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A brief history of crossing number

It started with Turan’s brick factory problem which asks for the
minimum number of crossings in a drawing of a complete bipartite
graph Kn,n. Pál Turan asked this question during World War II .

In a good drawing of a graph vertices are mapped to points in general
position (i.e., no three are co-linear) in R2 and edges are drawn as
simple continuous arcs connecting vertices. A good drawing is
rectilinear if edges are straight line segments.
Crossing number(Rectilinear) of a graph G , denoted by cr(G) (cr(G)),
is minimum number of crossings among all good (Rectilinear) drawings
of it.
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On Structured Graphs

• A simple connected planar graph can have at most 3|V | − 6 edges
(Euler’s Formula).

• In a planar drawing of any simple graph with n vertices and e ≥ 4n

edges there are at least
e3

64n2
crossing pairs of edges. (Ajtai et al.,

1982)

• We know improved bounds for graphs with special structures.

▶ Zarankiewicz (Zarankiewicz, 1955) conjectured that
cr(Km,n) = ⌊m/2⌋⌊(m − 1)/2⌋⌊n/2⌋⌊(n − 1)/2⌋.
Kleitman (Kleitman, 1970) proved Zarankiewicz’s conjecture
for m ≤ 6 and an arbitrary n.

▶ 0.37997

(
n

4

)
+Θ(n3) ≤ cr(Kn) ≤ 0.380449186

(
n

4

)
+Θ(n3).

(Ábrego et al., 2012), (Aichholzer et al., 2020)
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Figure: An optimal drawing of K6,4
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Generalization to Geometric Hypergraphs

A d-dimensional geometric d-hypergraph is a pair (V ,E), where V
(Vertex set) is a set of points in general position in Rd and E (Set of
hyperedges) is a collection of (d − 1)-simplices spanned by some d
tuples of V . (Dey and Pach, 1998)

It is also known as d-dimensional rectilinear drawing of d-uniform
hypergraph in Rd . (Anshu and Shannigrahi, 2016)

A pair of hyperedges are said to be crossing if they are vertex disjoint
and contain a common point in their relative interior. (Dey and Pach,
1998)

Figure: (left) crossing simplices in R3, (right) intersecting simplices in
R3



Crossings in Geometric
Hypergraphs

R. Gangopadhyay

Geometric Graphs and
Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing
Nummber

Open Question

Hypergraph Results

• The d-dimensional rectilinear crossing number of a hypergraph H,
denoted by crd(H), is the minimum number of crossing pairs of
hyperedges among all d-dimensional rectilinear drawings of
H (2016, Anshu and Shannigrahi). Similarly, maximum
d-dimensional rectilinear crossing number of H can be defined.

• The extremal results corresponding to planarity, were generalized.
If cr 3(H) = 0, then |E | < 3n2/2 (Dey and Edelsbrunner, 1994).
Dey and Pach proved that if crd(H) = 0, then |E | = O(nd−1)
(1998).

• For every n and |E | > cnd−1, c1
|E |d+1

nd(d−1)
≤ xd

2,d ≤ c2
|E |2+1/⌊d/2⌋

nd/⌊d/2⌋

(Dey and Pach, 1998)

• The first lower bound Ω(2d log d/
√
d) on crd(K

d
2d) was proposed

by Anshu and Shannigrahi in 2016. Currently, the best known
lower bound is Ω(d2d). This also implies crd(K

d
n ) = Ω(d2d)

(
n
2d

)
.
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Our Results

• We improve the lower bound on crd(K
d
2d) to Ω

(
(4
√
2/33/4)d

d

)
which is approximately Ω

(
2.481d

d

)
. Note that this bound is

exponentially better than previous bounds.

• The new bound implies that crd(K
d
n ) = Ω

(
2.481d

d

)(
n

2d

)
since

each set of 2d vertices creates distinct crossing pairs of hyperedges.

• The maximum number of crossing pairs of hyperedges in a

d-dimensional rectilinear drawing of K d
d×n is (2d−1 − 1)

(
n

2

)d

.



Crossings in Geometric
Hypergraphs

R. Gangopadhyay

Geometric Graphs and
Hypergraphs

Our Result

Tools used

Proof outline

Proof of Max-Crossing
Nummber

Open Question

Our Results

• Let cmd be the number of crossing pairs of hyperedges in a
d-dimensional convex drawing of K d

2d where all of its vertices are
placed on the d-dimensional moment curve. The value of cmd is

cmd =



(
2d − 1

d − 1

)
−

d
2∑

i=1

(
d

i

)(
d − 1

i − 1

)
if d is even(

2d − 1

d − 1

)
− 1−

⌊ d
2
⌋∑

i=1

(
d − 1

i

)(
d

i

)
if d is odd

• The maximum number of crossing pairs of hyperedges in a
3-dimensional rectilinear drawing of K 3

n is 3
(
n
6

)
. The maximum number

of crossing pairs of hyperedges in a 4-dimensional rectilinear drawing of
K 4

n is 13
(
n
8

)
. These bounds are achieved when vertices are on the 3- and

4-dimensional moment curve, respectively.
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Gale transform and Gale diagram

• Gale transform G(P) (Gale, 1963) of a set P having n ≥ d + 1
points in Rd (whose affine hull is Rd) is a set of n vectors in
Rn−d−1.

• It preserves the combinatorial information about the point set.
Here is a Gale transform and an affine Gale diagram of 8-points in
R4.
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Properties of Gale Transform

We list the properties of Gale transformation 1

• A sequence of vectors G = ⟨g1, g2, . . . , gn⟩ in Rn−d−1 is a Gale
transform of some P ⊂ Rd if and only if G spans Rn−d−1 and∑n

i=1 gi = 0⃗.

• Points in P are in general position in Rd if and only if every
n − d − 1 vectors in G(P) span Rn−d−1.

• For t ≤ d , consider a tuple (i1, i2, . . . , it), where
1 ≤ i1 < i2 < . . . < it ≤ n. A t-element subset
P ′ = {vi1 , vi2 , . . . , vit} ⊂ P forms a (t − 1)-dimensional face of
Conv(P) if and only if the relative interior of the convex hull of
the points in G(P) \ {gi1 , gi2 , . . . , git} contains the origin.

• Consider a tuple (i1, i2, . . . , ik), where 1 ≤ i1 < i2 < . . . < ik ≤ m.
The convex hull of {pi1 , pi2 , . . . , pik } crosses the convex hull of
P \ {pi1 , pi2 , . . . , pik } if and only if there exists a linear separation
of the vectors in D(P) into {gi1 , gi2 , . . . , gik } and
D(P) \ {gi1 , gi2 , . . . , gik }.

1J. Matoušek, Lectures in Discrete Geometry.
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Other Useful Lemmas

Lemma
2 Let C ′ be a set containing d + 4 points in general position in Rd .
There exist at least ⌊(d + 4)/2⌋ pairs of disjoint subsets {C ′

i1,C
′
i2} of C ′

for each i satisfying 1 ≤ i ≤ ⌊(d + 4)/2⌋ such that the following
properties hold.

1. C ′
i1 ∪ C ′

i2 = C ′ and |C ′
i1|, |C ′

i2| ≥ ⌊(d + 2)/2⌋
2. (|C ′

i1| − 1)-simplex Conv(C ′
i1) crosses the (|C ′

i2| − 1)-simplex
Conv(C ′

i2) (i.e., C
′
i1 ∩ C ′

i2 = ∅ and Conv(C ′
i1) ∩ Conv(C ′

i2) ̸= ∅).
3. There exist C ′′

i1 ⊆ C ′
i1 and C ′′

i2 ⊆ C ′
i2 such that

|C ′′
i1|, |C ′′

i2| ≥ ⌊(d + 2)/2⌋, |C ′′
i1|+ |C ′′

i2| = d + 2 and
(|C ′′

i1| − 1)-simplex Conv(C ′′
i1) crosses the (|C ′′

i2| − 1)-simplex
Conv(C ′′

i2).

2Gangopadhyay and Shannigrahi,2020
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Other Useful Lemmas

Lemma
3 Let a set C contain 2d points in general position in Rd . Let C ′ ⊂ C
be a subset such that |C ′| = d + 4. Let C ′

1 and C ′
2 be two disjoint

subsets of C ′ such that |C ′
1| = c ′1, |C ′

2| = c ′2,C
′
1 ∪ C ′

2 = C ′ and
c ′1, c

′
2 ≥ ⌊(d + 2)/2⌋. If the (c ′1 − 1)-simplex formed by C ′

1 crosses the
(c ′2 − 1)-simplex formed by C ′

2, then the (d − 1)-simplex formed by
some point set B ′

1 ⊃ C ′
1 and the (d − 1)-simplex formed by some point

set B ′
2 ⊃ C ′

2 satisfy-
ing B ′

1∩B ′
2 = ∅, |B ′

1|, |B ′
2| = d and B ′

1∪B ′
2 = C also form a crossing pair.

Note: Consider a set of d + 4 points from a set of 2d points. We know
there exist Ω(d) crossing pairs of (k − 1)- and (l − 1)-simplices where
k, l ≥ ⌊(d + 2)/2⌋ spanned by d + 4 points. We can extend each of
these crossing pairs of lower dimensional simplices to Θ(2d/

√
d)

crossing pairs of (d − 1)-simplices, therefore forming at least Ω(2d
√
d)

crossing pairs of (d − 1)-simplices.

3Gangopadhyay and Shannigrahi,2020
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Proof Outline

Lemma
Let σ be a ⌊d/2⌋-simplex, and τ be a (d − 1)-simplex such that all the
d + ⌊d/2⌋+ 1 points of Vert(σ)∪Vert(τ) are in general position in Rd .
At most O((33/4/

√
2)d/

√
d) ⌈d/2⌉-faces of τ cross σ.

• Let τ be a (d − 1)-simplex that crosses a ⌊d/2⌋-simplex σ. Vertex
set of τ and σ are disjoint and all vertices are in general position in
Rd . We want an upper bound on the number of ⌈d/2⌉-sub
simplices of τ that cross σ.

• Project to the orthogonal space of σ, call it σ⊥. All the vertex of
τ will have distinct image and σ maps to a single point O. O and
the image of the vertices of τ form a totally cyclic vector
configuration.

• If a ⌈d/2⌉-sub simplex of τ cross σ then the convex hull of
corresponding ⌈d/2⌉+ 1 vertices contains O.

• Then, apply Gale transform and Upper Bound Theorem to obtain
an upper bound of ≈

(
3d/4
d/2

)
.
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Proof Outline for Improved Lower Bound

t

h l

o

Figure: Projection argument for d = 3
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Improvement on the Bound

• There are
(

2d
d+4

)
= Θ(4d/

√
d) ways to choose a subset of size

d + 4.

• Each of them can produce 2d
√
d crossing pairs of

(d − 1)-simplices.

• Note that a crossing pair of simplices can originate from many such
(d + 4)-sized subset. We want an Upper bound on that number.

• The above mentioned lemma gives the following upper bound.

2

(
d

⌈d + 2/2⌉

)
O((33/4/

√
2)d/

√
d)× O(d2) = O((33/4

√
2)dd)

• This implies that there exist at least

Ω
(
2d
√
d
)
Θ
(
4d/

√
d
)

O((33/4
√
2)dd)

= Ω

(
(4
√
2/33/4)d

d

)
crossing pairs of

hyperedges.
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Important Lemmas

pC
3

p'C
1

pC1 p'C
4

pC
4

p'C
2

pC
2

p'C
3

Figure: Non-crossing pair of hyperedges of K 4
4×2.

Lemma
(Akiyama et al., 1989) Let us consider d pairwise disjoint sets in Rd ,
each consisting of two points, such that all 2d points are in general
position. Then there exist 2 pairwise disjoint (d-1) simplices such that
each simplex has one vertex from each set.
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Important lemmas

Lemma
(Breen, 1973) Let p1 ≺ p2 ≺ . . . ≺ p⌊ d

2
⌋+1 and q1 ≺ q2 ≺ . . . ≺ q⌈ d

2
⌉+1

be two distinct point sequences on the d-dimensional moment curve
such that pi ̸= qj for any 1 ≤ i ≤ ⌊ d

2
⌋+ 1 and 1 ≤ j ≤ ⌈ d

2
⌉+ 1. The

⌊ d
2
⌋-simplex and the ⌈ d

2
⌉-simplex, formed respectively by these point

sequences, cross if and only if every interval (qj , qj+1) contains exactly
one pi and every interval (pi , pi+1) contains exactly one qj .

Lemma
(Dey et al., 1998) Let P and Q be two vertex-disjoint (d − 1)-simplices
such that each of the 2d vertices belonging to these simplices lies on
the d-dimensional moment curve. If P and Q cross, then there exist a
⌊ d
2
⌋-simplex U ⊊ P and another ⌈ d

2
⌉-simplex V ⊊ Q such that U and

V cross.
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Proof Idea

• The maximum d-dimensional rectilinear crossing number of K d
d×2

is 2d−1 − 1.

• Let A be a set of d vertices of K d
d×2 such that each vertex of A is

from different parts of K d
d×2. Let B be the set of rest of the

vertices of K d
d×2. Note that |B| = d and each vertex of B is from

different parts of K d
d×2. The number of unordered pairs {A,B} is

1

2
2d = 2d−1.

• Lemma by Akiyama et al. implies that in any d-dimensional
rectilinear drawing of K d

d×2, there exists a pair of disjoint simplices
such that each simplex has one vertex from each part of K d

d×2.
This implies the maximum number of unordered pairs {A,B} such
that (d − 1)-simplex formed by the vertices of A forms a crossing
with the (d − 1)-simplex formed by the vertices of B is 2d−1 − 1.

• For each i satisfying 1 ≤ i ≤ d , let us denote the i th part of the
vertex set of K d

d×2 by Ci . Let {pci , p
′
ci } denote the set of 2 vertices

in Ci . In this particular drawing, the vertices of K d
d×2 are placed on

the d-dimensional moment curve such that they satisfy the
following ordering on the d-dimensional moment curve.
pc1 ≺ p′

c1 ≺ pc2 ≺ p′
c2 . . . ≺ pcd−1 ≺ p′

cd−1
≺ pcd ≺ p′

cd .
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Proof Idea

• Lemmas by Breen and Dey et al. along with pigeonhole principle
imply that there exists only one pair of hyperedges {A,B} that
does not form a crossing where {A,B} are

A = {pc1 , p
′
c2 , pc3 , p

′
c4 , . . . , pcd−1 , p

′
cd }

B = {p′
c1 , pc2 , p

′
c3 , pc4 , . . . , p

′
cd−1

, pcd }
.

• For each i satisfying 1 ≤ i ≤ d , let Ci be the i th color class of the
vertex set of K d

d×n. Let {pi
1, p

i
2, . . . , p

i
n} be the set of n vertices in

Ci . Consider the following arrangement of the vertices of K d
d×n on

the d-dimensional moment curve.

▶ Any vertex of Ci precedes any vertex of Cj if i < j .
▶ For each i satisfying 1 ≤ i ≤ d , pi

l ≺ pi
m if l < m.

• In this arrangement, any K d
d×2 contains 2d−1 − 1 crossing pairs of

hyperedges. Thus, the maximum number of crossing pairs of
hyperedges in a d-dimensional rectilinear drawing of K d

d×n is

(2d−1 − 1)
(
n
2

)d
.
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Open Questions

• Is the convex hull of the crossing optimal drawing of K d
n is a

d-simplex?

• Does all neighborly polytope (with 2d vertices in general position)
produces the same number of crossing pairs of hyperedges as the
cyclic d-polytopes? The exact number of crossing pairs of
hyperedges are known if the d-dimensional rectilinear drawing of
K d

2d (And therefore K d
n ) is a cyclic d-polytope.

• Is this number, i.e., cmd
(

n
2d

)
is the maximum for d > 4?

• There is a significant gap between the lower bound and the upper
bound on the d-dimensional rectilinear crossing number of K d

2d .
Can we reduce this (at least for smaller values of d)?
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