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Introduction
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Introduction
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Introduction

Security

“Security comes from hard problems”

Hard : no known polynomial time algorithm to solve using classical computer

• For RSA, Integer Factorization Problem
• For Diffie-Hellman Key Exchange, Discrete Logarithm Problem
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Introduction

New paradigm of computation

Quantum Computation

Quantum Algorithms

• Shor’s Algorithm, for factorization

• Grover’s Algorithm, for unstructured database search

• Simon’s Algorithm, for period finding
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Introduction

Quantum supremacy

Quantum Algorithm + Quantum Computer =⇒

Figure: Classical Cryptography
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Introduction

Post-Quantum

So, what solutions should we adopt?

Hard problems in presence of Quantum Computer

Possible candidates
• Lattice-Based Cryptography
• Code-Based Cryptography
• Isogeny Based Cryptography
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Introduction

Basically started looking into,

“Lattice-Based Cryptography ”
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Lattice-Based Cryptography

What is a Lattice?

• An infinite arrangement of "regularly spaced" points
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Lattice-Based Cryptography

Definition

• a discrete additive subgroup of Rn or,

• L(B) , {B · ~x : ~x ∈ Zn} = {
k∑

i=1
xi~bi : xi ∈ Z}, where B = [~b1, ~b2, . . . , ~bk ] is k linearly

independent vectors in Rn

• For example, The lattice generated by (1, 0)ᵀ and (0, 1)ᵀ is Z2, the lattice of all integers
points

Figure: A basis of Z2
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Lattice-Based Cryptography

Seems to be Hard

So, what would a hard problem in lattice looks like?

The Shortest Vector Problem
• Given: A basis for a lattice L
• Find: A non-zero lattice point in L as close as possible origin point

The Closest Vector Problem
• Given: A basis for a lattice L and a target vector
• Find: A non-zero lattice point in L, closest to that target vector

No efficient algorithm is known to solve SVP and CVP exactly in arbitrary high dimension
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Lattice-Based Cryptography

Seems to be Hard

Typically, for cryptographic purpose we consider approximate variant of SVP and CVP

SVPγ
• Given: A basis for a lattice L
• Find: A non zero lattice vector whose length is at most some approximation factor γ times

the length of the shortest nonzero vector, for γ = γ(n) ≥ 1

CVPγ
• Given: A basis for a lattice L and a target vector
• Find: A non zero lattice vector whose length is at most some approximation factor γ(n)

times the length of the closest nonzero vector
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Lattice-Based Cryptography

Motivation

• If the basis is orthogonal, solving SVP and CVP are easy

Example

In R3,
• basis B = {(1, 0, 0)ᵀ, (0, 1, 0)ᵀ, (0, 0, 1)ᵀ}
• target vector t = (4.6, 2.3, 6.8)

• closest vector (4, 2, 6)

• So, our target is convert a given basis to an orthogonal and short basis
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Lattice-Based Cryptography

Motivation

Apply Gram-Schimdt orthogonalization
• span the same space
• may not be a basis for L

Modify the Gram-Schimdt process

Reduced the basis so that
• The vectors will be as short as possible
• The first vector will be the shortest vector and then the length of the other consecutive

vectors increase slowly
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Lattice-Based Cryptography

Algorithmic solution to SVP and CVP

Some known polynomial time lattice reduction algorithms

• LLL Algorithm, solves SVPγ

• Babai Algorithm, solves CVPγ
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Lattice-Based Cryptography

LLL Algorithm

I Published in 1982
I Authors were A. K. Lenstra, H. W. Lenstra and L. Lovasz
I Designed to solve “Factoring Polynomials With Rational Co-efficients”
I Widely used To find short lattice vectors

Theorem (Lenstra, Lenstra, Lovasz)

There is a polynomial time algorithm that finds a basis for L satisfying both the Size
Condition and Lovasz condition:

1 (Size Condition), |µi ,j | 6
1
2
, ∀i > j

2 (Lovasz Condition), (δ − µ2
i+1,i )‖v∗i ‖2 6 ‖v∗i+1‖2, for any pair of consecutive vectors

v∗i , v
∗
i+1 (Gram–Schmidt process orthogonal basis vectors) and δ ∈ (

1
4
, 1)

Such basis is called LLL reduced basis.
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Lattice-Based Cryptography

LLL Algorithm

LLL algorithm,

• solves SVPγ, for γ=( 2√
3
)n, where n is the rank of the input lattice

• finds a so-called reduced basis of relatively short lattice vectors for the lattice

• SVPγ and CVPγ are seems to be hard for
exactly γ = 1 or,
even approximate versions for small values of γ
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Lattice-Based Cryptography

Application of LLL

Coppersmith’s Algorithm

• Designed to find “small integer roots of univariate polynomial modulo a given integer”
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Lattice-Based Cryptography

Coppersmith’s Algorithm

Univariate Modular Polynomial

• Basic setup: a univariate monic polynomial
F (x) = xd + ad−1x

d−1 + ...+ a2x
2 + a1x + a0, over Z[x ] with degree d > 1

and, a modulus M of unknown factorization

• Goal - To find “small roots” x0 such that |x0| < B , for a suitable bound B and F (x0) ≡ 0
(mod M)

Coppersmith proposed a method, where B = M
1
d
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Lattice-Based Cryptography

Coppersmith’s Algorithm

The Central Problem

Suppose ∃ atleast one solution x0 to F (x) ≡ 0 (mod M) and that |x0| ≤ M
1
d

S. Dey (IAI, TCG CREST) Coppersmith’s Method : Solutions to Univariate Polynomials 26 / 38



Lattice-Based Cryptography

Coppersmith’s Algorithm

Coefficients are small enough

• Find roots over Z:
Get roots over R: Newton’s method
Round approximation of the roots to nearest integer x0

Check whether F (x0) = 0 over Z

• Go to mod M
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Lattice-Based Cryptography

Coppersmith’s Idea

Coefficients are not small

• Build G (x) ∈ Z[x ] from F (x) such that

F (x0) ≡ 0 (mod M) =⇒ G (x0) = 0 over Z
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Lattice-Based Cryptography

Important theorems and Background

Theorem

(Howgrave-Graham): Let M,X ∈ N and let F (x) =
∑d

i=0 aix
i ∈ Z[x ]. Suppose x0 ∈ Z is a

solution of F (x) ≡ 0 (mod M) such that |x0| ≤ X . We associate with the polynomial the row
vector

bF = (a0, a1X , a2X
2, · · · , adX d)

If ‖bF‖ <
M√
d + 1

, then F (x0) = 0.
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Lattice-Based Cryptography

Important theorems and Background

Definition

Let Gi (x) = Mx i , for0 ≤ i < d be d + 1 polynomials that has the root x0 (mod M). Then we
define a basis B corresponds to these polynomials Gi (x) together with F (x) for a lattice L as
follows:

B =



M 0 0 · · · 0 0
0 MX 0 · · · 0 0
0 0 MX 2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · MX d−1 0
a0 a1X a2x

2 · · · ad−1X
d−1 X d
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Lattice-Based Cryptography

Important theorems and Background

Theorem
Suppose given a basis B as defined in Definition, and G (x) be the polynomial corresponding
to the first vector in the LLL - reduced basis for L. If

X <
M

2
d(d + 1)

√
2(d + 1)

1
d

,

then any root x0 of F (x) (mod M) such that |x0| ≤ X satisfies G (x0) = 0 in Z.
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Lattice-Based Cryptography

Coppersmith’s Method

Coppersmith’s Technique

• Input: F (x), M, M
1
d

• Output: All solutions of F (x) ≡ 0 (mod M) satisfying |x0| ≤ M
1
d

• Step 1: Define a sequence of d + 1 polynomials Gi (x) and if F (x0) ≡ 0 (mod M)
=⇒ Gi (x0) ≡ 0 (mod M)

• Step 2: Find a polynomial G (x) ∈ L(Gi ) having small norm by using LLL alorithm
• Step 3: Solve the equation G (x) = 0 numerically; Output all integer roots within

the target range
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Lattice-Based Cryptography

Some Applications of Coppersmith’s Method

Some Attack variants of RSA

I Fixed Padding Scemes in RSA

I Factoring N = pq with Partial knowledge of p
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Lattice-Based Cryptography

Fixed Padding Schemes in RSA

• Given:
• A κ-bit RSA moduli and a κ′ bit message with (κ′ << κ)
• Fixed padding: Put (κ− κ′ − 1) 1’s to the left hand side of the message

• Encryption:
• Step 1: Suppose κ = 1024 and κ′ = 128 (128 bit AES key K )
• Step 2: Then

m = 21024 − 2128 + K

• Step 3: Suppose the encryption exponent is e = 3
• Step 4: Then the ciphertext is c = m3 (mod N)
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Lattice-Based Cryptography

Fixed Padding Schemes in RSA

• Idea:
• Step 1: If the cryptanalyst get access the ciphertext then he only needs to find the value K

• Step 2: We know K is a solution to the polynomial

F (x) = (21024 − 2128 + x)3 − c ≡ 0 (mod N)
• Step 3: The polynomial is of degree 3 with a root modulo N

• Step 4: Apply Coppersmith’s method to find the solution K in polynomial time
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Lattice-Based Cryptography

Factoring N = pq with Partial knowledge of p

• Given:
• N = pq, with p < q < 2p
• An approximation p̃ of p. So, p = p̃ + x0, x0 is small

• Idea:
• Step 1: Consider F (x) = p̃ + x . It has a small solution x0 modulo p.

• Step 2: Construct a sequence of polynomials N,F (x), xF (x), x2F (x), · · · that have the root
x0 (mod p)

• Step 3: Form a lattice corresponding to polynomials and apply LLL
• Step 4: Get the polynomial G (x) from the reduced basis
• Step 5: Solve G (x) over Z and check for solution of F (x) (mod p)

• Step 6: Compute p as gcd(N,F (x0))
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Lattice-Based Cryptography

Future direction

I Explore Coppersmith’s method for Bivariate Integer Polynomials

I Explore different attack variants for RSA

I Analyze different cryptographic algorithms based on Lattice
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Lattice-Based Cryptography
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