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Introduction

What are Smooth Manifolds?

They are Topological Spaces where one can do Calculus.

The Classification problem of Manifold

One of the most concrete classification problems known

so far is the Cobordism Classification of Manifolds.

Introduced by R. Thom in 1954 and also described the

classification problem completely.
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briefly.

Outline the Classification problem under the presence of

Group action, which still remains open.
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Preleminaries

Topological Manifold of dimension d

Suppose M is a topological space. We say M is Topological

d-Manifold if it has the following properties:

M is Hausdorff & 2nd countable.

M is locally Euclidean: Every point has a neighborhood

that is homeomorphic to an open subset of Rd .
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A Co-ordinate Chart around p is a pair (U , ϕ),where

U is an open subset of M containing p, and

ϕ : U → Ũ is a homeomorphism, where Ũ is an open

subset of Rd .
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ϕ : U → Ũ is a homeomorphism, where Ũ is an open
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Smooth Atlas on M

A Smooth Atlas is a collection {(Ui , ϕi) : i ∈ Λ} of Charts on

M such that:

M =
⋃

i∈Λ Ui

For any two Chart (U , ϕ) & (V , ψ) around a point p: the

transition maps ψ ◦ ϕ−1 & ϕ ◦ ψ−1 are smooth maps.

Note: Using Zorn’s Lemma we see that every Smooth Atlas

can be extended to a unique maximal Smooth Atlas,

which is called a Differential Structure on M .



Cobordism Classification of Manifolds

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection {(Ui , ϕi) : i ∈ Λ} of Charts on

M such that:

M =
⋃

i∈Λ Ui

For any two Chart (U , ϕ) & (V , ψ) around a point p: the

transition maps ψ ◦ ϕ−1 & ϕ ◦ ψ−1 are smooth maps.

Note: Using Zorn’s Lemma we see that every Smooth Atlas

can be extended to a unique maximal Smooth Atlas,

which is called a Differential Structure on M .



Cobordism Classification of Manifolds

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection {(Ui , ϕi) : i ∈ Λ} of Charts on

M such that:

M =
⋃

i∈Λ Ui

For any two Chart (U , ϕ) & (V , ψ) around a point p: the

transition maps ψ ◦ ϕ−1 & ϕ ◦ ψ−1 are smooth maps.

Note: Using Zorn’s Lemma we see that every Smooth Atlas

can be extended to a unique maximal Smooth Atlas,

which is called a Differential Structure on M .



Cobordism Classification of Manifolds

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection {(Ui , ϕi) : i ∈ Λ} of Charts on

M such that:

M =
⋃

i∈Λ Ui

For any two Chart (U , ϕ) & (V , ψ) around a point p: the

transition maps ψ ◦ ϕ−1 & ϕ ◦ ψ−1 are smooth maps.

Note: Using Zorn’s Lemma we see that every Smooth Atlas

can be extended to a unique maximal Smooth Atlas,

which is called a Differential Structure on M .



Cobordism Classification of Manifolds

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection {(Ui , ϕi) : i ∈ Λ} of Charts on

M such that:

M =
⋃

i∈Λ Ui

For any two Chart (U , ϕ) & (V , ψ) around a point p: the

transition maps ψ ◦ ϕ−1 & ϕ ◦ ψ−1 are smooth maps.

Note: Using Zorn’s Lemma we see that every Smooth Atlas

can be extended to a unique maximal Smooth Atlas,

which is called a Differential Structure on M .



Cobordism Classification of Manifolds

Introduction to Smooth Manifolds

Basic Definitions

Definition: Smooth Manifold of dimension d

Any Topological d-Manifold M together with a Differential
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Note:

Now we are ready define the notion of a smooth function

between two Smooth Manifold M & N .
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Smooth Map between two Smooth Manifolds

Let (M ,U) & (N ,V) be two Smooth Manifolds of dimension

k and l . A function f : M → N is smooth at p ∈ M if

there exists a chart (U , ϕ) ∈ U around p &

there exists a chart (V , ψ) ∈ V around f (p) = q

s.t. the following map is a smooth map

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V )

Remark: This definition is independent of choice of charts

containing p and f (p).
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Diffeomorphic Maps & Diffeomorphism:

A smooth map f : M → N between Manifolds of same

dimension is said to be a diffeomorphism if

f is bijective.

f −1 : N → M is also smooth.

If f : M → N is a diffeomorphism then we say M to

diffeomorphic to N , written as M ≈ N .
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We take M to be a 2nd countable, T2 topological space s.t

For any p ∈ M , ∃ an open subset U ⊂ M around p

homeomorphic to an open subset of Hd

The Atlases on M are modeled on Hd , instead of Rd .

Question: When do we say that p ∈ M belongs to the

boundary, ∂M of M?
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p ∈ M belongs to the boundary ∂M if we have a chart (U , ϕ)

around p, with ϕ(p) ∈ ∂Hd .

The well-definedness of this definition comes from the

Invariance of Domain Theorem.

Boundary of Manifold is again a Manifold

If M is a d-manifold with boundary, then ∂M is a

(d − 1)-manifold without boundary.
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Example 1 : The unit Sphere Sn

The unit sphere Sn ⊂ Rn+1, n ≥ 1 is a smooth manifold

of dimension n.
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An Atlas U on Sn is given as follows:

U = {(U+
i , ϕ

+
i ), (U−i , ϕ

−
i ) : 1 ≤ i ≤ n + 1}

U+
i = {(x1, . . . , xi , . . . , xn+1) ∈ Sn | xi > 0},

U−i = {(x1, . . . , xi , . . . , xn+1) ∈ Sn | xi < 0}

ϕ±i (x1, . . . , xi , . . . , xn+1) = (x1, . . . , xi−1, xi+1, . . . , xn+1).

Note:

S0 = {−1, 1} is a 0-dimensional Manifold.
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Example 2: The Real Projective Space

The n-dimensional real projective space RPn , is defined

as the quotient space of Rn+1 \ {0}, where the

equivalence relation is defined as follows:

(a1, . . . , an+1) ∼ (b1, . . . , bn+1) if ∃ a real number λ(6= 0)

such that bi = λai

Equivalence class of a point (x1, . . . , xn+1) ∈ Rn+1 \ {0}
is denoted by [x1, . . . , xn+1] ∈ RPn, called homogeneous

co-ordinates.
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An Atlas U on RPn is given by:

U = {(Ui , ϕi) | 1 ≤ i ≤ n + 1}

where Ui := {[x1, . . . , xn+1] ∈ RPn | xi 6= 0} &

ϕi : Ui → Rn is defined as

ϕ([x1, . . . , xn+1]) =
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the quotient space of Cn+1 \ {0}, where the equivalence

relation is defined in a similar way:

(a1, . . . , an+1) ∼ (b1, . . . , bn+1) if ∃ a complex number λ(6= 0)

such that bi = λai

Replacing R with C in the atlas (defined above) of RPn we

obtain an Atlas for CPn.

Making CPn a smooth manifold of dimension 2n.
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Consider the manifold Sm × CPn.

The group Z2 acts on this product space by
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The Dold manifold P(m, n) is the orbit space of

Sm × CPn under the above action.
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Compact, d-dimensional Manifolds without Boundary are
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For each d (d ≥ 0), Nd is an abelian group under the

addition:

[M] + [N] = [M
∐

N].

Additive Identity: Cobordism class of Sd , i.e., [Sd ]

For all [M] ∈ Nd is of order 2, i.e., [M] + [M] = [Sd ]

Set W = Dd+1
∐

M × [0, 1] ; ∂W = Sd
∐

(M
∐

M)

As a result, Nd becomes a vector space over Z2.
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This makes N∗ a graded Z2 algebra, which is known as

Unoriented Cobordism Algebra.
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N∗ = Z2[xi | 1 ≤ i ; ∀j ∈ N, i 6= 2j − 1]

∀ i (i 6= 2j − 1); xi is an algebra generator in degree i .
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N0 = Z2, N1 = 0, N2 = Z2,

N3 = Z2, N4 = Z2 ⊕ Z2, N5 = Z2.
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Equivariant Cobordism Classification

Consider the class of Closed Smooth d-Manifolds

equipped with a smooth action of a group G with finite

number of fixed points.

G = (Z2)n, n ≥ 2, i.e., the product of n-copies of the

cyclic group Z2 of order 2.

Notation: (M , η) and (N , ζ) denotes two G -manifolds of

dimension d , where η : G ×M → M and ζ : G × N → N

are the action maps.
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Definition of Equivariant Cobordism

(M , η) is equivariantly cobordant to (N , ζ) if M
∐

N is the

boundary of a compact smooth manifold W , which is

equipped with a smooth action ε : G ×W → W , such

that (∂W , ε) is equivariantly diffeomorphic to(
M
∐

N , η
∐

ζ
)
.

Note: The action ε need not have finite fixed point set.

This relation ∼ gives an equivalence relation on the set of all

Closed, Smooth d-dimensional G-Manifolds.
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∼

class of (M , η) is denoted by [M , η].

The aim is to define a Z2-graded algebra over

Z∗(G) := ⊕d≥0Zd(G)
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N , η
∐
ζ ]

Multiplication: [M , η] × [N , ζ] := [ M × N , η × ζ ]

The Main Goal:

Determine the structure of Z∗(G ) for n ≥ 2;where G = (Z2)n

This has been a long standing open-problem.
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Conner and Floyed in [1] proved that for n = 2, Z∗(G ) is

isomorphic to the Polynomial Algebra with one

generator in degree 2, i.e.,

Z∗(G) ∼= Z2[x]

The algebra generator x corresponds to [RPn, η], where the

action η of G (= Z2 × Z2) on RPn is stated in the following
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Let t1 and t2 be the generators of G = Z2 × Z2. Then the

action η is defined as follows

t1[x , y , z ] = [−x , y , z ] & t2[x , y , z ] = [x ,−y , z ].

C. Kosniowski and R.E. Stong in [3] gave an alternative proof

using Representation Theory.

As of now, the complete structure of Z∗(G ), for n ≥ 3 is

not known.
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Understanding the structure of Z∗(G ) for n ≥ 3 (How?)

One way is to map this Algebra to some known Algebra. In

this direction one has the ’forgetful’ homomorphism:

ε∗ : Z∗(G )→ N∗ defined as [M , η] 7→ [M]

T. Tom Dieck in [2] determined the image of ε∗
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Prof. G. Mukherjee & Prof. P. Sankaran in [4] did obtain

many new observations towards understanding the structure of

Z∗(G ) for n ≥ 3.

Obtained a sufficient criterion for an element of Z∗(G ) to

be indecomposable.

Using this criterion, they found indecomposable elements

in each dimension 2 ≤ d ≤ n which belong to Ker ε∗

This is in striking contrast to the situation in the

Unoriented Cobordism Algebra N∗, where there is no

generator in dimensions 2j − 1.
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They also proved a sufficient criterion for a subset

A ⊂ Z∗(G ) to be algebrically independent.

Using this they showed that certain indecomposable

elements in Ker ε∗ generate a Sub-algebra of Z∗(G ).

It is not yet known whether this Subalgebra concides

with Z∗(G ) or not.
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