Cryptology: Problem Sheet 1

Nilanjan Datta

IAI, TCG CREST

- 1. Show that the Shift, Substitution, and Vigenère ciphers are all trivial to break using a chosen-plaintext attack. How much known plaintext is needed to completely recover the key for each of the ciphers (without resorting to any statistics)?
- 2. Prove that, by redefining the key space, we may assume that Enc is deterministic without changing $\Pr[C = c|M = m]$ for any m, c.
- 3. An encryption scheme with message space \mathcal{M} is perfectly secret if and only if for every probability distribution over \mathcal{M} and every $c_0, c_1 \in \mathcal{C}$, we have

$$\Pr[C = c_0] = \Pr[C = c_1].$$

4. Consider an encryption scheme with the message space

 $\mathcal{M} = \{ m \in \{0, 1\}^{\ell} | \text{ the last bit of m is } 0 \}.$

Gen chooses a uniform key from $\{0,1\}^{\ell-1}$. $\mathsf{Enc}_k(m)$ returns ciphertext $m \oplus (k||0)$, and $\mathsf{Dec}_k(c)$ returns $c \oplus (k||0)$. State and explain whether the above scheme is perfectly secret.

- 5. Let Π denote the Vigenère cipher where the message space consists of all 3-character strings (over the English alphabet), and the key is generated by first choosing the period t uniformly from $\{1, 2, 3\}$ and then letting the key be a uniform string of length t.
 - (a) Define \mathcal{A} as follows: \mathcal{A} outputs $m_0 = aab$ and $m_1 = abb$. When given a ciphertext c, it outputs 0 if the first character of c is the same as the second character of c, and outputs 1 otherwise. Compute $\Pr[\mathsf{PrivK}_{\mathcal{A},\Pi}^{eav} = 1]$.
 - (b) Construct and analyze an adversary \mathcal{A}' for which $\mathsf{Pr}[\mathsf{Priv}\mathsf{K}^{eav}_{\mathcal{A},\Pi}=1]$ is greater than your answer from part (a).