Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Saint-Petersburg State University EIMI

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

A brief history of crossing number

It started with Turan's brick factory problem which asks for the minimum number of crossings in a drawing of a complete bipartite graph $K_{n,n}$. Pál Turan asked this question during World War II.

In a good drawing of a graph vertices are mapped to points in general position (i.e., no three are co-linear) in \mathbb{R}^2 and edges are drawn as simple continuous arcs connecting vertices. A good drawing is rectilinear if edges are straight line segments.

Crossing number(Rectilinear) of a graph G, denoted by cr(G) ($\overline{cr}(G)$), is minimum number of crossings among all good (Rectilinear) drawings of it.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

On Structured Graphs

- A simple connected planar graph can have at most 3|V| 6 edges (Euler's Formula).
- In a planar drawing of any simple graph with *n* vertices and $e \ge 4n$ edges there are at least $\frac{e^3}{64n^2}$ crossing pairs of edges. (Ajtai et al., 1982)
- We know improved bounds for graphs with special structures.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Resul

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

On Structured Graphs

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Generalization to Geometric Hypergraphs

A *d*-dimensional geometric *d*-hypergraph is a pair (V, E), where V (Vertex set) is a set of points in general position in \mathbb{R}^d and E (Set of hyperedges) is a collection of (d-1)-simplices spanned by some *d* tuples of V. (Dey and Pach, 1998)

It is also known as *d*-dimensional rectilinear drawing of *d*-uniform hypergraph in R^d . (Anshu and Shannigrahi, 2016)

A pair of hyperedges are said to be crossing if they are vertex disjoint and contain a common point in their relative interior. (Dey and Pach, 1998)

Figure: (left) crossing simplices in $\mathbb{R}^3,$ (right) intersecting simplices in \mathbb{R}^3

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Hypergraph Results

- The *d*-dimensional rectilinear crossing number of a hypergraph *H*, denoted by cr_d(*H*), is the minimum number of crossing pairs of hyperedges among all *d*-dimensional rectilinear drawings of *H* (2016, Anshu and Shannigrahi). Similarly, maximum *d*-dimensional rectilinear crossing number of *H* can be defined.
- The extremal results corresponding to planarity, were generalized. If $\overline{cr}_3(H) = 0$, then $|E| < 3n^2/2$ (Dey and Edelsbrunner, 1994). Dey and Pach proved that if $\overline{cr}_d(H) = 0$, then $|E| = O(n^{d-1})$ (1998).

• For every *n* and
$$|E| > cn^{d-1}$$
, $c_1 \frac{|E|^{d+1}}{n^{d(d-1)}} \le x_{2,d}^d \le c_2 \frac{|E|^{2+1/\lfloor d/2 \rfloor}}{n^{d/\lfloor d/2 \rfloor}}$
(Dey and Pach, 1998)

• The first lower bound $\Omega(2^d \log d/\sqrt{d})$ on $\overline{cr}_d(K_{2d}^d)$ was proposed by Anshu and Shannigrahi in 2016. Currently, the best known lower bound is $\Omega(d2^d)$. This also implies $\overline{cr}_d(K_n^d) = \Omega(d2^d)\binom{n}{2d}$. Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

We improve the lower bound on $\overline{cr}_d(K_{2d}^d)$ to $\Omega\left(\frac{(4\sqrt{2}/3^{3/4})^d}{d}\right)$ which is approximately $\Omega\left(\frac{2.481^d}{d}\right)$. Note that this bound is exponentially better than previous bounds.

- The new bound implies that $\overline{cr}_d(K_n^d) = \Omega\left(\frac{2.481^d}{d}\right) \binom{n}{2d}$ since each set of 2*d* vertices creates distinct crossing pairs of hyperedges.
- The maximum number of crossing pairs of hyperedges in a *d*-dimensional rectilinear drawing of $K_{d \times n}^d$ is $(2^{d-1} - 1) {n \choose 2}^d$.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

・ロト・西ト・ヨト・ヨー うへぐ

Our Results

 Let c_d^m be the number of crossing pairs of hyperedges in a d-dimensional convex drawing of K_{2d}^d where all of its vertices are placed on the d-dimensional moment curve. The value of c_d^m is

$$c_d^m = \begin{cases} \binom{2d-1}{d-1} - \sum_{i=1}^{\frac{d}{2}} \binom{d}{i} \binom{d-1}{i-1} & \text{if } d \text{ is even} \\ \binom{2d-1}{d-1} - 1 - \sum_{i=1}^{\lfloor \frac{d}{2} \rfloor} \binom{d-1}{i} \binom{d}{i} & \text{if } d \text{ is odd} \end{cases}$$

• The maximum number of crossing pairs of hyperedges in a 3-dimensional rectilinear drawing of K_n^3 is $3\binom{n}{6}$. The maximum number of crossing pairs of hyperedges in a 4-dimensional rectilinear drawing of K_n^4 is $13\binom{n}{8}$. These bounds are achieved when vertices are on the 3- and 4-dimensional moment curve, respectively.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

^oroof of Max-Crossing Nummber

Gale transform and Gale diagram

- Gale transform G(P) (Gale, 1963) of a set P having $n \ge d + 1$ points in \mathbb{R}^d (whose affine hull is \mathbb{R}^d) is a set of n vectors in \mathbb{R}^{n-d-1} .
- It preserves the combinatorial information about the point set. Here is a Gale transform and an affine Gale diagram of 8-points in R^4 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Properties of Gale Transform

We list the properties of Gale transformation ¹

- A sequence of vectors $G = \langle g_1, g_2, \dots, g_n \rangle$ in \mathbb{R}^{n-d-1} is a Gale transform of some $P \subset \mathbb{R}^d$ if and only if G spans \mathbb{R}^{n-d-1} and $\sum_{i=1}^n g_i = \vec{0}$.
- Points in *P* are in general position in \mathbb{R}^d if and only if every n d 1 vectors in G(P) span \mathbb{R}^{n-d-1} .
- For t ≤ d, consider a tuple (i₁, i₂,..., i_t), where 1 ≤ i₁ < i₂ < ... < i_t ≤ n. A t-element subset P' = {v_{i1}, v_{i2},..., v_{it}} ⊂ P forms a (t − 1)-dimensional face of Conv(P) if and only if the relative interior of the convex hull of the points in G(P) \ {g_{i1}, g_{i2},..., g_{it}} contains the origin.
- Consider a tuple (i_1, i_2, \ldots, i_k) , where $1 \le i_1 < i_2 < \ldots < i_k \le m$. The convex hull of $\{p_{i_1}, p_{i_2}, \ldots, p_{i_k}\}$ crosses the convex hull of $P \setminus \{p_{i_1}, p_{i_2}, \ldots, p_{i_k}\}$ if and only if there exists a linear separation of the vectors in D(P) into $\{g_{i_1}, g_{i_2}, \ldots, g_{i_k}\}$ and $D(P) \setminus \{g_{i_1}, g_{i_2}, \ldots, g_{i_k}\}$.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

¹J. Matoušek, Lectures in Discrete Geometry: $\rightarrow \langle B \rangle \langle B$

Other Useful Lemmas

Lemma

² Let C' be a set containing d + 4 points in general position in \mathbb{R}^d . There exist at least $\lfloor (d+4)/2 \rfloor$ pairs of disjoint subsets $\{C'_{i1}, C'_{i2}\}$ of C' for each i satisfying $1 \le i \le \lfloor (d+4)/2 \rfloor$ such that the following properties hold.

- 1. $C_{i1}' \cup C_{i2}' = C'$ and $|C_{i1}'|, |C_{i2}'| \ge \lfloor (d+2)/2 \rfloor$
- 2. $(|C'_{i1}| 1)$ -simplex $Conv(C'_{i1})$ crosses the $(|C'_{i2}| 1)$ -simplex $Conv(C'_{i2})$ (i.e., $C'_{i1} \cap C'_{i2} = \emptyset$ and $Conv(C'_{i1}) \cap Conv(C'_{i2}) \neq \emptyset$).
- 3. There exist $C''_{i1} \subseteq C'_{i1}$ and $C''_{i2} \subseteq C'_{i2}$ such that $|C''_{i1}|, |C''_{i2}| \ge \lfloor (d+2)/2 \rfloor, |C''_{i1}| + |C''_{i2}| = d+2$ and $(|C''_{i1}| - 1)$ -simplex $Conv(C''_{i1})$ crosses the $(|C''_{i2}| - 1)$ -simplex $Conv(C''_{i2})$.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

^Droof of Max-Crossing Nummber

Other Useful Lemmas

Lemma

³ Let a set C contain 2d points in general position in \mathbb{R}^d . Let $C' \subset C$ be a subset such that |C'| = d + 4. Let C'_1 and C'_2 be two disjoint subsets of C' such that $|C'_1| = c'_1, |C'_2| = c'_2, C'_1 \cup C'_2 = C'$ and $c'_1, c'_2 \geq \lfloor (d+2)/2 \rfloor$. If the $(c'_1 - 1)$ -simplex formed by C'_1 crosses the $(c'_2 - 1)$ -simplex formed by C'_2 , then the (d - 1)-simplex formed by some point set $B'_1 \supset C'_1$ and the (d - 1)-simplex formed by some point set $B'_2 \supset C'_2$ satisfying $B'_1 \cap B'_2 = \emptyset$, $|B'_1|, |B'_2| = d$ and $B'_1 \cup B'_2 = C$ also form a crossing pair.

Note: Consider a set of d + 4 points from a set of 2d points. We know there exist $\Omega(d)$ crossing pairs of (k - 1)- and (l - 1)-simplices where $k, l \ge \lfloor (d + 2)/2 \rfloor$ spanned by d + 4 points. We can extend each of these crossing pairs of lower dimensional simplices to $\Theta(2^d/\sqrt{d})$ crossing pairs of (d - 1)-simplices, therefore forming at least $\Omega(2^d\sqrt{d})$ crossing pairs of (d - 1)-simplices.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

³Gangopadhyay and Shannigrahi,2020 🔹 🖘 🖉 🖉 🖉 🖉 🖉 🖉

Proof Outline

Lemma

Let σ be a $\lfloor d/2 \rfloor$ -simplex, and τ be a (d-1)-simplex such that all the $d + \lfloor d/2 \rfloor + 1$ points of Vert $(\sigma) \cup$ Vert (τ) are in general position in \mathbb{R}^d . At most $O((3^{3/4}/\sqrt{2})^d/\sqrt{d}) \lceil d/2 \rceil$ -faces of τ cross σ .

- Let τ be a (d-1)-simplex that crosses a $\lfloor d/2 \rfloor$ -simplex σ . Vertex set of τ and σ are disjoint and all vertices are in general position in R^d . We want an upper bound on the number of $\lceil d/2 \rceil$ -sub simplices of τ that cross σ .
- Project to the orthogonal space of σ , call it σ^{\perp} . All the vertex of τ will have distinct image and σ maps to a single point *O*. *O* and the image of the vertices of τ form a totally cyclic vector configuration.
- If a [d/2]-sub simplex of τ cross σ then the convex hull of corresponding [d/2] + 1 vertices contains O.
- Then, apply Gale transform and Upper Bound Theorem to obtain an upper bound of $\approx \binom{3d/4}{d/2}$.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Proof Outline for Improved Lower Bound

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Improvement on the Bound

- There are $\binom{2d}{d+4} = \Theta(4^d/\sqrt{d})$ ways to choose a subset of size d+4.
- Each of them can produce $2^d \sqrt{d}$ crossing pairs of (d-1)-simplices.
- Note that a crossing pair of simplices can originate from many such (d + 4)-sized subset. We want an Upper bound on that number.
- The above mentioned lemma gives the following upper bound. $2\binom{d}{\lceil d+2/2\rceil}O((3^{3/4}/\sqrt{2})^d/\sqrt{d}) \times O(d^2) = O((3^{3/4}\sqrt{2})^dd)$
- This implies that there exist at least $\frac{\Omega\left(2^d\sqrt{d}\right)\Theta\left(4^d/\sqrt{d}\right)}{O((3^{3/4}\sqrt{2})^dd)} = \Omega\left(\frac{(4\sqrt{2}/3^{3/4})^d}{d}\right) \text{ crossing pairs of hyperedges.}$

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

・ロト・西ト・山田・山田・山口・

Important Lemmas

Figure: Non-crossing pair of hyperedges of $K_{4\times 2}^4$.

Lemma

(Akiyama et al., 1989) Let us consider d pairwise disjoint sets in \mathbb{R}^d , each consisting of two points, such that all 2d points are in general position. Then there exist 2 pairwise disjoint (d-1) simplices such that each simplex has one vertex from each set.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Lemma

(Breen, 1973) Let $p_1 \prec p_2 \prec \ldots \prec p_{\lfloor \frac{d}{2} \rfloor + 1}$ and $q_1 \prec q_2 \prec \ldots \prec q_{\lceil \frac{d}{2} \rceil + 1}$ be two distinct point sequences on the d-dimensional moment curve such that $p_i \neq q_j$ for any $1 \leq i \leq \lfloor \frac{d}{2} \rfloor + 1$ and $1 \leq j \leq \lceil \frac{d}{2} \rceil + 1$. The $\lfloor \frac{d}{2} \rfloor$ -simplex and the $\lceil \frac{d}{2} \rceil$ -simplex, formed respectively by these point sequences, cross if and only if every interval (q_j, q_{j+1}) contains exactly one p_i and every interval (p_i, p_{i+1}) contains exactly one q_i .

Lemma

(Dey et al., 1998) Let P and Q be two vertex-disjoint (d-1)-simplices such that each of the 2d vertices belonging to these simplices lies on the d-dimensional moment curve. If P and Q cross, then there exist a $\lfloor \frac{d}{2} \rfloor$ -simplex $U \subsetneq P$ and another $\lceil \frac{d}{2} \rceil$ -simplex $V \subsetneq Q$ such that U and V cross.

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Proof Idea

- The maximum d-dimensional rectilinear crossing number of K^d_{d×2} is 2^{d-1} - 1.
- Let A be a set of d vertices of $K_{d\times 2}^d$ such that each vertex of A is from different parts of $K_{d\times 2}^d$. Let B be the set of rest of the vertices of $K_{d\times 2}^d$. Note that |B| = d and each vertex of B is from different parts of $K_{d\times 2}^d$. The number of unordered pairs $\{A, B\}$ is $\frac{1}{2}2^d = 2^{d-1}$.
- Lemma by Akiyama et al. implies that in any *d*-dimensional rectilinear drawing of $K_{d\times 2}^d$, there exists a pair of disjoint simplices such that each simplex has one vertex from each part of $K_{d\times 2}^d$. This implies the maximum number of unordered pairs $\{A, B\}$ such that (d-1)-simplex formed by the vertices of *A* forms a crossing with the (d-1)-simplex formed by the vertices of *B* is $2^{d-1} 1$.
- For each *i* satisfying $1 \le i \le d$, let us denote the *i*th part of the vertex set of $K_{d\times 2}^d$ by C_i . Let $\{p_{c_i}, p'_{c_i}\}$ denote the set of 2 vertices in C_i . In this particular drawing, the vertices of $K_{d\times 2}^d$ are placed on the *d*-dimensional moment curve such that they satisfy the following ordering on the *d*-dimensional moment curve. $p_{c_1} \prec p'_{c_1} \prec p_{c_2} \prec p'_{c_2} \dots \prec p_{c_{d-1}} \prec p'_{c_d} \dashv p'_{c_d} \prec p'_{c_d}$

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Proof Idea

 Lemmas by Breen and Dey et al. along with pigeonhole principle imply that there exists only one pair of hyperedges {A, B} that does not form a crossing where {A, B} are

$$A = \{p_{c_1}, p'_{c_2}, p_{c_3}, p'_{c_4}, \dots, p_{c_{d-1}}, p'_{c_d}\}$$
$$B = \{p'_{c_1}, p_{c_2}, p'_{c_3}, p_{c_4}, \dots, p'_{c_{d-1}}, p_{c_d}\}$$

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

- For each *i* satisfying 1 ≤ *i* ≤ *d*, let C_i be the *ith* color class of the vertex set of K^d_{d×n}. Let {pⁱ₁, pⁱ₂,..., pⁱ_n} be the set of *n* vertices in C_i. Consider the following arrangement of the vertices of K^d_{d×n} on the *d*-dimensional moment curve.
 - Any vertex of C_i precedes any vertex of C_j if i < j.
 - For each *i* satisfying $1 \le i \le d$, $p_l^i \prec p_m^i$ if l < m.
- In this arrangement, any K^d_{d×2} contains 2^{d-1} − 1 crossing pairs of hyperedges. Thus, the maximum number of crossing pairs of hyperedges in a *d*-dimensional rectilinear drawing of K^d_{d×n} is (2^{d-1} − 1)(ⁿ₂)^d.

- Is the convex hull of the crossing optimal drawing of K_n^d is a d-simplex?
- Does all neighborly polytope (with 2d vertices in general position) produces the same number of crossing pairs of hyperedges as the cyclic d-polytopes? The exact number of crossing pairs of hyperedges are known if the d-dimensional rectilinear drawing of K_{2d}^d (And therefore K_n^d) is a cyclic d-polytope.
- Is this number, i.e., $c_d^m \binom{n}{2d}$ is the maximum for d > 4?
- There is a significant gap between the lower bound and the upper bound on the *d*-dimensional rectilinear crossing number of K^d_{2d}. Can we reduce this (at least for smaller values of *d*)?

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

This presentation contains various results from different papers. I acknowledge their contributions. Here is the list of my co-authors related to those papers.

- Dr. Saswata Shannigrahi
- Dr. Anurag Anshu
- Satyanarayana Vusirikala
- Saif Ayan Khan
- Dr. Gaiane Panina

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ のQ@

Crossings in Geometric Hypergraphs

R. Gangopadhyay

Geometric Graphs and Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing Nummber

Open Question

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで

Thank You!