Hence describe, formally, an accepting computation on input 10101

Remark 2. The TM constructed above halts on every inputs and hence the set of palindromes over
{0, 1} is recursive.

Exercise 2. Construct a Turing machine that accepts

{ww : w ∈ {0, 1}∗}.

1.1 Variants of TMs:

1. Multi-tracks single-tape TM.
2. Single-tape one-way infinite.
3. Multi-tape TM

2

1. Multi-track TM: In a k-track TMM, at any given instant, the tape-head would be scanning the
contents of all the cells in the tracks. Thus,M would be reading a k-tuple of symbols . Depending on
the k-tuple being read, and the state of the finite control, M would print a k-tuple of symbols–one
for each track–move the tape-head one position to the right or left and enters a, possibly, new state.
The input string is placed onto the first track with all other cells being blank. Thus if a ∈ Σ is
identified with the k-tuple (a,B, . . . , B) and the blank is identified with (B, . . . , B), then a muti-
track TM is simply a single-tape TM whose tape alphabet is Γ k with blank being identified with
(B, . . . , B).
2. Exercise: Show that a two-way infinite tape TM can be simulated by a one-way infinite single
tape TM.
3. Multi-Tape TM: In a k−tape TM M, there are k tapes and for each tape there is a tape-
head scanning the content of a cell at each instant. Depending on the letters being scanned by the
tape-heads and the state of the finite-control, in one move M

1. prints a letter in each of the cell being scanned
2. moves the tape-heads–independent of each other– one cell to the right or left, and
3. enters a possibly new state.

The input string is placed on the first tape with the corresponding tape-head scanning the first cell
and all other cells are blank. The TM M starts in the initial state q0 and if after finitely many
moves, M enters an accepting state, the input string is accepted by M. The language accepted by
M is

L(M) = {w ∈ Σ | M accepts w}.

Thus the transition-function of a k-tape TM is a function of the form

δ : Q× Γ k → Q× Γ k × {L,R}k.

Theorem 1. Every multi-tape TM M can be simulated by a single tape TM M̂.
Consequently, L is re iff it is accepted by a multi-tape TM.

Proof. LetM be a k-tape TM. We shall construct a single-tape TM M̂ with 2k tracks–2 tracks for
each tape– to simulate M. The upper track contains the contents of the corresponding tape, while
the lower track contains a single marker that indicates the position of the corresponding tape-head.
To simulate a move ofM, M̂ starts from the cell containing the leftmost marker in the state ofM.
M̂ then makes a sweep from left to right visiting all the cells containing a marker and also noting

the letters above the markers. A part of the finite control counts the number of markers visited as
well as the letters being ”read” by the markers. When M̂ has visited all the cells containing a marker,
it has enough information to simulate a move ofM. M̂ then makes a leftward journey updating the
letters above the markers and also moving the marker either to the left or to the right in order to sim-
ulate the move ofM. M̂ then enters the state to whichM enters. M̂ accepts wheneverM accepts.�

Exercise 3. Show that to simulate n moves of M, M̂ requires O(n2) moves.

Non-deterministic TM: In a non-deterministic TM M, at each instant, the TM –depending
on the letter being scanned and the state of the finite control–has several choices for the next move.
Thus the transition function is a function of the form

δ : Q× Γ → P(Q× Γ × {L,R}).

The equation
δ(q, a) = {(p1, a1, D1), . . . , (pk, ak, Dk)}

means that the TM in state q, reading the letter a, has the choice of printing ai in place of a, enter
the state pi and move the tape-head in the direction Di, where i is one of 1, 2, . . . , k.

3

A string w is accepted byM if, starting from the initial configuration,M has a choice of moves
that will lead to an accepting configuration.

We shall now show that a non-deterministic TM is no more powerful that a deterministic one.

Theorem 2. Every non-deterministic Turing machine M can be simulated by a deterministic Tur-
ing machine M̂.

Consequently, a language L is re iff it is accepted by non-deterministic Turing machine.

Proof. Let us view M’s computation on w as a tree where each node is labelled by a configuration,
while the children of a node, labelled by I, are labelled by the all the possible configurations that
M can enter in one move from the configuration I. The root is labelled by the initial configuration.
The TM M̂ explores the tree by using the breath-first search. As soon as M̂ finds an accepting
configuration, it halts and accepts.

Thus, M̂ consists of three tapes. The first tape is the input tape, while the second tape is the
simulation or computation tape. The third tape is an address tape. Suppose each node of the tree
has at most k children. Then each node is assigned an address which is a string over the alphabet
{1, 2, . . . , k}. For instance 231 is assigned to the node we arrive at by starting at the root, then going
to its 2nd child, then going to that node’s 3rd child and finally going to that node’s 1st child. The
TM M̂ behaves as follows. Initially, the first tape contains the input w, while the other tapes are
blank.

1. Copy the input w onto the second tape.
2. Simulate M on w as dictated by the address on the 3rd tape, aborting if the address is invalid.

Accept the input string if the configuration on the node visited is accepting.
3. Replace the string on the 3rd tape with the lexicographically next string and go to step 2.

Clearly, M̂ simulates M. �

Exercise 4. Show that to simulate n moves of M, M̂ requires about O(2n) steps.

1.2 Properties of re and recursive languages.

Theorem 3. A language L ⊆ Σ∗ is recursive iff L and LC are both re.

Proof. Suppose L is recursive. Fix a TM M that accepts L and halts on all inputs. Clearly L is
re. Let M′ be the TM obtained from M by interchanging the accepting and rejecting states.Then
clearly, M′ accepts LC .

Conversely, suppose both L and LC are re. Fix single-tape TMs M1,M2 accepting L,LC re-
spectively. W.l.g. assume that both M1 and M2 halt whenever they enter an accepting state i.e.
both M1,M2 halt on acceptance. Construct a two-tape TM M̂ as follows.

On input w, M̂ copies w onto the second tape and then runs M1 on tape-1 and M2 on tape-2.
M̂ accepts whenever M1 accepts and halts when one of them halts. Clearly, M̂ accepts L and for
any input w either w ∈ L or w ∈ LC and hence one of M1,M2 halts on input w. So M̂ halts on
any input. Hence, L is recursive. �

Theorem 4. Recursive/re languages are closed under finite
⋃

and
⋂

.
Recursive languages are closed under complementation.

Proof. We shall prove closure under finite
⋃

for re. The remaining proofs are similar.
Let L1,L2 be re languages. Fix single-tape TMsM1,M2 accepting L1,L2 respectively. We shall

construct a two-tape TM M̂ as follows.
On input w, M̂ copies w onto the second tape and then runs M1 on tape-1 and M2 on tape-2.

M̂ accepts whenever one of M1,M2 accepts. Clearly, M̂ accepts L1

⋃
L2. �

4

1.3 Undecidability

Encoding TMs: LetM =< {0, 1}, Γ,Q, q1, δ, B, F > be a Turing machine over the alphabet {0, 1}.
Let

Q = {q1, q2, . . . , qn},

where q1 is the initial state and q2 is the only accepting state. Let

Γ = {X1, X2, X3, . . . , Xk},

for some integer k, where X1 = 0, X2 = 1 and X3 = B. Let D0 = L,D1 = R. Then each move or
transition of a TM M is given by an equation of the form

δ(qi, Xj) = (qk, Xl, Dm), (1)

where 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ k and m = 1, 2. This can be encoded by the binary string

0i10j10k10l10m

The collection of these binary encodings completely describes δ and can be combined to give an
encoding of the TM M as follows.
Let C1, C2, . . . , Cm be the encodings of all the transitions ofM. Then a code of the entire TMM is

C111C211 . . . 11Cm

and is denoted by <M >.
This also gives an enumeration of all TM’s over the alphabet {0, 1} as follows.

Let w1, w2, . . . be the canonical enumeration of all binary strings. Thus w1 = 0, w2 = 1, w3 =
00, w4 = 01, w5 = 10 and so on. Then the ith Turing machine, denoted by Mi, is the Turing
machine over {0, 1} whose code is wi. If wi is not a code of a TM, then Mi is a fixed TM M∗ such
that L(M∗) = φ. Note that <Mi >= wi, if wi is a code of a TM.

Exercise 5. Find an algorithm A which when given an input a binary string w outputs an integer i
such tha w = wi.

What is the complexity of your algorithm?

Define the diagonalization language Ld by

Ld = {wi :Mi does not accept wi}.

Theorem 5. The language Ld is not recursively enumerable

Proof. Suppose Ld is recursively enumerable. Then there is a TM, say Mi∗ , such that

L(Mi∗) = Ld.

Now consider the string wi∗ . If wi∗ ∈ Ld, then by our assumption, Mi∗ accepts wi∗ . This implies
that wi∗ /∈ Ld, a contradiction. On the other hand, if wi∗ /∈ Ld, then Mi∗ does not accepts wi∗ . By
definition of Ld, this means that wi∗ ∈ Ld, again a contradiction. Thus Ld cannot be re. �

5

Universal language: Let

LU = {<M > 111w :M accepts w}.

We shall show that LU is re but not recursive. The language LU is called a universal language and
the TM accepting LU is called a universal TM.

Theorem 6. The language LU is recursively enumerable.

Proof. We shall construct a 3-tape TM MU that accepts LU . MU works as follows.

1. MU first checks that the input is of the form <M > 111w. If not, then MU rejects the input
string.

2. MU then copies w onto the second tape. Note that w is the string that follows the first block of
111.

3. The third tape contains a string of 0’s with 0i representing the state qi. Initially, the third tape
consists of 0 to represent the initial state q1.

4. To simulate a move ofM,MU searches within <M > a substring of the form 0i10j10k10l10m,
where 0i is the string on the 3rd tape and Xj is the symbol of M at the position on tape 2
scanned byMU . This represents the transition thatM would next make. ThusMU behaves as
follows.
(a) Change the contents of tape 3 to 0k i.e. simulate the state change of M
(b) Replace Xj by Xl i.e. change the tape symbol of M,
(c) Shift the tape head on tape 2 one cell to the left if m = 1 or one cell to the right if m = 2.

Thus MU simulates the move of M to the left or to the right.
5. If no such substring is found, then M has no next move and hence halts in the simulated

configuration. MU does likewise.
6. If M enters the accepting state, then the contents of tape 3 is 00 and so MU accepts.

In this way, MU simulates M on w and accepts <M > 111w iff M accepts w. �

Theorem 7. The universal language LU is not recursive.
Consequently, the class of recursive languages is strictly contained in the class of re languages.

Proof. Suppose LU is recursive. Then LCU is re. Hence there is a TMM accepting LCU . UsingM we
shall construct a TMM′ that accepts Ld. Given input wi,M′ first checks if wi is a code of a TM. If
it is not a code, thenMi =M∗ and henceMi doe not accept wi and soM′ accepts wi. Suppose wi
is a code, then it is a code of the ith TMMi. The TMM′ then runsM on wi111wi. IfM accepts,
thenM′ accepts wi. Note thatM accepts wi111wi iff <Mi > 111wi 6∈ LU iffMi does not accepts
wi. ThusMi accepts Ld. This contradicts the fact that Ld is not re. Thus LU can not be recursive.�

1.4 Intractable Problems

Definition 3. A function
f : Σ∗1 → Σ∗2

is said to be polynomial-time computable if there is a polynomial p(x) and a TM M with an
output tape such that for every input w of length n, in at most p(n) moves of M, f(w) is obtained
on the output tape of M.

Definition 4. Let L1,L2 be two languages.
L1 is polynomial-time reducible to L2 and we write L1 ≤p L2 if there is a polynomial-time

computable function f such that
w ∈ L1 ↔ f(w) ∈ L2.

6

Intuition: L1 is not more complex than L2.

Proposition 1. ≤p is reflexive and transitive.

Proof. Clearly, ≤p is reflexive. For transitivity, let L1 ≤p L2 and L2 ≤p L3. Fix two polynomial-time
computable functions f, g such that

w ∈ L1 ↔ f(w) ∈ L2,

x ∈ L2 ↔ g(x) ∈ L3.

Set h = g ◦ f . Then
w ∈ L1 ↔ f(w) ∈ L2 ↔ g(f(w)) ∈ L3,

i.e.
w ∈ L1 ↔ h(w) ∈ L3.

We claim that h is a polynomial-time computable function.
Let p(n), q(n) be the polynomial bounds for the functions f, g respectively. Let M1,M2 be the

TMs computing f, g respectively. We shall construct a TMM by combiningM1,M2 as follows. On
input w of length n, M first runs M1 on w and obtains f(w) on the output tape in at most p(n)
moves. Since in one move, M1 can print only one symbol, the length of f(w) is at most p(n).M
now runsM2 on f(w) and obtains g(f(w)) = h(w) on the output tape. Note thatM2 takes at most
q(p(n)) steps to compute g(f(w)) = h(w). Thus the total time taken by M to compute h(w) is at
most p(n) + q(p(n)), which is a polynomial. Thus h is polynomial-time computable function.

Remark 3. The proof shows that if f and g are polynomial-time computable functions then so is
h = g ◦ f .

Definition 5. A TM M is said to be T (n)-time bounded if for every input w of length n accepted
by M, it makes at most T (n) moves to accept w. It is said to be poly-time bounded if it is p(n)- time
bounded for some polynomial p(.).

The Class P, NP:
The language L is in the class P (resp. NP) if L is accepted by a poly-time bounded deterministic
(resp non-deterministic) TM M.

Definition 6. A language L is said to be NP-complete if

1. L ∈ NP.
2. For every L′ in NP,L′ ≤p L.

If only condition (2) holds then it is said to be NP-hard.

Theorem 8. If L ∈ P and L̂ ≤p L then L̂ is also in P.

Proof. Since L̂ ≤p L, there is p(n)-time computable function f such that

w ∈ L̂ ↔ f(w) ∈ L.

LetM1 be a p(n)-time bounded TM computing f and letM2 be a q(n)-time bounded TM accepting
L. We shall construct a poly-time bounded TM L̂ that accepts L̂ as follows.

On input w of length n,M̂ first runsM on w to obtain f(w) in at most p(n) steps. M̂ then runs
M2 on fw) and accepts w iff M2 accepts f(w). Clearly, M̂ accepts M̂. Now observe that |f(w)| is
at most p(n) and hence M2 on f(w) takes at most q(p(n)) steps on accetance. Thus the total time

taken by M̂ in accepting w is at most p(n) + q(p(n))
def
= r(n). Hence, M̂ is a poly-time bounded

TM accepting L̂ and so L̂ ∈ P. �

7

Theorem 9. If L is NP-complete and L ∈ P, then P = NP.

Proof. Suffices to show that NP ⊆ P. So fix L′ ∈ NP. Since L is NP-complete, L′ ≤p L. Since L
is in P, by Theorem 8 L′ is also in P. This completes the proof. �

Remark 4. This gives us a technique of proving that a given language L is NP-complete.

The first NP-complete problem:

Definition 7. Let φ be a Boolean formula in Conjunctive Normal Form (CNF). φ is said to be
satisfiable if there is a truth assignment to the atoms in φ that makes φ TRUE. Let SAT be the set
of all satisfiable formulas in CNF.

Encode φ over some alphabet. (Any reasonable encoding is good enough.) Denote it by < φ >.
The language associated with SAT is the language

LSAT = {< φ >: φ is in CNF and φ is satisfiable}.

In what follows, for simplicity, we shall work work with SAT rather that LSAT .
Cook-Levin Theorem:

Theorem 10. SAT is NP-complete.
Consequently, P = NP iff SAT ∈ P.

Proof. We first show that SAT ∈ NP. So fix a Boolean formula φ in CNF. Consider the following
algorithm that can be easily simulated by a non-deterministic TM.

1. Non-deterministically choose an assignment of truth values to the atoms in φ.
2. Check in polynomial time if φ is TRUE under this assignment.

Note that if φ ∈ SAT , then for some choice in step 1, φ will be TRUE. Thus SAT is in NP.
We now show that SAT is NP-hard. So fix a language L ∈ NP. LetM be a p(n)-bounded non-

deterministic TM that accepts L. Without loss of generality assume that the polynomial p(n) ≥ n
for all n. Our aim is to find a polynomial-time computable function that transform a given string u
into a CNF formula δu such that

u is accepted byM iff δu is satisfiable.

For a given string u, let t = p(|u|).
Observe that if M accepts the input u then it does so in at most t steps. Thus to determine

if M accepts u we need to run it on u for at most t steps and then check if the configuration is
an accepting configuration. Since in one move, M moves the tape head one cell to the left or right
of the current cell scanned by it, in t moves, the tape head is at most t cell to the left or t cells
to the right of the current position. Since t ≥ |u| it suffices to consider 2t + 1 cells of the tape for
the computation byM. Since we are considering t steps of the computation, the information of the
entire computation of M can be revealed in the following t× (2t+ 1) array.

8

←− 2t+ 1 −→
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tape at step 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
↑

t
...

↓

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
tape at step t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Without loss of generality we assume that ifM accepts u in < t steps then the last configuration is
repeated so that M accepts u in exactly t steps. Thus the first row of the array corresponds to the
initial configuration and is of the form

st0us
t+1−|u|
0 ,

where s0 = B withM in state q1 is scanning the first letter of u. The last row of the array corresponds
to an accepting configuration.

Let the set of states ofM be Q = {q1, q2, . . . , qn}, where q1 is the initial state and qn is the only
accepting state. The tape alphabet is Γ = {s0, s1, . . . , sr}, where s0 = B. We will define a CNF
formula δu which is satisfiable iff M accepts u. Our set of atoms is

A = {ρh,j,k, σi,j,k : 1 ≤ h ≤ n, 1 ≤ i ≤ r, 1 ≤ j ≤ 2t+ 1, 1 ≤ k ≤ t}.

We first assume thatM accepts u, so that there is an accepting computation ofM on u. We assume
that the above t×(2t+1) array has been constructed accordingly. We shall construct a CNF formula
δu that is satisfiable under the following assignment ν.

ν(ρh,j,k) =

{
1 if M in state qh is scanning the jth position at step k of the computation
0 otherwise

(2)

ν(si,j,k) =

{
1 if the tape symbol si is in jth position of the kth row of the array
0 otherwise

(3)

To describe δu we need the following

∇{xe : 1 ≤ e ≤ l} def
=

∧
1≤e<f≤l

(¬xe ∨ ¬xf) ∧ (
∨

1≤e≤l

xe),

where {xe : 1 ≤ e ≤ l} is a set of atoms/formulas. It is not hard to check that ∇{xe : 1 ≤ e ≤ l}
is TRUE under an asignment of truth values iff exactly one of x1, x2, . . . , xl is TRUE under that
assignment. Also the length of the formula is O(l2).

The formula δu is the conjunction of the following 5 CNF formulas that describes the computation
of M on u and is TRUE under the above assignment. Let u = su1

. . . .suz
where z = |u|.

1. ” The first row of the array corresponds to the initial configuration withM in state q1 scanning
the first letter of u.”
This is expressed by∧

1≤j≤t

σ0,j,1 ∧
∧

1≤j≤z

σuj ,t+j,1 ∧
∧

1≤j≤t+1−z

σ0,t+z+j,1 ∧ ρ1,z+1,1.

Clearly, this is of length O(t).

9

2. ”Each entry of the array contains exactly one tape symbol.”
This is expressed by ∧

1≤j≤2t+1

∧
1≤k≤t

∇{σi,j,k : 1 ≤ i ≤ r}.

The length of the formula is O(t2).
3. ”At each step of the computation M is in a unique state scanning a unique cell.”

This is expressed by ∧
1≤k≤t

∇{ρh,j,k : 1 ≤ h ≤ n, 1 ≤ j ≤ 2t+ 1}.

This expression is of length O(t3).
4. ”Each configuration of the computation, after the first, is either identical to the previous con-

figutration or follows from it by the application of one of the transition rules of M.”
Let the transition rules of M be as follows.

{δ(qia , sja) = (qka , sla , R) : 1 ≤ a ≤ ā}, (4)

{δ(qib , sjb) = (qkb , slb , L) : 1 ≤ b ≤ b̄}. (5)

The expression will be of the form∧
1≤j≤2t+1

∧
1≤k≤t

(NOHEAD(j, k) ∨ IDENT (j, k) ∨A(j, k) ∨B(j, k)), (6)

where each of the disjunct will be explained below. Each disjunct will be of constant length so
that the expression will be of length O(t2).
we define

NOHEAD(j, k) :=
∨

1≤i≤r

(σi,j,k ∧ σi,j,k+1) ∧
∧

1≤h≤n

¬ρh,j,k.

Thus ν(NOHEAD(j, k)) = 1 iff M is not scanning the jth cell at step k of the computaion.
Next we define

IDENT (j, k) :=
∨

1≤h≤n

∨
1≤i≤r

(ρh,j,k ∧ σi,j,k ∧ ρh,j,k+1 ∧ σi,j,k+1),

so that ν(IDENT (j, k)) = 1 iff M is scanning the jth cell at both the kth and k1st step of the
computation, both the state and the symbol are the same in both the configurations.
Next we define for j 6= 2t+ 1

A(j, k) :=
∨

1≤a≤ā

(ρia,j,k ∧ σja,j,k ∧ ρka,j+1,k+1 ∧ σla,j,k+1),

so that ν(A(j, k)) = 1 iff the k + 1st step is obtained from the kth step by application of one of
the rules of (4).
Similarly, we define for j 6= 1

B(j, k) :=
∨

1≤b≤b̄

(ρib,j,k ∧ σjb,j,k ∧ ρkb,j−1,k+1 ∧ σlb,j,k+1),

so that ν(B(j, k)) = 1 iff the k + 1st step is obtained from the previous step by the application
of one of the rules of (5).
Finally, the expression within (,) in (6) is converted into CNF.

10

5. ”The configuration at step t is an accepting configuration.”
This is expressed by ∨

1≤j≤2t+1

ρn,j,t.

This is of length O(t).

δu is the conjunction of the CNF formulas (1)-(5) above. Thus ifM accepts u, the CNF formula δu
that is TRUE under the assignment ν described in (2) and (3).

Conversely, suppose δu is TRUE under a certain assignment ν. We now intrepret ν as in equations
(2),(3). Then we can construct a t× (2t+1) array as follows. The CNF fomula (2) says that each cell
of the array is occupied by a unique tape symbol. Formula (1) says that the first row of the array
corresponds to the initial configuration withM in state q1 scanning the first letter of u. Formula (3)
says that at each step of the computation,M is in a unique state scanning a unique cell. Formula (4)
is satisfiable under the assignment means that each configuration after the first, is either identical
to the previous configuration or follows from it by the application of one of the rules ofM. Formula
(5) says that the configuration at step t is an accepting computation. Thus the t × (2t + 1) array
reconstructs an accepting computation of M on u. So M accepts u.

This completes the proof. �

1.5 Other NP-complete problems.

Definition 8. A Boolean formula is said to be 3CNF if it is a CNF formula in which each clause
contains at most 3 literals. Define

3SAT = {φ : φ is a satisfiable 3CNF formula}.

The corresponding laguage is
L3SAT = {< φ >: φ ∈ 3SAT}.

We next prove

Theorem 11. 3SAT is NP-complete.

Proof. Since SAT is in NP it easily followws that 3SAT is in NP. To show 3SAT is NP -hard we
shall reduce SAT to 3SAT. Our aim is to find a polynomial-time computable function that transform
a CNF formula φ to a 3CNF formula φ̂ such that

φ is satisfiable iff φ̂ is satisfiable.

So fix a CNF formula φ. Let
C := /α1α2 . . . αk

be a clause where k ≥ 4. It suffices to transform C to a 3CNF formula Ĉ such that C is satisfiable
iff Ĉ is satisfiable. Let β1, β2 . . . βk−3 be atoms not in φ. We define

Ĉ := /α1α2β1/α3β̄1β2/α4β̄2β3/ . . . /αk−2
¯bk−4βk−3/αk−1αk ¯βk−3.

Claim: C is satisfiable iff Ĉ is satisfiable.
So assume ν(C) = 1 under some assignment ν to the variables in C. We shall extend ν to the

variables β1, . . . , bk−3 as follows.
Clearly ν(αl) = 1 for some l, 1 ≤ l ≤ k. Set

ν(βi) =

{
1 if 1 ≤ i ≤ l − 2
0 if l − 1 ≤ i ≤ k − 3

.

11

Note that the clauses C1, C2, . . . Cl−2 contains β1, b2, . . . , βl−2 respectively and hence each of
these clauses receives truth value 1. The l − 1st clause contains αl and hence is TRUE under the
assignment ν. For l ≤ i ≤ k− 2, Ci contains the literal b̄i−1 and hence takes the truth value 1. Thus
it follows that

ν(Ĉ) = 1.

Conversely suppose ν(Ĉ) = 1 under some assignment ν.
We claim that ν(αi) = 1 for some i, 1 ≤ i ≤ k. If not, then ν(αi) = 0,∀i. Since the ν(C1) = 1,

we must have ν(β1) = 1. By induction one can show that ν(bi) = 1,∀i, 1 ≤ i ≤ k−3. This forces the
last lause to be FALSE. This contradiction shows that ν(αi) = 1 for some i. Thus ν(C) = 1. This
completes the proof. �
COMPLETE SUBGRAPH
We next consider the COMPLETE SUBGRAPH(CS) problem: Given a graph G and an integer k,
does G have a complete subgraph of size k? We now show that CS is NP-complete.

Note that a graph G can be encoded by its adjacency matrix or incidence matrix. Its code is
denoted by < G >. So the corresponding language is

LCS = {< G > #0k : G has a complete subgraph of size k}.

However, for simplicity we work with a graph G instead of its code.

Theorem 12. COMPLETE SUBGRAPH is NP-complete.

Proof. It is easy to check that CS is in NP. To show that CS is NP-hard, we shall reduce SAT
to CS. So fix a CNF formula φ. We shall construct a polynomial time computable function that
transforms φ into a graph Gφ and an integer k such that

φ is satisfiable iff Gφ has a complete subgraph of size k.

Let φ := /C1/ . . . /Ck where C1, . . . , Ck are clauses. We construct Gφ = (V,E) as follows.

V = {(α, i) : α is a literal in Ci}.

E = {{(α, i), (β, j)} : i 6= j and α 6= ¬β}.

Claim: φ is satisfiable iff Gφ has a complete subgraph of size k.
First assume φ is satisfiable. Thus ν(φ) = 1 under some assignment ν. For each i, 1 ≤ i ≤ k, fix
a literal αi in clause Ci such that ν(αi) = 1. It is easy to check that (α1, 1), . . . , (αk, k) forms a
complete subgraph of size k in Gφ. Conversely, let (α1, i1), . . . , (αk, ik) be the vertices of a complete
subgraph of Gφ of size k. Clearly, by definition, i1, . . . , ik must be distinct integers and hence is a
permutation of 1, . . . , k. Moreoever, αt is a literal in Cit , 1 ≤ t ≤ k. Define an assignment ν such
that ν(αt) = 1,∀t. Clearly ν is a valid assignment and ν(φ) = 1. Thus the claim holds. Further, Gφ
can be obtained from φ by a polynomial time computable function. �
VERTEX COVER
Given a graph G = (V,E), let Ḡ = (V, Ē) denote its complement. For the Vertex Cover problem we
first need the following definition.

Definition 9. Let G = (V,E) be a graph. A subset S ⊆ V is said to be a vertex cover of G if for
every edge {u, v} ∈ E either u ∈ S or v ∈ S.

The Vertex Cover problem is : given a graph G and an integer k, is there a vertex cover of size k?
To show that the Vertex Cover problem is NP-complete we need the following

Theorem 13. Let G = (V,E). Let Ḡ = (V, Ē) denote its complement i.e. {u, v} ∈ Ē iff {u, v} 6∈ E.
Then S ⊆ E is a set of vertices of a complete sungraph of G iff V − S is a vetex cover of Ḡ

12

Proof. First suppose S forms a complete subgraph of G. Fix an edge {u, v} ∈ Ē. Then {u, v} is not
an edge of G. Hence either u 6∈ S or v 6∈ S i,e, one of u, v is in V − S. Hence V − S is a vertex cover
of Ḡ.

Conversely suppose V − S forms a vertez cover of Ḡ.
Claim: The vertices of S form a complete subgraph of G. So fix two vertices u, v in S. Since neither
u nor v is in V − S, {u, v} can not be an edge of Ḡ. Hence {u, v} is an edge of G. This completes
the proof. �

Theorem 14. VERTEX COVER is NP-complete.

Proof. Given a graph G = (V,E), non-deterministically choose k vertices v1, . . . , vk and check in
time O(k2) if these vertices form a vertex cover of G. Thus V ERTEXCOV ER is in NP.

We now show that VERTEX COVER is NP-hard by reducing COMPLETE SUBGRAPH to
VERTEX COVER. Given a graph G with n vertices and an integer k, construct its complement Ḡ.
Then by Theorem 13, G has a complete subgraph of size k iff Ḡ has a vertex cover of size n − k.
This is clearly a polynomial-time reduction. Thus VERTEX COVER is NP-hard. �
SET COVER
The SET COVER problem: Given a family of sets ∆ = {S1, S2, . . . , Sn} and an integer k, determine
whether there is a subfamily Γ of size k, Γ = {Si1 , Si2 , . . . , Sik} such that⋃

1≤i≤n

Si =
⋃

1≤t≤k

Sit . (7)

Theorem 15. SET COVER is NP-complete.

Proof. Given the family ∆ non-deterministically choose sets Si1 , . . . , Sik from ∆ and check in poly-
nomial time whether (7) holds.

We now reduce VERTEX COVER to SET COVER as follows.
Given a graph G = (V,E) and an integer k, let V = {v1, . . . , vn}. For each i, 1 ≤ i ≤ n, construct

Si = {(vi, vj), (vj , vi) : {vi, vj} ∈ E}.

It is not hard to check that {vi1 , . . . , vik} is a vertex cover for G iff Γ = {Si1 , . . . , Sik} is a set cover
for ∆ = {S1, . . . , Sn}. �
INDEPENDENT SET

Definition 10. Let G = (V,E) be a graph. A subset I ⊆ V is said to be an independent set if for
every pair of vertives u, v ∈ I, {u, v} is not an edge of G.

The INDEPENDENT SET problem is the following.
Given a graph G = (V,E) and an integer k, determine whether G has an independent set of size

k.

The following is easy to prove.

Theorem 16. Let G = (V,E) be a graph. Then I ⊆ V is an independent set iff V − I is a vertex
cover for G.

Using this one can show

Theorem 17. INDEPENDENT SET is NP-complete.

13

GRAPH COLOURING:

Definition 11. A graph G is said to be k-colourable if the vertices of G can be coloured with k
colours such that if {u, v} is an edge of G, then u and v receive different colours. Such a colouring
is called a valid or an admissible colouring.

GRAPH COLOURING problem: Given a graph G and an integer k, decide if G is k-colourable.

We now show that GRAPH COLOURING is NP-complete.

Theorem 18. The GRAPH COLOURING problem is NP-complete.

Proof. Given a graph G and an integer k, non-deterministically colour the vertices with colours
1, 2, . . . , k and check in polynomial time whether it is a valid colouring. Thus GRAPH COLOURING
is in NP. To complete the proof we shall reduce 3SAT to GRAPH COLOURING. So fix a 3CNF
formula φ. Suppose

φ := /C1/ . . . /Ck,

where each Ci is a clause containing at most 3 literals. Without loss of generality assume k ≥ 4.
Our aim is to construct a polynomial-time computable function that tranforms a given 3CNF

formula φ into a graph Gφ and an integer k such that

φ is satisfiable↔ Gφ is k colourable.

Let x1, x2, . . . , xn be the atoms present in φ. Construct a graph Gφ as follows. The set of vertices is

V = {vi : 1 ≤ i ≤ n}
⋃
{xi, x̄i : 1 ≤ i ≤ n}

⋃
{ci : 1 ≤ i ≤ k}.

The set of edges is

E = {{vi, vj} : 1 ≤ i 6= j ≤ n}
⋃
{{xi, x̄i} : 1 ≤ i ≤ n}

⋃
{{vi, xj}, {vi, x̄j} : 1 ≤ i 6= j ≤ n}⋃

{{α, cj} : α is a literal and α 6∈ Cj , 1 ≤ j ≤ k}.

We shall show that φ is satisfiable iff Gφ is n+ 1-colourable.
So first assume that φ is TRUE under an assignment ν. Each vertex vi, 1 ≤ i ≤ n, is coloured

with colour i. Note that one of xi, x̄i, 1 ≤ i ≤ n, can be coloured with colour i. To colour the other
literal we need a new colour n + 1. The literal that is TRUE under ν is given the colour i and the
other literal is coloured with colour n+1. Now we show how to colour the vertices cj ’s . Since k ≥ 4,
for each clause Cj there is a pair of literals {xi, x̄i} both not in Cj . Hence Cj can not be coloured
with colour n+1. But Cj contains a TRUE literal α which receives some colour i 6= n+1. We colour
Cj with that colour i. Clearly this is a valid n+ 1-colouring.

Conversely, assume that Gφ is n + 1-colourable. Without loss of generality, assume that vi, 1 ≤
i ≤ n receives colour i. Now for each i, 1 ≤ i ≤ n, one of the literals xi, x̄i receives the colour i and
the other the ”false”colour n+ 1. Assign the truth value TRUE to the literal that receives colour i
and FALSE to the other literal. Thus we have an assignment of truth values to the literals.
Claim: Under this assignment of truth values, φ is TRUE.

So fix a clause Cj , 1 ≤ j ≤ k. As above, Cj cannot be coloured with colour n+ 1. So Cj receives
some colour i 6= n + 1. Clearly, one of the literals xi, x̄i that receives the colour i must be in Cj .
Hence one of the literals that is TRUE is in Cj . Hence Cj is TRUE under the above assignment.
Thus φ is TRUE. Clearly, the function

φ→< Gφ, n+ 1 >

is polynomial-time computable. This completes the proof. �

14

HAMILTONIAN PATH (HAMPATH):

Definition 12. Let G be a directed graph. A directed path in G is called Hamiltonian if it goes
through each vertex of G exactly once.

HAMPATH Problem: Given a directed graph G and a pair of vertices (s, t), decide if there is a
Hamiltonian path from s to t.

Remark 5. Analogously, one can define the HAMPATH problem for undirected graphs also.

Exercise 6. Show that HAMPATH is NP-complete by reducing 3SAT to HAMPATH.

15

