Leakage-Resilient Symmetric Key Cryptography

Sougata Mandal

Institute for Advancing Intelligence, TCG CREST & Ramakrishna Mission Vivekananda Educational and Research Institute

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

- B.Sc in Mathematics from University of Calcutta.
- M.Sc in Pure Mathematics from University of Calcutta.
- M.Tech in Cryptology and Security from ISI Kolkata.
- JRF in Computer Science from RKMVERI and TCG CREST.
- Thesis Topic: Leakage-Resilient Symmetric Key Cryptography.

Courses Taken

Course Name	Marks Obtained
Graph Theory and Matroids	63
Advanced Symmetric Key Cryptology	65
Stocastic Process	71
Algebra and Its Application	78
Research Methodology	86
Advanced Quantum Information and Cryptology	90
Advanced Cryptology	83
Design and Analysis of Algorithms	92

・ロト ・御 ト ・ヨト ・ヨト

Books Read

[1] Oded Goldreich: Foundation of Cryptography- A Primer

[2] Jonathan Katz, Yehuda Lindell: Introduction to Modern Cryptography

[3] Dan Boneh, Victor Shoup: A Graduate Course in Applied Cryptography

A B A B A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Papers Read

[1] Olivier Pereira, François-Xavier Standaert, Srinivas Vivek: Leakage-Resilient Authentication and Encryption from Symmetric Cryptographic Primitives. CCS 2015: 96-108.

[2] Francesco Berti, François Koeune, Olivier Pereira, Thomas Peters, François-Xavier Standaert: Ciphertext Integrity with Misuse and Leakage: Definition and Efficient Constructions with Symmetric Primitives. AsiaCCS 2018: 37-50

[3] Francesco Berti, Olivier Pereira, Thomas Peters, François-Xavier Standaert: On Leakage-Resilient Authenticated Encryption with Decryption Leakages. IACR Trans. Symmetric Cryptol. 2017(3): 271-293 (2017).

[4] Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert: TEDT, a Leakage-Resist AEAD Mode for High Physical Security Applications. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(1): 256-320 (2020).


[5] Eik List: TEDT2 - Highly Secure Leakage-Resilient TBC-Based Authenticated Encryption. LATINCRYPT 2021: 275-295.

Papers Read

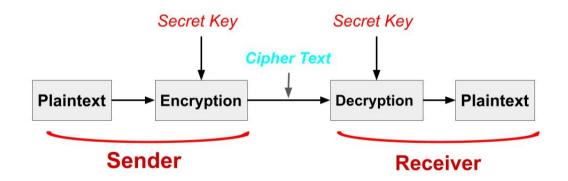
- [6] Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, David J. Wu: Exploring Crypto Dark Matter: New Simple PRF Candidates and Their Applications. TCC 2018: 699-729.
- [7] Markus Grassl, Brandon Langenberg, Martin Roetteler, Rainer Steinwandt: Applying Grover's Algorithm to AES: Quantum Resource Estimates. PQCrypto 2016: 29-43.
- [8] Akinori Hosoyamada, Tetsu Iwata: 4-Round Luby-Rackoff Construction is a qPRP. ASIACRYPT 2019: 145-174.
- [9] Orr Dunkelman, Nathan Keller, Eyal Ronen, Adi Shamir: Quantum Time/Memory/Data Tradeoff Attacks. IACR Cryptol. ePrint Arch. 2021: 1561 (2021) 2020.
- [10] Gregor Leander, Alexander May: Grover Meets Simon Quantumly Attacking the FX-construction. ASIACRYPT 2017: 161-178.

メロト メポト メヨト メヨト

Symmetric Key Cryptography

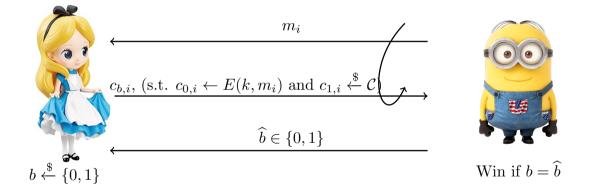
Kerckhoffs's principle

The principle says that a cryptosystem should be secure, even if everything about the system, except the key, is public knowledge.


Data Confidentiality

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

Э


イロト イポト イヨト イヨト

Encryption-Decryption

10 / 59

Encryption

э

イロト イポト イヨト イヨ

Data Integrity

Э

イロト 不得 トイヨト イヨト

• Used for message integrity.

э

イロト イヨト イヨト イヨ

• Used for message integrity.

• MAC = (S, V).

э

• Used for message integrity.

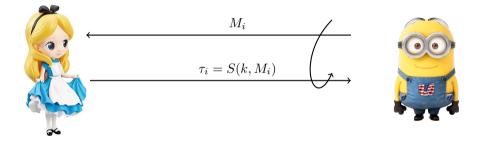
- MAC = (S, V).
- Signing algorithm: S(k, m) = t, for sender.

э

イロト イポト イヨト イヨト

• Used for message integrity.

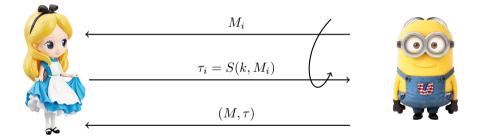
• MAC = (S, V).


• Signing algorithm: S(k, m) = t, for sender.

• Verification algorithm: V(k, m, t) = accept/reject, for receiver.

3

► < ∃ ►</p>


Secure MAC

3

イロト イポト イヨト イヨト

Secure MAC

Win if (M, τ) is fresh and valid

イロト 不得下 イヨト イヨ

э

Basic Cryptographic Primitives

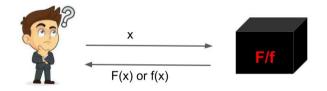
э

Pseudo Random Function (PRF)

• $F: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$, where $\mathcal{M} := \{0,1\}^m, \ \mathcal{K} := \{0,1\}^k$ and $\mathcal{C} := \{0,1\}^n$

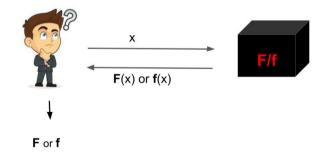
3

イロト イボト イヨト イヨト


Pseudo Random Function (PRF)

- $F: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$, where $\mathcal{M} := \{0,1\}^m, \ \mathcal{K} := \{0,1\}^k$ and $\mathcal{C} := \{0,1\}^n$
- f $\stackrel{\$}{\leftarrow}$ Func[\mathcal{M}, \mathcal{C}], where Func[\mathcal{M}, \mathcal{C}] is the set of all functions g : $\mathcal{M} \to \mathcal{C}$

Image: A matched block of the second seco

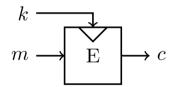

Pseudo Random Function (PRF)

- $F: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$, where $\mathcal{M} := \{0,1\}^m, \ \mathcal{K} := \{0,1\}^k$ and $\mathcal{C} := \{0,1\}^n$
- f $\stackrel{\$}{\leftarrow}$ Func[\mathcal{M}, \mathcal{C}], where Func[\mathcal{M}, \mathcal{C}] is the set of all functions g : $\mathcal{M} \to \mathcal{C}$

Pseudo Random Function(PRF)

- $F: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$, where $\mathcal{M} := \{0,1\}^m, \ \mathcal{K} := \{0,1\}^k$ and $\mathcal{C} := \{0,1\}^n$
- f $\stackrel{\$}{\leftarrow}$ Func[\mathcal{M}, \mathcal{C}], where Func[\mathcal{M}, \mathcal{C}] is the set of all functions g : $\mathcal{M} \to \mathcal{C}$

Block Cipher


• $E: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$, where $\mathcal{M} := \{0,1\}^n, \ \mathcal{K} := \{0,1\}^k$ and $\mathcal{C} := \{0,1\}^n$

3

イロト イポト イヨト イヨト

Block Cipher

• $E: \mathcal{M} \times \mathcal{K} \to \mathcal{C}$, where $\mathcal{M} := \{0,1\}^n, \ \mathcal{K} := \{0,1\}^k$ and $\mathcal{C} := \{0,1\}^n$

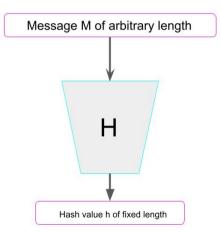
э

イロト 不得下 イヨト イヨト

Primitives

Hash Function

• $H: \{0,1\}^* \to \{0,1\}^n$.


3

イロト 不得 トイヨト イヨト

Primitives

Hash Function

• $H: \{0,1\}^* \to \{0,1\}^n$.

≣ ৩৭.৫ 20/59

Security of Hash

• Collision resistant: Hard to find x_1 and x_2 such that $H(x_1) = H(x_2)$.

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

э

イロト 不得 トイヨト イヨト

Security of Hash

• Collision resistant: Hard to find x_1 and x_2 such that $H(x_1) = H(x_2)$.

• Second pre-image resistant: Given y = H(x), for any $x \stackrel{\$}{\leftarrow} \{0,1\}^*$, hard to find z such that H(z) = y.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Security of Hash

• Collision resistant: Hard to find x_1 and x_2 such that $H(x_1) = H(x_2)$.

Second pre-image resistant: Given y = H(x), for any x ← {0,1}*, hard to find z such that H(z) = y.

• Range-oriented pre-image resistant: Given $y \stackrel{\$}{\leftarrow} \{0,1\}^n$, hard to find x such that H(x) = y.

Theoretical Secure Primitives

Physical Attacks

• Calculate $(m^k \mod n)$, for any message m and key k.

Image: A matched block of the second seco

▶ ∢ ⊒

- Calculate $(m^k \mod n)$, for any message m and key k.
- Use Square and Multiply.

< 3

- Calculate $(m^k \mod n)$, for any message m and key k.
- Use Square and Multiply.
- Number of multiplications = number of 1's.

- Calculate $(m^k \mod n)$, for any message *m* and key *k*.
- Use Square and Multiply.
- Number of multiplications = number of 1's.
- Multiplication takes more time and power than squaring.

- Calculate $(m^k \mod n)$, for any message *m* and key *k*.
- Use Square and Multiply.
- Number of multiplications = number of 1's.
- Multiplication takes more time and power than squaring.
- Observing power and time pattern guess the key.

• Power analysis:

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

3

イロト イポト イヨト イヨト

- Power analysis:
 - Simple Power Analysis (SPA)
 - Differential Power Analysis (DPA)

э

- Power analysis:
 - Simple Power Analysis (SPA)
 - Differential Power Analysis (DPA)
- Timing attack.

э

- Power analysis:
 - Simple Power Analysis (SPA)
 - Differential Power Analysis (DPA)
- Timing attack.
- Deep-learning-based side-channel attack.

э

- Power analysis:
 - Simple Power Analysis (SPA)
 - Differential Power Analysis (DPA)
- Timing attack.
- Deep-learning-based side-channel attack.
- Optical side-channel attack.

э

- Power analysis:
 - Simple Power Analysis (SPA)
 - Differential Power Analysis (DPA)
- Timing attack.
- Deep-learning-based side-channel attack.
- Optical side-channel attack.
- Cache side-channel attack.

э

- Power analysis:
 - Simple Power Analysis (SPA)
 - Differential Power Analysis (DPA)
- Timing attack.
- Deep-learning-based side-channel attack.
- Optical side-channel attack.
- Cache side-channel attack.
- Allocation-based side channels.

• Information leakage about input.

э

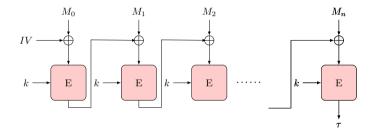
イロト イヨト イヨト イヨ

- Information leakage about input.
- All internal calculated values.

э

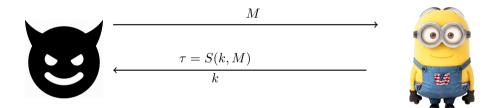
イロト イボト イヨト イヨ

- Information leakage about input.
- All internal calculated values.
- Example: One bit of the secret key.


э

- Information leakage about input.
- All internal calculated values.
- Example: One bit of the secret key.
- Can we assume bound on leakage?

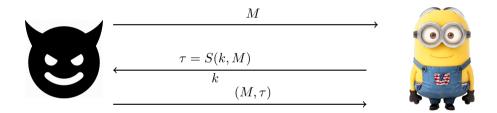
- Information leakage about input.
- All internal calculated values.
- Example: One bit of the secret key.
- Can we assume bound on leakage?


CBC-MAC

If ${\rm E}$ is secure block cipher then CBC-MAC is a secure MAC.

э

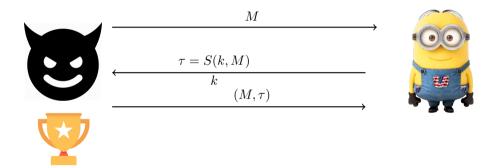
CBC-MAC with Unbounded Leakage



э

・ロト ・ 理 ト ・ ヨ ト ・

ъ


CBC-MAC with Unbounded Leakage

э

・ロト ・ 理 ト ・ ヨ ト ・

CBC-MAC with Unbounded Leakage

э

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

(日) (四) (王) (王) (王)

◆□ → ◆檀 → ◆臣 → ◆臣 → ○臣

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symm

Countermeasure

• Leak free implementation.

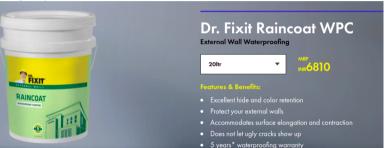
3

イロト イポト イヨト イヨト

Countermeasure

- Leak free implementation.
- Leak nothing.

Leakage-Resilient Symmetric Key Cryptography


э

イロト イヨト イヨト イヨ

Problem

• Very expensive.

Sougata Mandal (IAI, TCG CREST)

э

イロト イポト イヨト イヨト

Problem

• Very expensive.

• Minimal use.

э

イロト 不得 トイヨト イヨト

Design Rationale

• Problem with CBC-MAC: same key for each message block.

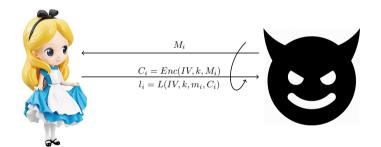
э

イロト イポト イヨト イヨ

Design Rationale

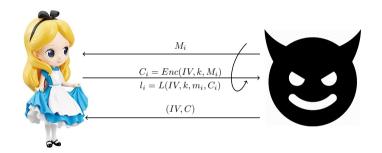
• Problem with CBC-MAC: same key for each message block.

• Different key for each message block.

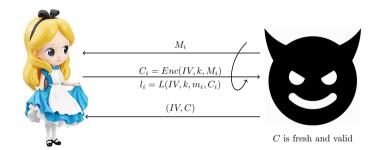

Image: A math a math

Design Rationale

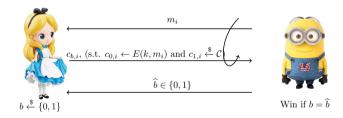
• Problem with CBC-MAC: same key for each message block.


• Different key for each message block.

• Minimal use of leak-free component.


э

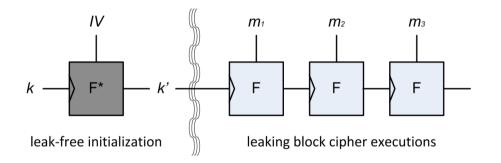
イロト イヨト イヨト イヨ


э

イロト 不得下 イヨト イヨ

э

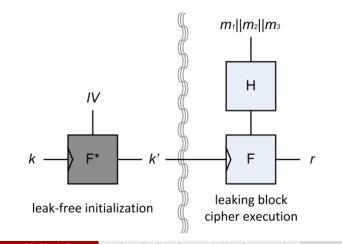
イロト 不得下 イヨト イヨ



э

イロト 不得 トイヨト イヨト

Pereira et al. [CCS'15]


Re-Keying L-R MAC

э

Pereira et al. [CCS'15]

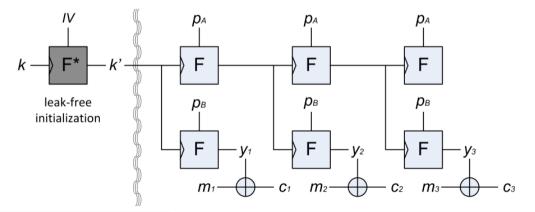
Hash then MAC paradigm

Sougata Mandal (IAI, TCG CREST)

Leakage-Resilient Symmetric Key Cryptography

40 / 59

ヨト 臣

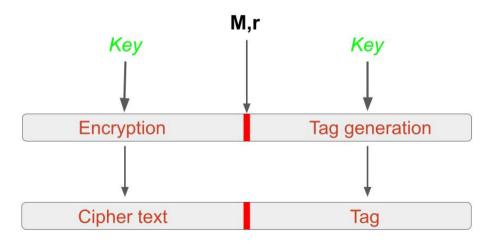

What about confidentiality?

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

ъ

Pereira et al. [CCS'15]

L-R encryption scheme



Leakage-Resilient Symmetric Key Cryptography

Can we achieve both integrity and confidentiality?

Image: A matrix

Authenticated Encryption

44 / 59

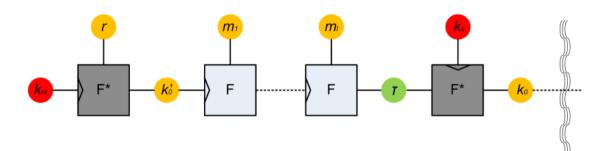
Berti et al. [AsiaCCS'18]

• Coin Misuse-Resistant (M-R) Authenticated Encryption (AE).

э

Berti et al. [AsiaCCS'18]

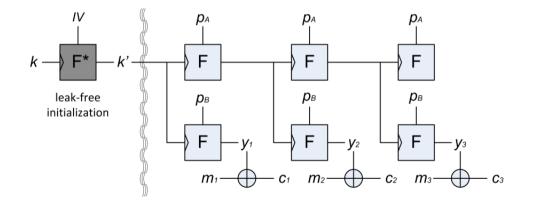
• Coin Misuse-Resistant (M-R) Authenticated Encryption (AE).


• New scheme PSV-AE.

э

Image: A matrix and a matrix

▶ ∢ ⊒


PSV-MAC

3

イロト イポト イヨト イヨト

PSV-Enc

Leakage-Resilient Symmetric Key Cryptography

-

• PSV-AE is M-R AE.

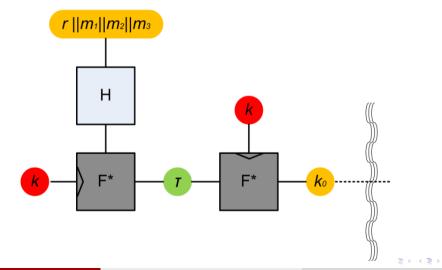
3

イロト 不得 トイヨト イヨト

- PSV-AE is M-R AE.
- Use two different key.

э

イロト イポト イヨト イヨト

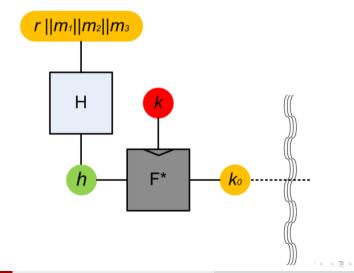

- PSV-AE is M-R AE.
- Use two different key.
- Simple Power Analysis (SPA) attack on PSV-AE.

э

- E

- PSV-AE is M-R AE.
- Use two different key.
- Simple Power Analysis (SPA) attack on PSV-AE.
- Cipher text Integrity with Misuse and Leakage (CIML) security notion.

- PSV-AE is M-R AE.
- Use two different key.
- Simple Power Analysis (SPA) attack on PSV-AE.
- Cipher text Integrity with Misuse and Leakage (CIML) security notion.
- AE scheme DTE with single key.



3

Can we reduce the number of **leak-free** component?

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

Image: A matrix

3

• Leakage during decryption.

3

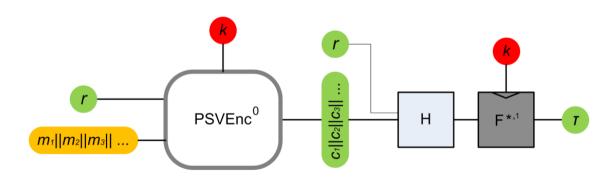
イロト 不得 トイヨト イヨト

- Leakage during decryption.
- CIML2: CIML with Decryption Leakage (Confidentiality).

э

イロト イボト イヨト イヨ

- Leakage during decryption.
- CIML2: CIML with Decryption Leakage (Confidentiality).
- DTE is not CIML2 secure.


э

- Leakage during decryption.
- CIML2: CIML with Decryption Leakage (Confidentiality).
- DTE is **not** CIML2 secure.
- DTE2: DTE with leak free permutation.

- Leakage during decryption.
- CIML2: CIML with Decryption Leakage (Confidentiality).
- DTE is **not** CIML2 secure.
- DTE2: DTE with leak free permutation.
- EavDL: Eavesdropper security with decryption leakage (Indistinguishability).

- Leakage during decryption.
- CIML2: CIML with Decryption Leakage (Confidentiality).
- DTE is **not** CIML2 secure.
- DTE2: DTE with leak free permutation.
- EavDL: Eavesdropper security with decryption leakage (Indistinguishability).
- EDT: CIML2 and EavDL secure Authenticated Encryption scheme.

3

イロト イポト イヨト イヨト

• EDT can not handle Associated Data

э

イロト 不得 トイヨト イヨ

• EDT can not handle Associated Data

• Security degradation in multi-user settings.

3

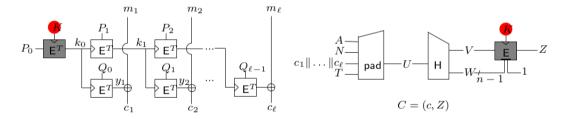
Image: A math a math

• EDT can not handle Associated Data

• Security degradation in multi-user settings.

• muCIML2: CIML2 in multi-user settings.

• EDT can not handle Associated Data


• Security degradation in multi-user settings.

• muCIML2: CIML2 in multi-user settings.

• TEDT: muCIML2 secure Authenticated Encryption with Associated Data(AEAD).

TEDT

$$P_i(N) = N ||[i]_{\frac{n}{4}-1}||0, \quad Q_i(N) = N ||[i]_{\frac{n}{4}-1}||1$$

3

イロト イポト イヨト イヨト

List [LATINCRYPT'21]

• Replace hash function of TEDT by "Naito's MDPH".

э

イロト 不得下 イヨト イヨ

List [LATINCRYPT'21]

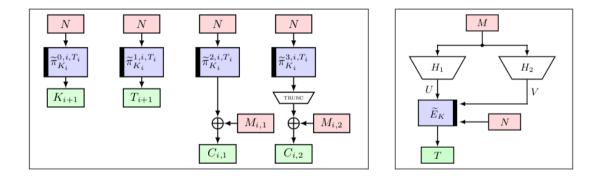
• Replace hash function of TEDT by "Naito's MDPH".

• Nonce used in "Tag generation".

3

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▶ ∢ ≣


List [LATINCRYPT'21]

• Replace hash function of TEDT by "Naito's MDPH".

• Nonce used in "Tag generation".

• Achieves Beyond Birthday Bound (BBB) security under leakage assumption.

TEDT2

(日)((同))(日)((日))(日)

э

Image: A math a math

▶ ∢ ⊒

• Finding suitable hash function and other primitives for designing leakage resilient schemes.

Image: A math a math

• Finding suitable hash function and other primitives for designing leakage resilient schemes.

• Efficiency in multi-user scenario.

• Finding suitable hash function and other primitives for designing leakage resilient schemes.

• Efficiency in multi-user scenario.

• Analysis of security under leakage assumption of stateless and stateful schemes.

thank you!

Sougata Mandal (IAI, TCG CREST) Leakage-Resilient Symmetric Key Cryptography

3

イロト イボト イヨト イヨト