Tamojit Saha

Computer Science Department RKMVERI (TCG-CREST)

August 29, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Literature Study

Feedback Vertex Set and Connected Feedback Vertex Set

Feedback vertex set

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Literature Study

Feedback Vertex Set and Connected Feedback Vertex Set

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Figure: A feedback vertex set: $\{1,5,7,6\}$

Literature Study

Feedback Vertex Set and Connected Feedback Vertex Set

Figure: A feedback vertex set: {1,5,7,6}

Figure: A minimum feedback vertex set: {3,7,6}

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Literature Study

Feedback Vertex Set and Connected Feedback Vertex Set

Figure: A feedback vertex set: {1,5,7,6}

Figure: A connected feedback vertex set: {3,4,7,6}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Figure: A minimum feedback vertex set: {3,7,6}

Literature Study

Feedback Vertex Set and Connected Feedback Vertex Set

Figure: A connected feedback vertex set: {3,4,7,6}

Figure: A minimum feedback vertex set: {3,7,6}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Figure: A minimum connected feedback vertex set: {3,4,6}

 Directed graphs are often used in path generating devices and correctness of computer programs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Directed graphs are often used in path generating devices and correctness of computer programs.
- Cyclic structure makes path finding complicated and difficult to compute.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Directed graphs are often used in path generating devices and correctness of computer programs.
- Cyclic structure makes path finding complicated and difficult to compute.
- The usual approach is to make the graph cycle free and then analyze the paths.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Directed graphs are often used in path generating devices and correctness of computer programs.
- Cyclic structure makes path finding complicated and difficult to compute.
- The usual approach is to make the graph cycle free and then analyze the paths.
- Similarly this approach is also used in Constraint Satisfaction and Baysian Inference.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

■ Finding Feedback vertex set and Connected feedback vertex set are NP-hard problem on general graphs [8].

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Finding Feedback vertex set and Connected feedback vertex set are NP-hard problem on general graphs [8].
- A 2-approximation algorithm is known for Feedback vertex set in general graphs [5].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Finding Feedback vertex set and Connected feedback vertex set are NP-hard problem on general graphs [8].
- A 2-approximation algorithm is known for Feedback vertex set in general graphs [5].
- Polynomial time algorithm for Feedback vertex set is known for some special graph classes [1],[2],[3].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Finding Feedback vertex set and Connected feedback vertex set are NP-hard problem on general graphs [8].
- A 2-approximation algorithm is known for Feedback vertex set in general graphs [5].
- Polynomial time algorithm for Feedback vertex set is known for some special graph classes [1],[2],[3].
- To the best of our knowledge there is no approximation known for Connected Feedback vertex set problem for general graphs. A polynomial time algorithm is known for planar graphs [4].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Finding Feedback vertex set and Connected feedback vertex set are NP-hard problem on general graphs [8].
- A 2-approximation algorithm is known for Feedback vertex set in general graphs [5].
- Polynomial time algorithm for Feedback vertex set is known for some special graph classes [1],[2],[3].
- To the best of our knowledge there is no approximation known for Connected Feedback vertex set problem for general graphs. A polynomial time algorithm is known for planar graphs [4].
- We study the Connected Feedback vertex set problem in some classes of perfect graphs and AT Free graphs. Following we discuss those graph classes.

Yearly Progression	Report
Graph classes	

Permutation Graph

Permutation graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Permutation Graph

Figure: A Permutation diagram

Figure: The Permutation graph

 l_i line joining i of upper chain to i of lower chain.

Permutation graph obtained from permutation diagram.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Permutation Graph

Figure: (1,2,3,4) is a 4-cycle

Figure: Permutation graph with 3-cycle

Figure: Permutation diagram

Figure: Permutation diagram

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 Vertices of permutation graph can be ordered linearly. That is the permutation ordering.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Vertices of permutation graph can be ordered linearly. That is the permutation ordering.
- A vertex u is said to be to the left of vertex v that is $u \leq_{\pi} v$ if $\pi_u < \pi_v$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- Vertices of permutation graph can be ordered linearly. That is the permutation ordering.
- A vertex *u* is said to be to the left of vertex *v* that is $u \leq_{\pi} v$ if $\pi_u < \pi_v$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A vertex v in subgraph H of G (H ⊆ G), is said to be left most vertex if for every other vertex u ∈ V(H), v ≤_π u. Permutation Graph

- Vertices of permutation graph can be ordered linearly. That is the permutation ordering.
- A vertex *u* is said to be to the left of vertex *v* that is $u \leq_{\pi} v$ if $\pi_u < \pi_v$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- A vertex v in subgraph H of G (H ⊆ G), is said to be left most vertex if for every other vertex u ∈ V(H), v ≤_π u.
- $v \in V(H)$ is the right most if for every other vertex $u \in V(H), u \leq_{\pi} v$.

- A vertex v in subgraph H of G (H ⊆ G), is said to be left most vertex if for every other vertex u ∈ V(H), v ≤_π u.
- $v \in V(H)$ is the right most if for every other vertex $u \in V(H), u \leq_{\pi} v$.

Figure: Vertex 3 is the left most and vertex 5 is the right most

Figure: Permutation diagram

Yearly Progression Report
Graph classes

AT Free graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Yearly Progression Report
└─ Graph classes
AT C

Figure: Example of Asteroidal Triple: consider vertices (1, 4, 8)

Yearly Progression Report
└─ Graph classes
AT 6

Figure: The path (4, 5, 6, 2, 1) does not contain any neighbour of 2

Yearly Progression Report
└─ Graph classes
AT 6

Figure: The path (8, 7, 6, 2, 1) does not contain any neighbour of 4

Yearly Progression Report
└─ Graph classes
AT 6

Figure: The path (4, 5, 6, 7, 8) does not contain any neighbour of 1

Yearly Pro	ogression	Report
Graph	classes	

- Asteroidal Triple is an independent set of three vertices such that each pair is joined by a path that avoids the neighborhood of the third.
- A graph that does not contain any Asteroidal Triple is called AT-free graph.

Figure: Example of AT free graph

Dominating set *D* is a subset of the vertices such that every vertex not in *D* is adjacent to at least one member of *D*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dominating set *D* is a subset of the vertices such that every vertex not in *D* is adjacent to at least one member of *D*.

Figure: Example of dominating set

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Yearly Progression Repo	ort
Graph classes	
AT free ments	

Dominating set *D* is a subset of the vertices such that every vertex not in *D* is adjacent to at least one member of *D*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• **Dominating pair** is a pair of vertices such that all path between them is a dominating set.

Yea	rly Progression	Report
L,	Graph classes	
	AT 6	

- **Dominating set** *D* is a subset of the vertices such that every vertex not in *D* is adjacent to at least one member of *D*.
- **Dominating pair** is a pair of vertices such that all path between them is a dominating set.

Figure: (3,7) is a dominating pair

Yea	rly Progression Re	port
L,	Graph classes	
	AT (

- **Dominating set** *D* is a subset of the vertices such that every vertex not in *D* is adjacent to at least one member of *D*.
- **Dominating pair** is a pair of vertices such that all path between them is a dominating set.

Figure: (3,7) is a dominating pair

 Every AT Free graph contains at least one dominating pair, and finding such pair is easy [7].

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Yearly Progression Report
└─ Graph classes

Chordal graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Yearly Progression Report
Graph classes
Chandel sucche

In chordal graph all cycles of length four or more have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Yearly Progression Report
Graph classes

- In chordal graph all cycles of length four or more have a chord, which is an edge that is not part of the cycle but connects two vertices of the cycle.
- That implies that maximum induced cycle length is 3.

Figure: A chordal graph

Figure: Every cycle of length more than 4 has a chord

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

└─Vertex elimination

• Vertex elimination : Elimination of vertex v is as follows.

- Add edges in N(v) such that N(v) is pairwise adjacent.
- Delete *v* and its incident edges.

Figure: Consider this graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Elimination of vertex v is as follows.

- Add edges in N(v) such that N(v) is pairwise adjacent.
- Delete *v* and its incident edges.

Figure: Eliminating vertex 7

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Elimination of vertex v is as follows.

- Add edges in N(v) such that N(v) is pairwise adjacent.
- Delete *v* and its incident edges.

Figure: Eliminating vertex 7

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Elimination of vertex v is as follows.

- Add edges in N(v) such that N(v) is pairwise adjacent.
- Delete *v* and its incident edges.

Figure: Eliminating vertex 7

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Yearly Progression Report
Graph classes
Elimination Ordering

 The Sequence in which we eliminate the vertices of some graph is called elimination ordering.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- The Sequence in which we eliminate the vertices of some graph is called elimination ordering.
- For vertex v the D(v) denotes the set of edges that is added while eliminating v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The Sequence in which we eliminate the vertices of some graph is called elimination ordering.
- For vertex v the D(v) denotes the set of edges that is added while eliminating v.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• For an elimination ordering $S = v_1, \dots v_{n-1},$ $D(S) = \bigcup_{i=1}^n D(v_i).$ Elimination Ordering

- The Sequence in which we eliminate the vertices of some graph is called elimination ordering.
- For vertex v the D(v) denotes the set of edges that is added while eliminating v.
- For an elimination ordering $S = v_1, \dots v_{n-1},$ $D(S) = \bigcup_{i=1}^n D(v_i).$
- An elimination ordering S is called minimum if there is no other ordering S', for which |D(S')| < |D(S)|.

- The Sequence in which we eliminate the vertices of some graph is called elimination ordering.
- For vertex v the D(v) denotes the set of edges that is added while eliminating v.
- For an elimination ordering $S = v_1, \dots v_{n-1},$ $D(S) = \bigcup_{i=1}^n D(v_i).$
- An elimination ordering S is called minimum if there is no other ordering S', for which |D(S')| < |D(S)|.

• An elimination ordering S is called perfect if $D(S) = \phi$.

Perfect Elimination Ordering

- An elimination ordering S is called minimum if there is no other ordering S', for which D(S') < D(S).
- An elimination ordering S is called perfect if $D(S) = \phi$.
- Not all graphs admits a perfect ordering. consider the following example.

Figure: There is no perfect elimination ordering

- An elimination ordering S is called minimum if there is no other ordering S', for which D(S') < D(S).
- An elimination ordering S is called perfect if $D(S) = \phi$.
- Not all graphs admits a perfect ordering. consider the following example.
- Chordal graphs has at least one perfect elimination ordering.

• Following we give an example.

Graph classes

Perfect Elimination Ordering

Figure: A chordal graph

Graph classes

Perfect Elimination Ordering

Figure: A chordal graph

Figure: (1)eliminate 3

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Perfect Elimination Ordering

Figure: A chordal graph

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Figure: (1)eliminate 3

Perfect Elimination Ordering

Figure: A chordal graph

Figure: (1)eliminate 3

Figure: (3)eliminate 8

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Perfect Elimination Ordering

Figure: A chordal graph

Figure: (2)eliminate 7

Figure: (4)eliminate 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Figure: (1)eliminate 3

Figure: (3)eliminate 8

Perfect Elimination Ordering

Figure: A chordal graph

Figure: (2)eliminate 7

Figure: (4)eliminate 1

Figure: (1)eliminate 3

Figure: (3)eliminate 8

Figure: (5)eliminate 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- An elimination ordering S is called minimum if there is no other ordering S', for which D(S') < D(S).
- An elimination ordering S is called perfect if $D(S) = \phi$.
- Not all graphs admits a perfect ordering. consider the following example.
- Chordal graphs has at least one perfect elimination ordering.
- For the above graph 3,7,8,1,2 is a perfect elimination ordering.
- Perfect ordering can be used to decompose a chordal graph into various ordered subgraphs which satisfies certain properties. Like maximal clique [6].

Yearly Progression Report
Graph classes
L Interval Graphs

Interval graphs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Yearly Progression Report
- Graph classes
LInterval Graphs

- Interval graph is a subclass of chordal graphs.
- An interval graph is an undirected graph formed from a set of intervals on the real line, with a vertex for each interval and an edge between vertices whose intervals intersect. Consider the following interval graph and its interval representation.

$$3 - 2 - 6 - 5$$

Figure: An interval representation of 6 intervals

Figure: Corresponding intervel graph

└─Our work

• We are studying this problem on the above graph classes from the point of view of approximation algorithm.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

I have done the following courses.

- Automata and Formal Languages
- Discrete Mathematics
- Graph Theory and Matroid
- Cryptology

- Design and Analysis of Algorithms
- Graph Theory and Matroid II
- Research Methodology
- Introduction to Probability and Statistics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

References

- Y. Daniel Liang, On the feedback vertex set problem in permutation graphs, Information Processing Letters, Volume 52, Issue 3, 1994, Pages 123-129, ISSN 0020-0190.
- [2] Dieter Kratsch, Haiko Müller, Ioan Todinca, Feedback vertex set on AT-free graphs, Discrete Applied Mathematics, Volume 156, Issue 10, 2008, Pages 1936-1947, ISSN 0166-218X.
- [3] Chin Lung Lu, Chuan Yi Tang, A linear-time algorithm for the weighted feedback vertex problem on interval graphs, Information Processing Letters, Volume 61, Issue 2, 1997, Pages 107-111, ISSN 0020-0190.
- [4] Grigoriev, A., Sitters, R. (2010). Connected Feedback Vertex Set in Planar Graphs. In: Paul, C., Habib, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2009. Lecture Notes in Computer Science, vol 5911. Springer, Berlin, Heidelberg.
- [5] Bafna, Vineet and Berman, Piotr and Fujito, Toshihiro, A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem, SIAM Journal on Discrete Mathematics, volume 12, number 3, 289-297, 1999.
- [6] Rose, Donald J. and Tarjan, R. Endre and Lueker, George S., Algorithmic Aspects of Vertex Elimination on Graphs, SIAM Journal on Computing, volume 5, number 2, pages 266-283, 1976.
- [7] Corneil, Derek G. and Olariu, Stephan and Stewart, Lorna, Asteroidal Triple-Free Graphs, SIAM Journal on Discrete Mathematics, volume 10, number 3, pages 399-430, 1997.
- [8] Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman and Co. pp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●