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Introduction

'./ Cryptography \}
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Cryptography

Users use same key
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Security

“Security comes from hard problems”

Hard : no known polynomial time algorithm to solve using classical computer

® For RSA, Integer Factorization Problem
e For Diffie-Hellman Key Exchange, Discrete Logarithm Problem
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Introduction

New paradigm of computation

Quantum Computation

Quantum Algorithms

® Shor's Algorithm, for factorization

® Grover's Algorithm, for unstructured database search

e Simon's Algorithm, for period finding
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Introduction

Quantum supremacy

Quantum Algorithm + Quantum Computer —

Figure: Classical Cryptography
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Introduction

Post-Quantum

So, what solutions should we adopt?

Hard problems in presence of Quantum Computer

Possible candidates

® | attice-Based Cryptography

® Code-Based Cryptography
® |sogeny Based Cryptography
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Introduction

Basically started looking into,

“Lattice-Based Cryptography”
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What is a Lattice?

e An infinite arrangement of "regularly spaced" points
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Definition
e 3 discrete additive subgroup of R" or,
* L(B)2{B-X:X€Z"} = {iXIEl . x; € Z}, where B = [by, by, ..., by] is k linearly
i=

independent vectors in R”

® For example, The lattice generated by (1,0)" and (0,1)T is Z2, the lattice of all integers
points

X X X X X X
(0.1)
X X x X X

X X X X
(0,0) (1,0)

X X X X X X

Figure: A basis of Z?
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Seems to be Hard

So, what would a hard problem in lattice looks like?

The Shortest Vector Problem

® Given: A basis for a lattice £

® Find: A non-zero lattice point in £ as close as possible origin point

The Closest Vector Problem

® Given: A basis for a lattice £ and a target vector

e Find: A non-zero lattice point in £, closest to that target vector

No efficient algorithm is known to solve SVP and CVP exactly in arbitrary high dimension
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Seems to be Hard

Typically, for cryptographic purpose we consider approximate variant of SVP and CVP

® Given: A basis for a lattice £

® Find: A non zero lattice vector whose length is at most some approximation factor v times
the length of the shortest nonzero vector, for v = v(n) > 1

® Given: A basis for a lattice £ and a target vector

e Find: A non zero lattice vector whose length is at most some approximation factor ~(n)
times the length of the closest nonzero vector
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Lattice-Based Cryptography

Motivation

e |f the basis is orthogonal, solving SVP and CVP are easy

In R3,
* basis B = {(1,0,0)T,(0,1,0)T,(0,0,1)T}
® target vector t = (4.6,2.3,6.8)

® closest vector (4,2, 6)

® So, our target is convert a given basis to an orthogonal and short basis
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Lattice-Based Cryptography

Motivation

Apply Gram-Schimdt orthogonalization
® span the same space

® may not be a basis for £
Modify the Gram-Schimdt process

Reduced the basis so that
® The vectors will be as short as possible

e The first vector will be the shortest vector and then the length of the other consecutive
vectors increase slowly
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Algorithmic solution to SVP and CVP

Some known polynomial time lattice reduction algorithms

e LLL Algorithm, solves SVP~y
e Babai Algorithm, solves CVP~
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LLL Algorithm

» Published in 1982

» Authors were A. K. Lenstra, H. W. Lenstra and L. Lovasz

» Designed to solve “Factoring Polynomials With Rational Co-efficients”
> Widely used To find short lattice vectors

Theorem (Lenstra, Lenstra, Lovasz)

There is a polynomial time algorithm that finds a basis for L satisfying both the Size
Condition and Lovasz condition:

® (Size Condition),

1 . .
g & E’VI > J

@® (Lovasz Condition), (§ — /L,?Jrl’,-)Hvi’“H2 < ||vi.1 1|2, for any pair of consecutive vectors

. . 1
v, vy (Gram—=Schmidt process orthogonal basis vectors) and § € (Z’ 1)

Such basis is called LLL reduced basis.
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LLL Algorithm

LLL algorithm,
® solves SVP~, for 7:(%)”, where n is the rank of the input lattice
e finds a so-called reduced basis of relatively short lattice vectors for the lattice

e SVP~ and CVP~ are seems to be hard for
= exactly v =1 or,

= even approximate versions for small values of ~
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Application of LLL

Coppersmith's Algorithm

® Designed to find “small integer roots of univariate polynomial modulo a given integer”
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Coppersmith’s Algorithm

Univariate Modular Polynomial

® Basic setup: a univariate monic polynomial
F(x) = x? 4+ ag_1x971 + ... + aox® + ayx + ag, over Z[x] with degree d > 1

and, a modulus M of unknown factorization

® Goal - To find “small roots” xp such that |xp| < B, for a suitable bound B and F(xp) =0
(mod M)

Coppersmith proposed a method, where B = M3
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Lattice-Based Cryptography

Coppersmith's Algorithm

The Central Problem

Suppose 3 atleast one solution xg to F(x) =0 (mod M) and that |xp| < M
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Lattice-Based Cryptography

Coppersmith’s Algorithm

Coefficients are small enough

e Find roots over Z:
= Get roots over R: Newton's method

= Round approximation of the roots to nearest integer xg
= Check whether F(xp) = 0 over Z

e Go to mod M
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Lattice-Based Cryptography

Coppersmith's Idea

Coefficients are not small

e Build G(x) € Z[x] from F(x) such that
F(x0) =0 (mod M) = G(xp) = 0 over Z
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Lattice-Based Cryptography

Important theorems and Background

Theorem

(Howgrave-Graham): Let M, X € N and let F(x) = 27:0 aix' € Z[x]. Suppose xo € Z is a

solution of F(x) =0 (mod M) such that |xo| < X. We associate with the polynomial the row
vector

bF — (30731X732X27' o 7adXd)

M
If ||br|| < , then F(xo) = 0.
vd+1
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Lattice-Based Cryptography

Important theorems and Background

Let Gi(x) = Mx', for0 < i < d be d + 1 polynomials that has the root xo (mod M). Then we

define a basis B corresponds to these polynomials G;(x) together with F(x) for a lattice £ as
follows:

M 0 0 e 0 0]
0 MX 0 0 0
0 0 MX? ... 0 0
B=1. : : :
0 0 0o -~ MXI1 0

| 0 a X 32X2 <o ad_le_l Xd_
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Lattice-Based Cryptography

Important theorems and Background

Suppose given a basis B as defined in Definition, and G(x) be the polynomial corresponding
to the first vector in the LLL - reduced basis for L. If
_ 2

md(d+1)

X < — 1

’

V2(d +1)d

then any root xg of F(x) (mod M) such that |xo| < X satisfies G(xp) = 0 in Z.
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Coppersmith’'s Method

Coppersmith's Technique

® Input: F(x), M, M
e Qutput: All solutions of F(x) =0 (mod M) satisfying |xo| < M

e Step 1: Define a sequence of d + 1 polynomials G;(x) and if F(xp) =0 (mod M)
- G,'(Xo) =0 (mod M)

e Step 2: Find a polynomial G(x) € £(G;) having small norm by using LLL alorithm

® Step 3: Solve the equation G(x) = 0 numerically; Output all integer roots within
the target range
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Some Applications of Coppersmith’'s Method

Some Attack variants of RSA

» Fixed Padding Scemes in RSA

» Factoring N = pg with Partial knowledge of p
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Fixed Padding Schemes in RSA

e Given:

® A k-bit RSA moduli and a ' bit message with (k' << k)

® Fixed padding: Put (k — k" — 1) 1's to the left hand side of the message
® Encryption:

® Step 1: Suppose £ = 1024 and k' = 128 (128 bit AES key K)

® Step 2: Then

m= 21024 _ 2128 + K
® Step 3: Suppose the encryption exponent is e = 3
® Step 4: Then the ciphertext is c = m*® (mod N)
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Fixed Padding Schemes in RSA

® |dea:
® Step 1: If the cryptanalyst get access the ciphertext then he only needs to find the value K
® Step 2: We know K is a solution to the polynomial
F(x) = (21024 — 2128 4+ x)3 —c =0 (mod N)
® Step 3: The polynomial is of degree 3 with a root modulo N
® Step 4: Apply Coppersmith’s method to find the solution K in polynomial time
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Factoring N = pg with Partial knowledge of p

e Given:
® N =pq, with p< qg<2p
® An approximation p of p. So, p = p+ xg, Xo is small

® |dea:

Step 1: Consider F(x) = p + x. It has a small solution xg modulo p.

Step 2: Construct a sequence of polynomials N, F(x),xF(x),x?F(x),--- that have the root
%0 (mod p)

Step 3: Form a lattice corresponding to polynomials and apply LLL

Step 4: Get the polynomial G(x) from the reduced basis
Step 5: Solve G(x) over Z and check for solution of F(x) (mod p)
Step 6: Compute p as ged(N, F(xo))
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Lattice-Based Cryptography

Future direction

» Explore Coppersmith’s method for Bivariate Integer Polynomials
» Explore different attack variants for RSA

> Analyze different cryptographic algorithms based on Lattice
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Lattice-Based Cryptography
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