Saikat Goswami

TCG CREST & RKMVERI

< □ > < (四 > < (回 >) < (u = 1) <

July 25, 2022

Overview

1 Introduction to Smooth Manifolds

- Basic Definitions
- Examples
- 2 Cobordism Classification Problem
 - Definition
 - Constructing the Unoriented Cobordism Algebra
 - Structure of this Algebra
- 3 Equivariant Cobordism Classification Problem

Definition

Constructing the Equivariant Cobordism Algebra

Structure of this Algebra

Introduction to Smooth Manifolds

Introduction

What are Smooth Manifolds?

They are Topological Spaces where one can do Calculus.

The Classification problem of Manifold

- One of the most concrete classification problems known so far is the Cobordism Classification of Manifolds.
- Introduced by R. Thom in 1954 and also described the classification problem completely.

└─ Introduction to Smooth Manifolds

Introduction

What are Smooth Manifolds?

They are Topological Spaces where one can do Calculus.

he Classification problem of Manifold

One of the most concrete classification problems known so far is the Cobordism Classification of Manifolds.

 Introduced by R. Thom in 1954 and also described the classification problem completely.

└─ Introduction to Smooth Manifolds

Introduction

What are Smooth Manifolds?

They are Topological Spaces where one can do Calculus.

The Classification problem of Manifold

 One of the most concrete classification problems known so far is the **Cobordism Classification of Manifolds**.
 Introduced by R. Thom in 1954 and also described the classification problem completely.

Introduction to Smooth Manifolds

Introduction

What are Smooth Manifolds?

They are Topological Spaces where one can do Calculus.

The Classification problem of Manifold

One of the most concrete classification problems known so far is the Cobordism Classification of Manifolds.

Introduced by R. Thom in 1954 and also described the classification problem completely.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction to Smooth Manifolds

Introduction

What are Smooth Manifolds?

They are Topological Spaces where one can do Calculus.

The Classification problem of Manifold

- One of the most concrete classification problems known so far is the Cobordism Classification of Manifolds.
- Introduced by R. Thom in 1954 and also described the classification problem completely.

Introduction to Smooth Manifolds

Aim of this Talk

Is to describe the Cobordism Classification problem briefly.

 Outline the Classification problem under the presence of Group action, which still remains open.

Introduction to Smooth Manifolds

Aim of this Talk

- Is to describe the Cobordism Classification problem briefly.
- Outline the Classification problem under the presence of Group action, which still remains open.

Introduction to Smooth Manifolds

Introducing Smooth Manifolds

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Basic Definitions

Preleminaries

Topological Manifold of dimension d

Suppose *M* is a topological space. We say *M* is Topological *d*-Manifold if it has the following properties:

- M is Hausdorff & 2nd countable.
- M is locally Euclidean: Every point has a neighborhood

that is homeomorphic to an open subset of \mathbb{R}^d .

Basic Definitions

Preleminaries

Topological Manifold of dimension d

Suppose M is a topological space. We say M is Topological space M is a topological space M is topological space M is boundary for the topological space M is locally Euclidean. Every point has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^d

Basic Definitions

Preleminaries

Topological Manifold of dimension d

Suppose M is a topological space. We say M is Topological d-Manifold if it has the following properties:

 M is locally Euclidean: Every point has a neighborhood that is homeomorphic to an open subset of R^d.

・ロト・日本・モート ヨー うくつ

Basic Definitions

Preleminaries

Topological Manifold of dimension d

Suppose M is a topological space. We say M is Topological d-Manifold if it has the following properties:

• *M* is Hausdorff & 2^{nd} countable.

M is locally Euclidean: Every point has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^d .

Introduction to Smooth Manifolds

Basic Definitions

Preleminaries

Topological Manifold of dimension d

Suppose M is a topological space. We say M is Topological d-Manifold if it has the following properties:

- *M* is Hausdorff & 2^{nd} countable.
- *M* is locally Euclidean: Every point has a neighborhood that is homeomorphic to an open subset of ℝ^d.

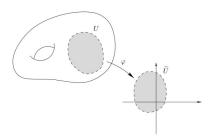
Introduction to Smooth Manifolds

Basic Definitions

Coordinate Chart around a point $p \in M$

A Co-ordinate Chart around p is a pair (U, φ) , where

U is an open subset of *M* containing *p*, and
 φ : *U* → *Ũ* is a homeomorphism, where *Ũ* is an open subset of ℝ^d.



Introduction to Smooth Manifolds

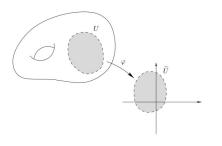
Basic Definitions

Coordinate Chart around a point $p \in M$

A Co-ordinate Chart around p is a pair (U, φ) , where

 \blacksquare U is an open subset of M containing p, and

 $\varphi: U \to U$ is a homeomorphism, where U is an open subset of \mathbb{R}^d .



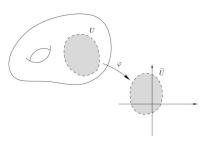
Basic Definitions

Coordinate Chart around a point $p \in M$

A Co-ordinate Chart around p is a pair (U, φ) ,where

• U is an open subset of M containing p, and • $\varphi: U \to \tilde{U}$ is a homeomorphism, where \tilde{U} is an open

subset of \mathbb{R}^d .

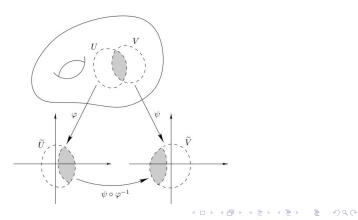


Introduction to Smooth Manifolds

Basic Definitions

Transition Function

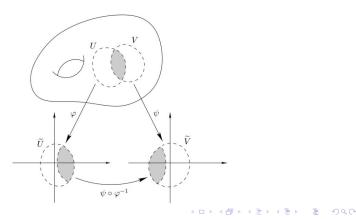
Let (U, φ) & (V, ψ) be two Charts around a point p with $U \cap V \neq \phi$.



-Basic Definitions

Transition Function

Let (U, φ) & (V, ψ) be two Charts around a point p with $U \cap V \neq \phi$. The functions $\psi \circ \varphi^{-1}$ & $\varphi \circ \psi^{-1}$ are called Transition functions.



Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection $\{(U_i, \varphi_i) : i \in \Lambda\}$ of Charts on M such that:

For any two Chart (U, φ) & (V, ψ) around a point ρ : the transition maps $\psi \circ \varphi^{-1}$ & $\varphi \circ \psi^{-1}$ are smooth maps.

イロト 不得 トイヨト イヨト ニヨー

Note: Using Zorn's Lemma we see that every Smooth Atlas can be **extended to a unique maximal Smooth Atlas**, which is called a **Differential Structure** on *M*.

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection $\{(U_i, \varphi_i) : i \in \Lambda\}$ of Charts on M such that:

$$\blacksquare M = \bigcup_{i \in \Lambda} U_i$$

For any two Chart (U, φ) & (V, ψ) around a point p: the transition maps $\psi \circ \varphi^{-1}$ & $\varphi \circ \psi^{-1}$ are smooth maps.

イロト 不得 トイヨト イヨト ニヨー

Note: Using Zorn's Lemma we see that every Smooth Atlas can be **extended to a unique maximal Smooth Atlas**, which is called a **Differential Structure** on *M*.

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection $\{(U_i, \varphi_i) : i \in \Lambda\}$ of Charts on M such that:

$$\bullet M = \bigcup_{i \in \Lambda} U_i$$

For any two Chart (U, φ) & (V, ψ) around a point p: the transition maps ψ ∘ φ⁻¹ & φ ∘ ψ⁻¹ are smooth maps.

Note: Using Zorn's Lemma we see that every Smooth Atlas can be **extended to a unique maximal Smooth Atlas**, which is called a **Differential Structure** on *M*.

Introduction to Smooth Manifolds

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection $\{(U_i, \varphi_i) : i \in \Lambda\}$ of Charts on M such that:

$$\bullet M = \bigcup_{i \in \Lambda} U_i$$

For any two Chart (U, φ) & (V, ψ) around a point p: the transition maps ψ ∘ φ⁻¹ & φ ∘ ψ⁻¹ are smooth maps.

Note: Using Zorn's Lemma we see that every Smooth Atlas can be **extended to a unique maximal Smooth Atlas**,

Basic Definitions

Smooth Atlas on M

A Smooth Atlas is a collection $\{(U_i, \varphi_i) : i \in \Lambda\}$ of Charts on M such that:

$$\bullet M = \bigcup_{i \in \Lambda} U_i$$

For any two Chart (U, φ) & (V, ψ) around a point p: the transition maps ψ ∘ φ⁻¹ & φ ∘ ψ⁻¹ are smooth maps.

Note: Using Zorn's Lemma we see that every Smooth Atlas can be **extended to a unique maximal Smooth Atlas**, which is called a **Differential Structure** on *M*.

Introduction to Smooth Manifolds

Basic Definitions

Definition: Smooth Manifold of dimension d

Any Topological *d*-Manifold *M* together with a Differential structure on it, is said to be a Smooth *d*-Manifold.

Note:

Now we are ready define the notion of a smooth function between two Smooth Manifold *M* & *N*.

・ロト・西・・田・・田・・日・

Introduction to Smooth Manifolds

Basic Definitions

Definition: Smooth Manifold of dimension d

Any Topological d-Manifold M together with a Differential structure on it, is said to be a Smooth d-Manifold.

Note: Now we are ready define the notion of a smooth function between two Smooth Manifold *M* & *N*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Introduction to Smooth Manifolds

Basic Definitions

Definition: Smooth Manifold of dimension d

Any Topological d-Manifold M together with a Differential structure on it, is said to be a Smooth d-Manifold.

Note:

Now we are ready define the notion of a smooth function between two Smooth Manifold M & N.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction to Smooth Manifolds

Basic Definitions

Smooth Map between two Smooth Manifolds

- Let (M, \mathcal{U}) & (N, \mathcal{V}) be two Smooth Manifolds of dimension k and L A function for M . Note smooth at $n \in M$ if
- k and *T*. A function *T* : $M \rightarrow N$ is smooth at $p \in M$ if
 - there exists a chart $(U, \varphi) \in \mathcal{U}$ around p &
 - there exists a chart $(V, \psi) \in \mathcal{V}$ around $f(\rho) = q$

s.t. the following map is a smooth map

 $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$

Remark: This definition is independent of choice of charts containing p and f(p).

・ロット (雪) (キョン (ヨン) ヨー

Basic Definitions

Smooth Map between two Smooth Manifolds

Let (M, \mathcal{U}) & (N, \mathcal{V}) be two Smooth Manifolds of dimension k and l.

Remark: This definition is independent of choice of charts containing p and f(p).

(日)

Basic Definitions

Smooth Map between two Smooth Manifolds

Let (M, \mathcal{U}) & (N, \mathcal{V}) be two Smooth Manifolds of dimension k and I. A function $f : M \to N$ is smooth at $p \in M$ if

• there exists a chart $(U, \varphi) \in \mathcal{U}$ around $\rho \&$ • there exists a chart $(V, \psi) \in \mathcal{V}$ around $f(\rho) = c$

s.t. the following map is a smooth map

 $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$

Remark: This definition is independent of choice of charts containing p and f(p).

(日)

Basic Definitions

Smooth Map between two Smooth Manifolds

Let (M, \mathcal{U}) & (N, \mathcal{V}) be two Smooth Manifolds of dimension k and l. A function $f : M \to N$ is smooth at $p \in M$ if

- there exists a chart $(U, \varphi) \in \mathcal{U}$ around p &
- there exists a chart $(V, \psi) \in \mathcal{V}$ around f(p) = q

s.t. the following map is a smooth map

 $\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$

Remark: This definition is independent of choice of charts containing p and f(p).

Basic Definitions

Smooth Map between two Smooth Manifolds

Let (M, \mathcal{U}) & (N, \mathcal{V}) be two Smooth Manifolds of dimension k and l. A function $f : M \to N$ is smooth at $p \in M$ if

- there exists a chart $(U, \varphi) \in \mathcal{U}$ around p &
- there exists a chart $(V, \psi) \in \mathcal{V}$ around f(p) = q

s.t. the following map is a smooth map

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

Remark: This definition is independent of choice of charts containing *p* and *f*(*p*).

Basic Definitions

Smooth Map between two Smooth Manifolds

Let (M, U) & (N, V) be two Smooth Manifolds of dimension k and l. A function $f : M \to N$ is smooth at $p \in M$ if

- there exists a chart $(U, \varphi) \in \mathcal{U}$ around p &
- there exists a chart $(V, \psi) \in \mathcal{V}$ around f(p) = q

s.t. the following map is a smooth map

$$\psi \circ f \circ \varphi^{-1} : \varphi(U) \to \psi(V)$$

Remark: This definition is independent of choice of charts containing p and f(p).

Introduction to Smooth Manifolds

Basic Definitions

Diffeomorphic Maps & Diffeomorphism:

A smooth map $f : M \rightarrow N$ between Manifolds of same dimension is said to be a diffeomorphism if f is bijective

 $f^{-1}: N \to M$ is also smooth.

If $f : M \to N$ is a diffeomorphism then we say M to diffeomorphic to N, written as $M \approx N$.

Introduction to Smooth Manifolds

Basic Definitions

Diffeomorphic Maps & Diffeomorphism:

A smooth map $f: M \rightarrow N$ between Manifolds of same dimension is said to be a diffeomorphism if

 ${\scriptstyle ullet} f^{-1}:N o M$ is also smooth.

If $f: M \to N$ is a diffeomorphism then we say M to diffeomorphic to N, written as $M \approx N$.

Basic Definitions

Diffeomorphic Maps & Diffeomorphism:

A smooth map $f: M \rightarrow N$ between Manifolds of same dimension is said to be a diffeomorphism if

f is bijective.

 $^{1}: N \rightarrow M$ is also smooth.

If $f : M \to N$ is a diffeomorphism then we say M to diffeomorphic to N, written as $M \approx N$.

Basic Definitions

Diffeomorphic Maps & Diffeomorphism:

A smooth map $f: M \rightarrow N$ between Manifolds of same dimension is said to be a diffeomorphism if

- f is bijective.
- $f^{-1}: N \to M$ is also smooth.

If $f : M \to N$ is a diffeomorphism then we say M to diffeomorphic to N, written as $M \approx N$.

Basic Definitions

Diffeomorphic Maps & Diffeomorphism:

A smooth map $f: M \rightarrow N$ between Manifolds of same dimension is said to be a diffeomorphism if

■ *f* is bijective.

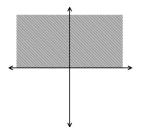
•
$$f^{-1}: N \to M$$
 is also smooth.

If $f : M \to N$ is a diffeomorphism then we say M to diffeomorphic to N, written as $M \approx N$.

Introduction to Smooth Manifolds

Basic Definitions

Prototype of a Smooth Manifold with Boundary



Prototype: The closed Upper-half Space, \mathbb{H}^d

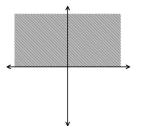
 $\mathbb{H}^d = \{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_d \ge 0 \}; \partial \mathbb{H}^d = \{ (x_1, \dots, 0) \in \mathbb{R}^d \}$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Introduction to Smooth Manifolds

Basic Definitions

Prototype of a Smooth Manifold with Boundary



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

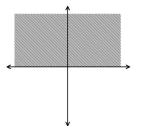
Prototype: The closed Upper-half Space, \mathbb{H}^d

$$\mathbb{H}^d = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : x_d \ge 0\}$$

Introduction to Smooth Manifolds

Basic Definitions

Prototype of a Smooth Manifold with Boundary



Prototype: The closed Upper-half Space, \mathbb{H}^d

$$\mathbb{H}^d = \{(x_1,\ldots,x_d) \in \mathbb{R}^d : x_d \ge 0\}; \partial \mathbb{H}^d = \{(x_1,\ldots,0) \in \mathbb{R}^d\}$$

Basic Definitions

Defining Smooth Manifolds with Boundary

We take M to be a 2nd countable, T_2 topological space s.t

- For any p ∈ M, ∃ an open subset U ⊂ M around p homeomorphic to an open subset of H^d
- The Atlases on *M* are modeled on H^d, instead of R^d.

Question: When do we say that $p \in M$ belongs to the boundary, ∂M of M?

(日)

Defining Smooth Manifolds with Boundary

We take M to be a 2nd countable, T_2 topological space s.t

 For any p ∈ M, ∃ an open subset U ⊂ M around p homeomorphic to an open subset of H^d

lacksquare The Atlases on M are modeled on \mathbb{H}^d , instead of $\mathbb{R}^d.$

Question: When do we say that *p* ∈ *M* belongs to the boundary, ∂*M* of *M*?

Defining Smooth Manifolds with Boundary

We take M to be a 2^{nd} countable, T_2 topological space s.t

- For any p ∈ M, ∃ an open subset U ⊂ M around p homeomorphic to an open subset of H^d
- The Atlases on M are modeled on \mathbb{H}^d , instead of \mathbb{R}^d .

Question: When do we say that *p* ∈ *M* belongs to the boundary, ∂*M* of *M*?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Defining Smooth Manifolds with Boundary

We take M to be a 2nd countable, T_2 topological space s.t

- For any p ∈ M, ∃ an open subset U ⊂ M around p homeomorphic to an open subset of H^d
- The Atlases on M are modeled on \mathbb{H}^d , instead of \mathbb{R}^d .

Question: When do we say that $p \in M$ belongs to the boundary, ∂M of M?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Basic Definitions

The Boundary of a *d*-Manifold

$p \in M$ belongs to the boundary ∂M

The well-definedness of this definition comes from the Invariance of Domain Theorem.

Boundary of Manifold is again a Manifold

If *M* is a *d*-manifold with boundary, then ∂M is a (d-1)-manifold without boundary.

The Boundary of a *d*-Manifold

$p \in M$ belongs to the boundary ∂M if we have a chart (U, φ) around p, with $\varphi(p) \in \partial \mathbb{H}^d$.

The well-definedness of this definition comes from the Invariance of Domain Theorem.

Boundary of Manifold is again a Manifold

If *M* is a *d*-manifold with boundary, then ∂M is a (d-1)-manifold without boundary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

The Boundary of a *d*-Manifold

$p \in M$ belongs to the boundary ∂M if we have a chart (U, φ) around p, with $\varphi(p) \in \partial \mathbb{H}^d$.

The well-definedness of this definition comes from the Invariance of Domain Theorem.

The Boundary of a *d*-Manifold

$p \in M$ belongs to the boundary ∂M if we have a chart (U, φ) around p, with $\varphi(p) \in \partial \mathbb{H}^d$.

The well-definedness of this definition comes from the Invariance of Domain Theorem.

Boundary of Manifold is again a Manifold

If *M* is a *d*-manifold with boundary, then ∂M is a (d-1)-manifold without boundary.

The Boundary of a *d*-Manifold

 $p \in M$ belongs to the boundary ∂M if we have a chart (U, φ) around p, with $\varphi(p) \in \partial \mathbb{H}^d$.

The well-definedness of this definition comes from the Invariance of Domain Theorem.

Boundary of Manifold is again a Manifold

If M is a d-manifold with boundary, then ∂M is a (d-1)-manifold without boundary.

The Boundary of a *d*-Manifold

 $p \in M$ belongs to the boundary ∂M if we have a chart (U, φ) around p, with $\varphi(p) \in \partial \mathbb{H}^d$.

The well-definedness of this definition comes from the Invariance of Domain Theorem.

Boundary of Manifold is again a Manifold

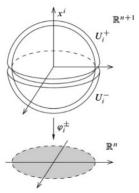
If M is a d-manifold with boundary, then ∂M is a (d-1)-manifold without boundary.

Examples

Example 1 : The unit Sphere Sⁿ

The unit sphere $S^n \subset \mathbb{R}^{n+1}$, $n \ge 1$ is a smooth manifold

of dimension *n*.



◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction to Smooth Manifolds

Examples

An Atlas \mathcal{U} on S^n is given as follows:

$$\mathcal{U} = \{ (U_i^+, \varphi_i^+), (U_i^-, \varphi_i^-) : 1 \le i \le n+1 \}$$

 $U_i^+ = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i > 0 \},$ $U_i^- = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i < 0 \}$ $\varphi_i^\pm (x_1, \dots, x_i, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}).$

・ロット (雪) ・ (日) ・ (日) ・ (日)

Note:

 $S^0 = \{-1,1\}$ is a 0-dimensional Manifold.

Examples

An Atlas \mathcal{U} on S^n is given as follows:

$$\mathcal{U} = \{ (U_i^+, \varphi_i^+), (U_i^-, \varphi_i^-) : 1 \le i \le n+1 \}$$

$$U_i^+ = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i > 0 \},$$

$$U_i^- = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i < 0 \}$$

 $\varphi_i^{\pm}(x_1,\ldots,x_i,\ldots,x_{n+1}) = (x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_{n+1}).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Note:

 $S^0 = \{-1,1\}$ is a 0-dimensional Manifold.

Examples

An Atlas \mathcal{U} on S^n is given as follows:

$$\mathcal{U} = \{ (U_i^+, \varphi_i^+), (U_i^-, \varphi_i^-) : 1 \le i \le n+1 \}$$

$$U_i^+ = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i > 0 \},$$

$$U_i^- = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i < 0 \}$$

$$\varphi_i^{\pm} (x_1, \dots, x_i, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Note:

 $S^0_{-}=\{-1,1\}$ is a 0-dimensional Manifold.

Examples

An Atlas \mathcal{U} on S^n is given as follows:

$$\mathcal{U} = \{ (U_i^+, \varphi_i^+), (U_i^-, \varphi_i^-) : 1 \le i \le n+1 \}$$

$$U_i^+ = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i > 0 \},$$

$$U_i^- = \{ (x_1, \dots, x_i, \dots, x_{n+1}) \in S^n \mid x_i < 0 \}$$

$$\varphi_i^{\pm} (x_1, \dots, x_i, \dots, x_{n+1}) = (x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_{n+1}).$$

Note:

$$S^0 = \{-1, 1\}$$
 is a 0-dimensional Manifold.

Introduction to Smooth Manifolds

Examples

Example 2: The Real Projective Space

- The *n*-dimensional real projective space $\mathbb{R}P^n$ is defined
- $(a_1, \ldots, a_{n+1}) \sim (b_1, \ldots, b_{n+1})$ if \exists a real number $\lambda (\neq 0)$ such that $b_i = \lambda a_i$
- Equivalence class of a point (x₁,...,x_{n+1}) ∈ ℝⁿ⁺¹ \ {0} is denoted by [x₁,...,x_{n+1}] ∈ ℝPⁿ, called homogeneous co-ordinates.

(日)

Introduction to Smooth Manifolds

Examples

Example 2: The Real Projective Space

- The *n*-dimensional real projective space ℝPⁿ, is defined as the quotient space of ℝⁿ⁺¹ \ {0}, where the equivalence relation is defined as follows:
- $(a_1, \ldots, a_{n+1}) \sim (b_1, \ldots, b_{n+1})$ if \exists a real number $\lambda (\neq 0)$ such that $b_i = \lambda a_i$
- Equivalence class of a point (x₁,...,x_{n+1}) ∈ ℝⁿ⁺¹ \ {0} is denoted by [x₁,...,x_{n+1}] ∈ ℝPⁿ, called homogeneous co-ordinates.

Introduction to Smooth Manifolds

Examples

Example 2: The Real Projective Space

- The *n*-dimensional real projective space ℝPⁿ, is defined as the quotient space of ℝⁿ⁺¹ \ {0}, where the equivalence relation is defined as follows:
- $(a_1, \ldots, a_{n+1}) \sim (b_1, \ldots, b_{n+1})$ if \exists a real number $\lambda (\neq 0)$ such that $b_i = \lambda a_i$
 - Equivalence class of a point $(x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} \setminus \{0\}$ is denoted by $[x_1, \ldots, x_{n+1}] \in \mathbb{R}P^n$, called homogeneous co-ordinates.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Examples

Example 2: The Real Projective Space

- The *n*-dimensional real projective space ℝPⁿ, is defined as the quotient space of ℝⁿ⁺¹ \ {0}, where the equivalence relation is defined as follows:
- $(a_1, \ldots, a_{n+1}) \sim (b_1, \ldots, b_{n+1})$ if \exists a real number $\lambda (\neq 0)$ such that $b_i = \lambda a_i$
- Equivalence class of a point (x₁,..., x_{n+1}) ∈ ℝⁿ⁺¹ \ {0} is denoted by [x₁,..., x_{n+1}] ∈ ℝPⁿ, called homogeneous co-ordinates.

Introduction to Smooth Manifolds

Examples

An Atlas \mathcal{U} on $\mathbb{R}P^n$ is given by:

$$\mathcal{U} = \{(U_i, \varphi_i) \mid 1 \le i \le n+1\}$$

where
$$U_i := \{ [x_1, ..., x_{n+1}] \in \mathbb{R}P^n \mid x_i \neq 0 \}$$

 $\varphi_i: U_i \to \mathbb{R}^n$ is defined as

$$\varphi([x_1,\ldots,x_{n+1}]) = \left(\frac{x_1}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_{n+1}}{x_i}\right)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction to Smooth Manifolds

Examples

An Atlas \mathcal{U} on $\mathbb{R}P^n$ is given by:

$$\mathcal{U} = \{(U_i, \varphi_i) \mid 1 \le i \le n+1\}$$

where
$$U_i := \{ [x_1, \dots, x_{n+1}] \in \mathbb{R}P^n \mid x_i \neq 0 \} \&$$

 $\varphi_i : U_i \to \mathbb{R}^n \text{ is defined as}$
 $\varphi([x_1, \dots, x_{n+1}]) = \left(\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i} \right)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction to Smooth Manifolds

Examples

An Atlas \mathcal{U} on $\mathbb{R}P^n$ is given by:

$$\mathcal{U} = \{(U_i, \varphi_i) \mid 1 \le i \le n+1\}$$

where
$$U_i := \{ [x_1, \dots, x_{n+1}] \in \mathbb{R}P^n \mid x_i \neq 0 \} \&$$

 $\varphi_i : U_i \to \mathbb{R}^n \text{ is defined as}$
 $\varphi([x_1, \dots, x_{n+1}]) = \left(\frac{x_1}{x_i}, \dots, \frac{x_{i-1}}{x_i}, \frac{x_{i+1}}{x_i}, \dots, \frac{x_{n+1}}{x_i}\right)$

The *n*-dimensional complex projective space $\mathbb{C}P^n$, is defined as the quotient space of $\mathbb{C}P^n$ is defined as

 $(a_1, \ldots, a_{n+1}) \sim (b_1, \ldots, b_{n+1})$ if \exists a complex number $\lambda (\neq 0)$ such that $b_i = \lambda a_i$

Replacing $\mathbb R$ with $\mathbb C$ in the atlas (defined above) of $\mathbb R P^n$ we obtain an Atlas for $\mathbb C P^n$.

人口 医水黄 医水黄 医水黄素 化甘油

The *n*-dimensional complex projective space $\mathbb{C}P^n$, is defined as the quotient space of $\mathbb{C}^{n+1} \setminus \{0\}$, where the equivalence relation is defined in a similar way:

 $(a_1,\ldots,a_{n+1})\sim (b_1,\ldots,b_{n+1})$ if \exists a complex number $\lambda(
eq 0)$ such that $b_i=\lambda a_i$

Replacing ${\mathbb R}$ with ${\mathbb C}$ in the atlas (defined above) of ${\mathbb R} P^n$ we obtain an Atlas for ${\mathbb C} P^n$.

・ロト ・ 四ト ・ ヨト ・ ヨト

The *n*-dimensional complex projective space $\mathbb{C}P^n$, is defined as the quotient space of $\mathbb{C}^{n+1} \setminus \{0\}$, where the equivalence relation is defined in a similar way:

 $(a_1, \ldots, a_{n+1}) \sim (b_1, \ldots, b_{n+1})$ if \exists a complex number $\lambda (\neq 0)$ such that $b_i = \lambda a_i$

Replacing ${\mathbb R}$ with ${\mathbb C}$ in the atlas (defined above) of ${\mathbb R} P^n$ we obtain an Atlas for ${\mathbb C} P^n$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The *n*-dimensional complex projective space $\mathbb{C}P^n$, is defined as the quotient space of $\mathbb{C}^{n+1} \setminus \{0\}$, where the equivalence relation is defined in a similar way:

$$(a_1,\ldots,a_{n+1})\sim (b_1,\ldots,b_{n+1})$$
 if \exists a complex number $\lambda(
eq 0)$
such that $b_i=\lambda a_i$

Replacing \mathbb{R} with \mathbb{C} in the atlas (defined above) of $\mathbb{R}P^n$ we obtain an Atlas for $\mathbb{C}P^n$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The *n*-dimensional complex projective space $\mathbb{C}P^n$, is defined as the quotient space of $\mathbb{C}^{n+1} \setminus \{0\}$, where the equivalence relation is defined in a similar way:

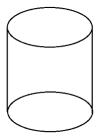
$$(a_1,\ldots,a_{n+1})\sim (b_1,\ldots,b_{n+1})$$
 if \exists a complex number $\lambda(
eq 0)$
such that $b_i=\lambda a_i$

Replacing \mathbb{R} with \mathbb{C} in the atlas (defined above) of $\mathbb{R}P^n$ we obtain an Atlas for $\mathbb{C}P^n$.

Introduction to Smooth Manifolds

Examples

Example 4: Manifold with a Boundary



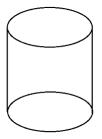
 $M = S^1 \times [0, 1]$ is a 2-dimensional manifold with boundary.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction to Smooth Manifolds

Examples

Example 4: Manifold with a Boundary



 $M = S^1 \times [0, 1]$ is a 2-dimensional manifold with boundary. The boundary $\partial M = S^1 \coprod S^1$ is a disjoint union of two copies of S^1 .

Examples

Example 5: The Dold Manifold P(m, n)

Let $\mathbb{C}P^n$ be the complex projective space with homogeneous coordinates $[z_1, \ldots, z_{n+1}]$ as mentioned in Example 2.

The group \mathbb{Z}_2 acts on this product space by

 $(x,[z_1,\ldots,z_{n+1}])\mapsto (-x,[\bar{z}_1,\ldots,\bar{z}_{n+1}]).$

The Dold manifold P(m, n) is the orbit space of $S^m \times \mathbb{C}P^n$ under the above action.

Let $\mathbb{C}P^n$ be the complex projective space with homogeneous coordinates $[z_1, \ldots, z_{n+1}]$ as mentioned in Example 2.

Consider the manifold $S^m \times \mathbb{C}P^n$.

The group \mathbb{Z}_2 acts on this product space by

 $(x, [z_1, \ldots, z_{n+1}]) \mapsto (-x, [\overline{z}_1, \ldots, \overline{z}_{n+1}]).$

The Dold manifold P(m, n) is the orbit space of $S^m \times \mathbb{C}P^n$ under the above action.

Let $\mathbb{C}P^n$ be the complex projective space with homogeneous coordinates $[z_1, \ldots, z_{n+1}]$ as mentioned in Example 2.

Consider the manifold $S^m \times \mathbb{C}P^n$.

The group \mathbb{Z}_2 acts on this product space by

 $(x, [z_1, \ldots, z_{n+1}]) \mapsto (-x, [\overline{z}_1, \ldots, \overline{z}_{n+1}]).$

The Dold manifold P(m, n) is the orbit space of $S^m \times \mathbb{C}P^n$ under the above action.

Let $\mathbb{C}P^n$ be the complex projective space with homogeneous coordinates $[z_1, \ldots, z_{n+1}]$ as mentioned in Example 2.

Consider the manifold $S^m \times \mathbb{C}P^n$.

The group \mathbb{Z}_2 acts on this product space by

$$(x, [z_1, \ldots, z_{n+1}]) \mapsto (-x, [\overline{z}_1, \ldots, \overline{z}_{n+1}]).$$

The Dold manifold P(m, n) is the orbit space of $S^m imes \mathbb{C}P^n$ under the above action.

Let $\mathbb{C}P^n$ be the complex projective space with homogeneous coordinates $[z_1, \ldots, z_{n+1}]$ as mentioned in Example 2.

Consider the manifold $S^m \times \mathbb{C}P^n$.

The group \mathbb{Z}_2 acts on this product space by

$$(x, [z_1, \ldots, z_{n+1}]) \mapsto (-x, [\overline{z}_1, \ldots, \overline{z}_{n+1}]).$$

The Dold manifold P(m, n) is the orbit space of $S^m \times \mathbb{C}P^n$ under the above action.

Cobordism Classification Problem

Cobordism Classification Problem

Cobordism Classification Problem

Definition

Cobordism Classification Problem

Goal

Classify **Compact**, **Smooth**, **without Boundary d-dimensional Manifolds** upto a relation called Cobordism.

Compact, d-dimensional Manifolds without Boundary are termed as **Closed Manifolds.**

Cobordism Classification Problem

L Definition

Cobordism Classification Problem

Goal

Classify **Compact, Smooth, without Boundary d-dimensional Manifolds** upto a relation called Cobordism.

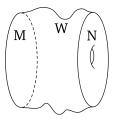
Compact, d-dimensional Manifolds without Boundary are termed as **Closed Manifolds**.

Cobordism Classification Problem

L Definition

Defining the Cobordism relation

Two Smooth, Closed d-Manifolds *M* and *N* are said to be cobordant,



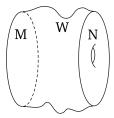
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Cobordism Classification Problem

L Definition

Defining the Cobordism relation

Two Smooth, Closed d-Manifolds M and N are said to be cobordant, if $M \coprod N$ is a boundary of some compact (d + 1)-Manifold W, i.e., $\partial W \approx M \coprod N$



Cobordism Classification Problem

L Definition

~ is an equivalence relation on the set of Smooth, Closed d-dimensional Manifolds.

Denote the cobordism class of a manifold M by [M].

• $\mathcal{N}_d := \{ Closed, Smooth d-dimensional Manifolds \} /$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Cobordism Classification Problem

Definition

- ~ is an equivalence relation on the set of Smooth, Closed d-dimensional Manifolds.
- Denote the cobordism class of a manifold *M* by [*M*].

■ *N_d* := { Closed, Smooth d-dimensional Manifolds} /

Cobordism Classification Problem

L Definition

- ~ is an equivalence relation on the set of Smooth, Closed d-dimensional Manifolds.
- Denote the cobordism class of a manifold *M* by [*M*].

• $\mathcal{N}_d := \{ Closed, Smooth d-dimensional Manifolds \} \Big/ \sim$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

For each d ($d \ge 0$), \mathcal{N}_d is an abelian group under the addition:

 $[M] + [N] = [M \coprod N].$

■ Additive Identity: Cobordism class of S^d, i.e., [S^d]

For all $[M] \in \mathcal{N}_d$ is of order 2, i.e., $[M] + [M] = [S^d]$ Set $W = D^{d+1} \coprod M \times [0,1]$; $\partial W = S^d \coprod (M \coprod M)$

■ As a result, N_d becomes a vector space over Z₂.

$$[M] + [N] = [M \coprod N].$$

■ Additive Identity: Cobordism class of S^d, i.e., [S^d]

For all $[M] \in \mathcal{N}_d$ is of order 2, i.e., $[M] + [M] = [S^d]$ Set $W = D^{d+1} \coprod M \times [0,1]$; $\partial W = S^d \coprod (M \coprod M)$

As a result, N_d becomes a vector space over Z₂.

$$[M] + [N] = [M \coprod N].$$

■ Additive Identity: Cobordism class of S^d, i.e., [S^d]

• For all $[M] \in \mathcal{N}_d$ is of order 2, i.e., $[M] + [M] = [S^d]$

As a result, N_d becomes a vector space over Z₂.

$$[M] + [N] = [M \coprod N].$$

■ Additive Identity: Cobordism class of S^d, i.e., [S^d]

For all $[M] \in \mathcal{N}_d$ is of order 2, i.e., $[M] + [M] = [S^d]$ Set $W = D^{d+1} \coprod M \times [0, 1]$; $\partial W = S^d \coprod (M \coprod M)$

As a result, N_d becomes a vector space over Z₂.

$$[M] + [N] = [M \coprod N].$$

■ Additive Identity: Cobordism class of S^d, i.e., [S^d]

For all
$$[M] \in \mathcal{N}_d$$
 is of order 2, i.e., $[M] + [M] = [S^d]$
Set $W = D^{d+1} \coprod M \times [0,1]$; $\partial W = S^d \coprod (M \coprod M)$

• As a result, \mathcal{N}_d becomes a vector space over \mathbb{Z}_2 .

Cobordism Classification Problem

Constructing the Unoriented Cobordism Algebra

The Unoriented Cobordism Algebra

Consider the following vector space over \mathbb{Z}_2 :

$$\mathcal{N}_* = \oplus_{d \geq 0} \mathcal{N}_d.$$

We define a graded multiplication on \mathcal{N}_* as follows

 $\mathcal{N}_k \times \mathcal{N}_l \to \mathcal{N}_{k+l}$ by $([M], [N]) \mapsto [M \times N].$

This makes \mathcal{N}_* a graded \mathbb{Z}_2 algebra, which is known as

Unoriented Cobordism Algebra.

・ロト ・ 四ト ・ ヨト ・ ヨ

Cobordism Classification Problem

Constructing the Unoriented Cobordism Algebra

The Unoriented Cobordism Algebra

Consider the following vector space over \mathbb{Z}_2 :

 $\mathcal{N}_*=\oplus_{d\geq 0}\mathcal{N}_d.$

We define a graded multiplication on \mathcal{N}_* as follows

 $\mathcal{N}_k \times \mathcal{N}_I \to \mathcal{N}_{k+I}$ by $([M], [N]) \mapsto [M \times N].$

This makes \mathcal{N}_* a graded \mathbb{Z}_2 algebra, which is known as

Unoriented Cobordism Algebra.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cobordism Classification Problem

Constructing the Unoriented Cobordism Algebra

The Unoriented Cobordism Algebra

Consider the following vector space over \mathbb{Z}_2 :

 $\mathcal{N}_*=\oplus_{d\geq 0}\mathcal{N}_d.$

We define a graded multiplication on \mathcal{N}_* as follows

 $\mathcal{N}_k \times \mathcal{N}_I \to \mathcal{N}_{k+I}$ by $([M], [N]) \mapsto [M \times N].$

This makes \mathcal{N}_* a graded \mathbb{Z}_2 algebra, which is known as

Unoriented Cobordism Algebra.

Cobordism Classification Problem

└─Structure of this Algebra

Determining the structure of \mathcal{N}_*

René Thom in 1954 completely determined the structure of this Algebra.

 $\mathcal{N}_* = \mathbb{Z}_2[x_i \mid 1 \le i; \forall j \in \mathbb{N}, i \ne 2^j - 1]$

■ $\forall i \ (i \neq 2^j - 1); x_i$ is an algebra generator in degree *i*.

(日)

Cobordism Classification Problem

└─Structure of this Algebra

Determining the structure of \mathcal{N}_*

René Thom in 1954 completely determined the structure of this Algebra. He proved that

 \mathcal{N}_* is a polynomial algebra over \mathbb{Z}_2

 $\mathcal{N}_* = \mathbb{Z}_2[x_i \mid 1 \leq i; \; orall j \in \mathbb{N}, \; i
eq 2^j - 1]$

■ $\forall i \ (i \neq 2^j - 1); x_i$ is an algebra generator in degree *i*.

Cobordism Classification Problem

└─ Structure of this Algebra

Determining the structure of \mathcal{N}_*

René Thom in 1954 completely determined the structure of this Algebra. He proved that

 \mathcal{N}_* is a polynomial algebra over \mathbb{Z}_2

$$\mathcal{N}_* = \mathbb{Z}_2[x_i \mid 1 \le i; \forall j \in \mathbb{N}, i \ne 2^j - 1]$$

 $\forall i \ (i \neq 2^j - 1); \ x_i$ is an algebra generator in degree i.

Cobordism Classification Problem

└─ Structure of this Algebra

Determining the structure of \mathcal{N}_*

René Thom in 1954 completely determined the structure of this Algebra. He proved that

 \mathcal{N}_* is a polynomial algebra over \mathbb{Z}_2

$$\mathcal{N}_* = \mathbb{Z}_2[x_i \mid 1 \leq i; \forall j \in \mathbb{N}, i \neq 2^j - 1]$$

■ $\forall i (i \neq 2^j - 1)$; x_i is an algebra generator in degree *i*.

Cobordism Classification Problem

└─ Structure of this Algebra

- Even degree algebra generators, i.e., x_{2m} (∀m ∈ ℕ) corresponds to the cobordism class [ℝP^{2m}].
- Odd degree algebra generators, i.e., x_{2m-1} corresponds to the cobordism class of Dold Manifold, i.e., [P(2^r - 1, 2^rs)] where m = 2^{r-1}(2s + 1).
- The low-dimensional cobordism groups are

$$\mathcal{N}_0=\mathbb{Z}_2,\ \mathcal{N}_1=0,\ \mathcal{N}_2=\mathbb{Z}_2,$$

 $\mathcal{N}_3=\mathbb{Z}_2,\ \mathcal{N}_4=\mathbb{Z}_2\oplus\mathbb{Z}_2,\ \mathcal{N}_5=\mathbb{Z}_2.$

A D F A 同 F A E F A E F A Q A

└─Structure of this Algebra

- Even degree algebra generators, i.e., x_{2m} ($\forall m \in \mathbb{N}$) corresponds to the cobordism class [$\mathbb{R}P^{2m}$].
- Odd degree algebra generators, i.e., x_{2m-1} corresponds to the cobordism class of Dold Manifold, i.e., [P(2^r - 1, 2^rs)] where m = 2^{r-1}(2s + 1).

The low-dimensional cobordism groups are

$$\mathcal{N}_0=\mathbb{Z}_2,\ \mathcal{N}_1=0,\ \mathcal{N}_2=\mathbb{Z}_2,$$

 $\mathcal{N}_3 = \mathbb{Z}_2, \ \mathcal{N}_4 = \mathbb{Z}_2 \oplus \mathbb{Z}_2, \ \mathcal{N}_5 = \mathbb{Z}_2.$

Cobordism Classification Problem

└─Structure of this Algebra

- Even degree algebra generators, i.e., x_{2m} ($\forall m \in \mathbb{N}$) corresponds to the cobordism class $[\mathbb{R}P^{2m}]$.
- Odd degree algebra generators, i.e., x_{2m-1} corresponds to the cobordism class of Dold Manifold, i.e., [P(2^r 1, 2^rs)] where m = 2^{r-1}(2s + 1).
- The low-dimensional cobordism groups are

$$\mathcal{N}_0=\mathbb{Z}_2,\ \mathcal{N}_1=0,\ \mathcal{N}_2=\mathbb{Z}_2,$$

$$\mathcal{N}_3=\mathbb{Z}_2,\ \mathcal{N}_4=\mathbb{Z}_2\oplus\mathbb{Z}_2,\ \mathcal{N}_5=\mathbb{Z}_2.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivariant Cobordism Classification Problem

Equivariant Cobordism Classification

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivariant Cobordism Classification Problem

Definition

Equivariant Cobordism Classification

- Consider the class of Closed Smooth *d*-Manifolds
- G = (Z₂)ⁿ, n ≥ 2, i.e., the product of n-copies of the cyclic group Z₂ of order 2.
- Notation: (M, η) and (N, ζ) denotes two G-manifolds of dimension d, where η : G × M → M and ζ : G × N → N are the action maps.

Equivariant Cobordism Classification Problem

Definition

Equivariant Cobordism Classification

- Consider the class of Closed Smooth *d*-Manifolds equipped with a smooth action of a group *G* with finite number of fixed points.
- G = (Z₂)ⁿ, n ≥ 2, i.e., the product of n-copies of the cyclic group Z₂ of order 2.
- Notation: (M, η) and (N, ζ) denotes two G-manifolds of dimension d, where η : G × M → M and ζ : G × N → N are the action maps.

Definition

Equivariant Cobordism Classification

- Consider the class of Closed Smooth *d*-Manifolds equipped with a smooth action of a group *G* with finite number of fixed points.
- $G = (\mathbb{Z}_2)^n, \ n \ge 2,$ i.e., the product of n-copies of the cyclic group \mathbb{Z}_2 of order 2
- Notation: (M, η) and (N, ζ) denotes two G-manifolds of dimension d, where η : G × M → M and ζ : G × N → N are the action maps.

L Definition

Equivariant Cobordism Classification

- Consider the class of Closed Smooth *d*-Manifolds equipped with a smooth action of a group *G* with finite number of fixed points.
- G = (Z₂)ⁿ, n ≥ 2, i.e., the product of n-copies of the cyclic group Z₂ of order 2.
- Notation: (M, η) and (N, ζ) denotes two G-manifolds of dimension d, where η : G × M → M and ζ : G × N → N are the action maps.

L Definition

Equivariant Cobordism Classification

- Consider the class of Closed Smooth *d*-Manifolds equipped with a smooth action of a group *G* with finite number of fixed points.
- G = (Z₂)ⁿ, n ≥ 2, i.e., the product of n-copies of the cyclic group Z₂ of order 2.
- Notation: (M, η) and (N, ζ) denotes two G-manifolds of dimension d, where η : G × M → M and ζ : G × N → N are the action maps.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L Definition

Equivariant Cobordism Classification

- Consider the class of Closed Smooth *d*-Manifolds equipped with a smooth action of a group *G* with finite number of fixed points.
- G = (Z₂)ⁿ, n ≥ 2, i.e., the product of n-copies of the cyclic group Z₂ of order 2.
- Notation: (M, η) and (N, ζ) denotes two G-manifolds of dimension d, where η : G × M → M and ζ : G × N → N are the action maps.

Definition

Definition of Equivariant Cobordism

 (M, η) is **equivariantly cobordant** to (N, ζ) if $M \coprod N$ is the boundary of a compact smooth manifold W, which can

• equipped with a smooth action $\varepsilon : G \times W \to W$, such that $(\partial W, \varepsilon)$ is equivariantly diffeomorphic to

Note: The action ε need not have finite fixed point set. This relation \sim gives an equivalence relation on the set of all *Closed, Smooth d-dimensional G-Manifolds*.

うせん 川田 ふぼや 小田 そうそう

Definition

Definition of Equivariant Cobordism

 (M, η) is **equivariantly cobordant** to (N, ζ) if $M \coprod N$ is the boundary of a compact smooth manifold W, which is

• equipped with a smooth action $\varepsilon : G \times W \to W$,

Note: The action ε need not have finite fixed point set. This relation \sim gives an equivalence relation on the set of all *Closed, Smooth d-dimensional G-Manifolds*.

Definition

Definition of Equivariant Cobordism

 (M, η) is **equivariantly cobordant** to (N, ζ) if $M \coprod N$ is the boundary of a compact smooth manifold W, which is

 equipped with a smooth action ε : G × W → W, such that (∂W, ε) is equivariantly diffeomorphic to

$$\left(M\coprod N\;,\;\eta\coprod\zeta\right).$$

Note: The action ε need not have finite fixed point set. This relation \sim gives an equivalence relation on the set of all *Closed, Smooth d-dimensional G-Manifolds*.

Definition

Definition of Equivariant Cobordism

 (M, η) is **equivariantly cobordant** to (N, ζ) if $M \coprod N$ is the boundary of a compact smooth manifold W, which is

■ equipped with a smooth action ε : G × W → W, such that (∂W, ε) is equivariantly diffeomorphic to

$$\left(M\coprod N, \eta\coprod\zeta\right).$$

Note: The action ε need not have finite fixed point set.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This relation \sim gives an equivalence relation on the set of all Closed, Smooth d-dimensional G-Manifolds.

Definition

Definition of Equivariant Cobordism

 (M, η) is **equivariantly cobordant** to (N, ζ) if $M \coprod N$ is the boundary of a compact smooth manifold W, which is

 equipped with a smooth action ε : G × W → W, such that (∂W, ε) is equivariantly diffeomorphic to

$$\left(M\coprod N\;,\;\eta\coprod\zeta\right).$$

Note: The action ε need not have finite fixed point set. This relation \sim gives an equivalence relation on the set of all *Closed, Smooth d-dimensional G-Manifolds*.

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

Defining the Equivariant Cobordism Algebra

 $Z_d(G) := \{ Closed, Smooth d-dimensional G-Manifolds \} / \sim$

class of (M, η) is denoted by $[M, \eta]$.

The aim is to define a \mathbb{Z}_2 -graded algebra over

 $\mathsf{Z}_*(\mathsf{G}) := \oplus_{\mathsf{d} \ge 0} \mathsf{Z}_\mathsf{d}(\mathsf{G})$

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

Defining the Equivariant Cobordism Algebra

 $Z_d(G) := \{ Closed, Smooth d-dimensional G-Manifolds \} / \sim$

class of (M, η) is denoted by $[M, \eta]$.

The aim is to define a \mathbb{Z}_2 -graded algebra over

 $\mathsf{Z}_*(\mathsf{G}) := \oplus_{\mathsf{d} \ge 0} \mathsf{Z}_\mathsf{d}(\mathsf{G})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

Defining the Equivariant Cobordism Algebra

 $Z_d(G) := \{ Closed, Smooth d-dimensional G-Manifolds \} \Big/ \sim$

class of (M, η) is denoted by $[M, \eta]$.

The aim is to define a \mathbb{Z}_2 -graded algebra over

 $\mathsf{Z}_*(\mathsf{G}) := \oplus_{\mathsf{d} \geq 0} \mathsf{Z}_\mathsf{d}(\mathsf{G})$

・ロト ・西ト ・ヨト ・ヨー うへぐ

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

The \mathbb{Z}_2 -graded algebra on $Z_*(G)$ is defined as follows

■ Addition: $[M, \eta] + [N, \zeta] := [M \bigsqcup N, \eta \bigsqcup \zeta]$ ■ Multiplication: $[M, \eta] \times [N, \zeta] := [M \times N, \eta \times \zeta]$

The Main Goal:

Determine the structure of $Z_*(G)$ for $n\geq 2$; where $\,G=(\mathbb{Z}_2)^n$

This has been a long standing open-problem.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

The \mathbb{Z}_2 -graded algebra on $\overline{Z_*(G)}$ is defined as follows

• Addition: $[M, \eta] + [N, \zeta] := [M \coprod N, \eta \coprod \zeta]$

Multiplication: $[M, \eta] \times [N, \zeta] := [M \times N]$

The Main Goal:

Determine the structure of $Z_*(G)$ for $n\geq 2$; where $G=(\mathbb{Z}_2)^n$

This has been a long standing open-problem.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

The \mathbb{Z}_2 -graded algebra on $Z_*(G)$ is defined as follows

■ Addition: $[M, \eta] + [N, \zeta] := [M \coprod N, \eta \coprod \zeta]$ ■ Multiplication: $[M, \eta] \times [N, \zeta] := [M \times N, \eta \times \zeta]$

The Main Goal:

Determine the structure of $Z_*(G)$ for $n \geq 2$; where $G = (\mathbb{Z}_2)^n$

This has been a long standing open-problem.

うせん 川田 ふぼや 小田 そうそう

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

The \mathbb{Z}_2 -graded algebra on $\overline{Z_*(G)}$ is defined as follows

■ Addition: $[M, \eta] + [N, \zeta] := [M \coprod N, \eta \coprod \zeta]$ ■ Multiplication: $[M, \eta] \times [N, \zeta] := [M \times N, \eta \times \zeta]$

The Main Goal:

Determine the structure of $Z_*(G)$ for $n \ge 2$; where $G = (\mathbb{Z}_2)^n$

This has been a long standing open-problem.

Equivariant Cobordism Classification Problem

Constructing the Equivariant Cobordism Algebra

The \mathbb{Z}_2 -graded algebra on $Z_*(G)$ is defined as follows

■ Addition: $[M, \eta] + [N, \zeta] := [M \coprod N, \eta \coprod \zeta]$ ■ Multiplication: $[M, \eta] \times [N, \zeta] := [M \times N, \eta \times \zeta]$

The Main Goal:

Determine the structure of $Z_*(G)$ for $n \ge 2$; where $G = (\mathbb{Z}_2)^n$

A D N A 目 N A E N A E N A B N A C N

This has been a long standing open-problem.

Equivariant Cobordism Classification Problem

Structure of this Algebra

For n=2, i.e., when $G = (\mathbb{Z}_2)^2$

Conner and Floyed in [1] proved that for n = 2, $Z_*(G)$ is isomorphic to the Polynomial Algebra with one generator in degree 2, i.e.,

$\mathsf{Z}_*(\mathsf{G})\cong \mathbb{Z}_2[x]$

The algebra generator x corresponds to $[\mathbb{R}P^n, \eta]$, where the action η of $G(=\mathbb{Z}_2 \times \mathbb{Z}_2)$ on $\mathbb{R}P^n$ is stated in the following slide.

人口 医水黄 医水黄 医水黄素 化甘油

Structure of this Algebra

For n=2, i.e., when
$$G = (\mathbb{Z}_2)^2$$

Conner and Floyed in [1] proved that for n = 2, 22(6) is senerator in degree 2

$\mathsf{Z}_*(\mathsf{G})\cong \mathbb{Z}_2[x]$

The algebra generator x corresponds to $[\mathbb{R}P^n, \eta]$, where the action η of $G(=\mathbb{Z}_2 imes \mathbb{Z}_2)$ on $\mathbb{R}P^n$ is stated in the following slide.

Structure of this Algebra

For n=2, i.e., when
$$G = (\mathbb{Z}_2)^2$$

Conner and Floyed in [1] proved that for n = 2, $Z_*(G)$ is isomorphic to the Polynomial Algebra with one generator in degree 2, i.e.,

 $\mathsf{Z}_*(\mathsf{G})\cong \mathbb{Z}_2[x]$

The algebra generator x corresponds to $[\mathbb{R}P^n, \eta]$, where the action η of $G(=\mathbb{Z}_2 imes \mathbb{Z}_2)$ on $\mathbb{R}P^n$ is stated in the following slide.

Structure of this Algebra

For n=2, i.e., when
$$G = (\mathbb{Z}_2)^2$$

Conner and Floyed in [1] proved that for n = 2, $Z_*(G)$ is isomorphic to the Polynomial Algebra with one generator in degree 2, i.e.,

$$Z_*(G) \cong \mathbb{Z}_2[x]$$

The algebra generator x corresponds to $[\mathbb{R}P^n, \eta]$,

Structure of this Algebra

For n=2, i.e., when
$$G = (\mathbb{Z}_2)^2$$

Conner and Floyed in [1] proved that for n = 2, $Z_*(G)$ is isomorphic to the Polynomial Algebra with one generator in degree 2, i.e.,

 $\mathsf{Z}_*(\mathsf{G})\cong\mathbb{Z}_2[\mathsf{x}]$

The algebra generator x corresponds to $[\mathbb{R}P^n, \eta]$, where the action η of $G(=\mathbb{Z}_2 \times \mathbb{Z}_2)$ on $\mathbb{R}P^n$ is stated in the following slide.

Equivariant Cobordism Classification Problem

└─Structure of this Algebra

The group action $\eta: G \times \mathbb{R}P^n \to \mathbb{R}P^n$

Let t_1 and t_2 be the generators of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$.

$t_1[x, y, z] = [-x, y, z]$ & $t_2[x, y, z] = [x, -y, z].$

C. Kosniowski and R.E. Stong in [3] gave an alternative proof using Representation Theory.

As of now, the complete structure of $Z_*(G)$, for $n \ge 3$ is not known.

・ロット (雪) ・ (日) ・ (日) ・ (日)

Equivariant Cobordism Classification Problem

Structure of this Algebra

The group action $\eta: G \times \mathbb{R}P^n \to \mathbb{R}P^n$

Let t_1 and t_2 be the generators of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Then the action η is defined as follows

$$t_1[x, y, z] = [-x, y, z]$$
 & $t_2[x, y, z] = [x, -y, z].$

C. Kosniowski and R.E. Stong in [3] gave an alternative proof using Representation Theory.

As of now, the complete structure of $Z_*(G)$, for $n \ge 3$ is not known.

(日)

Equivariant Cobordism Classification Problem

Structure of this Algebra

The group action $\eta: G \times \mathbb{R}P^n \to \mathbb{R}P^n$

Let t_1 and t_2 be the generators of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Then the action η is defined as follows

$$t_1[x, y, z] = [-x, y, z]$$
 & $t_2[x, y, z] = [x, -y, z]$.

C. Kosniowski and R.E. Stong in [3] gave an alternative proof using Representation Theory.

As of now, the complete structure of $Z_*(G)$, for $n \ge 3$ is not known.

Equivariant Cobordism Classification Problem

└─ Structure of this Algebra

The group action $\eta: G \times \mathbb{R}P^n \to \mathbb{R}P^n$

Let t_1 and t_2 be the generators of $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Then the action η is defined as follows

$$t_1[x, y, z] = [-x, y, z]$$
 & $t_2[x, y, z] = [x, -y, z]$.

C. Kosniowski and R.E. Stong in [3] gave an alternative proof using Representation Theory.

As of now, the complete structure of $Z_*(G)$, for $n \ge 3$ is not known.

Equivariant Cobordism Classification Problem

└─Structure of this Algebra

Current State of the Art for $n \ge 3$

Understanding the structure of $Z_*(G)$ for $n \ge 3$

One way is to map this Algebra to some known Algebra. In this direction one has the 'forgetful' homomorphism:

 $\varepsilon_*: Z_*(G) o \mathcal{N}_*$ defined as $[M,\eta] \mapsto [M]$

T. Tom Dieck in [2] determined the image of ϵ_*

Equivariant Cobordism Classification Problem

└─Structure of this Algebra

Current State of the Art for $n \ge 3$

Understanding the structure of $Z_*(G)$ for $n \ge 3$ (How?)

One way is to map this Algebra to some known Algebra. In this direction one has the 'forgetful' homomorphism:

 $\varepsilon_*: Z_*(G) o \mathcal{N}_*$ defined as $[M,\eta] \mapsto [M]$

T. Tom Dieck in [2] determined the image of ϵ_*

Equivariant Cobordism Classification Problem

└─Structure of this Algebra

Current State of the Art for $n \ge 3$

Understanding the structure of $Z_*(G)$ for $n \ge 3$ (How?)

One way is to map this Algebra to some known Algebra.

his direction one has the 'forgetful' homomorphism:

 $\pi_*: Z_*(G) o \mathcal{N}_*$ defined as $[M,\eta] \mapsto [M]$

T. Tom Dieck in [2] determined the image of ϵ_*

Equivariant Cobordism Classification Problem

└─ Structure of this Algebra

Current State of the Art for $n \ge 3$

Understanding the structure of $Z_*(G)$ for $n \ge 3$ (How?)

One way is to map this Algebra to some known Algebra. In this direction one has the 'forgetful' homomorphism:

 $\epsilon_*: Z_*(G) \to \mathcal{N}_*$ defined as $[M, \eta] \mapsto [M]$

T. Tom Dieck in [2] determined the image of ϵ_*

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Equivariant Cobordism Classification Problem

└─ Structure of this Algebra

Current State of the Art for $n \ge 3$

Understanding the structure of $Z_*(G)$ for $n \ge 3$ (How?)

One way is to map this Algebra to some known Algebra. In this direction one has the 'forgetful' homomorphism:

 $\epsilon_*: Z_*(G) \to \mathcal{N}_*$ defined as $[M, \eta] \mapsto [M]$

T. Tom Dieck in [2] determined the image of ϵ_*

Structure of this Algebra

Prof. G. Mukherjee & Prof. P. Sankaran in [4] did obtain many new observations towards understanding the structure of $Z_*(G)$ for $n \ge 3$.

- Obtained a sufficient criterion for an element of Z_{*}(G) to be indecomposable.
- Using this criterion, they found indecomposable elements in each dimension 2 ≤ d ≤ n which belong to Ker ϵ_{*}

・ロット (雪) ・ (日) ・ (日) ・ (日)

■ This is in striking contrast to the situation in the Unoriented Cobordism Algebra N_{*}, where there is no generator in dimensions 2ⁱ - 1.

Structure of this Algebra

Prof. G. Mukherjee & Prof. P. Sankaran in [4] did obtain many new observations towards understanding the structure of $Z_*(G)$ for $n \ge 3$.

- Obtained a sufficient criterion for an element of Z_{*}(G) to be indecomposable.
- Using this criterion, they found indecomposable elements in each dimension 2 ≤ d ≤ n which belong to Ker ϵ_{*}
- This is in striking contrast to the situation in the Unoriented Cobordism Algebra N_{*}, where there is no generator in dimensions 2ⁱ - 1.

Structure of this Algebra

Prof. G. Mukherjee & Prof. P. Sankaran in [4] did obtain many new observations towards understanding the structure of $Z_*(G)$ for $n \ge 3$.

- Obtained a sufficient criterion for an element of Z_{*}(G) to be indecomposable.
- Using this criterion, they found indecomposable elements in each dimension $2 \le d \le n$ which belong to Ker ϵ_*
 - This is in striking contrast to the situation in the Unoriented Cobordism Algebra N_{*}, where there is no generator in dimensions 2^j – 1.

Structure of this Algebra

Prof. G. Mukherjee & Prof. P. Sankaran in [4] did obtain many new observations towards understanding the structure of $Z_*(G)$ for $n \ge 3$.

- Obtained a sufficient criterion for an element of Z_{*}(G) to be indecomposable.
- Using this criterion, they found indecomposable elements in each dimension $2 \le d \le n$ which belong to Ker ϵ_*

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

■ This is in striking contrast to the situation in the Unoriented Cobordism Algebra N_{*}, where there is no generator in dimensions 2^j - 1.

Structure of this Algebra

- They also proved a sufficient criterion for a subset $A \subset Z_*(G)$ to be algebrically independent.
- Using this they showed that certain indecomposable elements in Ker ε_{*} generate a Sub-algebra of Z_{*}(G).
- It is not yet known whether this Subalgebra concides with $Z_*(G)$ or not.

└─ Structure of this Algebra

- They also proved a sufficient criterion for a subset $A \subset Z_*(G)$ to be algebrically independent.
- Using this they showed that certain indecomposable elements in Ker e_{*} generate a Sub-algebra of Z_{*}(G).

with $Z_*(G)$ or not.

└─ Structure of this Algebra

- They also proved a sufficient criterion for a subset $A \subset Z_*(G)$ to be algebrically independent.
- Using this they showed that certain indecomposable elements in Ker e_{*} generate a Sub-algebra of Z_{*}(G).

It is not yet known whether this Subalgebra concides with $Z_*(G)$ or not.

Equivariant Cobordism Classification Problem

└─Structure of this Algebra

References

- P. E. Conner and E. E. Floyed: Differentiable periodic maps, Ergebnisse Sr-33, Springer-Verlag (1964).
- T. tom Dieck: **Fixpunkte vertauschbarer involutionen**, Archiv der Math., 20, 295-298 (1971).
- C. Ksniowski and R. E. Stong: (Z₂)^k-Actions and Characteristic numbers, Indiana University Math. J., 28, 725-743, (1979).
- G. Mukherjee and P. Sankaran: Elementary abelian
 2-Group Actions on Flag Manifolds and
 Applications, Proc. AMS, 126, 595-606 (1998).

Equivariant Cobordism Classification Problem

└─Structure of this Algebra

Thank You