Nilanjan Datta

IAI, TCG CREST

Nilanjan Datta (IAI, TCG CREST)

Linear Cryptanalysis

イロト 不得 トイヨト イヨト

- Consider a basic cipher: $C = M \oplus K$.
- Can you mount a key recovery attack?

э

イロト 不得 トイヨト イヨト

- Consider a basic cipher: $C = M \oplus K$.
- Can you mount a key recovery attack?

Key Recovery Attack

- Make a query M_1 . Say the ciphertext is C_1 .
- Return $K = M_1 \oplus C_1$.

Consider a basic cipher of 4 bits:

$$C[1] = M[1] \oplus M[2] \oplus K[1] \oplus K[2]$$

$$C[2] = M[3] \oplus K[2] \oplus K[3]$$

$$C[3] = M[1] \oplus M[3] \oplus K[3] \oplus K[4]$$

$$C[4] = M[2] \oplus M[4] \oplus K[1] \oplus K[3]$$

- Can you have a key recovery attack?
- What is the adversarial model?

э

< ロ > < 同 > < 回 > < 回 >

Consider a basic cipher of 4 bits:

$$C[1] = M[1] \oplus M[2] \oplus K[1] \oplus K[2]$$

$$C[2] = M[3] \oplus K[2] \oplus K[3]$$

$$C[3] = M[1] \oplus M[3] \oplus K[3] \oplus K[4]$$

$$C[4] = M[2] \oplus M[4] \oplus K[1] \oplus K[3]$$

• Guess a key say K[1]. Find K[2], K[3], K[4]. Complexity reduces from 2^4 to 2.

• Known Plaintext Attack is good enough to mount the attack.

イロト 不得下 イヨト イヨト

Consider any cipher:

$$C = a \cdot M \oplus b \cdot K.$$

Generic Result

If ciphertext is a linear combination of the plaintext and the key, it is easy to mount

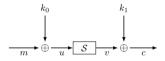
- key recovery attack,
- distinguishing attack.

What happens for non-linear functions?

Try to approximate a non-linear function by a linear function.

First Toy Cipher: Cipher1

 $c = S(m \oplus k_0) \oplus k_1$



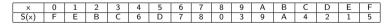


Table: Sample S-Box

Can you recover the key here?

6/31

Choose $\alpha = (1 \ 0 \ 0 \ 1)$ and $\beta = (0 \ 0 \ 1 \ 0)$.

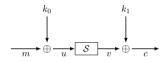
x	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
S(x)	F	E	В	С	6	D	7	8	0	3	9	Α	4	2	1	5
$\alpha \cdot x$	0	1	0	1	0	1	0	1	1	0	1	0	1	0	1	0
$\beta \cdot S(x)$	1	1	1	0	1	0	1	0	0	1	0	1	0	1	0	0

Table: linear approximation of S-Box

Linear Approximation of the S-Box

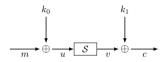
 $\alpha \cdot x \oplus \beta \cdot S(x) = 1$, with probability 7/8.

(a) < (a) < (b) < (b)



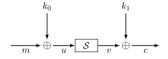
Linear Approximation of the S-Box

- $u = m \oplus k_0$ with probability 1.
- $\alpha \cdot u \oplus \beta \cdot v = 1$ with probability 7/8.
- $v = c \oplus k_1$ with probability 1.



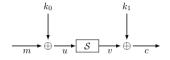
Linear Approximation of the S-Box

- $\alpha \cdot u \oplus \beta \cdot v = 1$ with probability 7/8.
- $\alpha \cdot (m \oplus k_0) \oplus \beta \cdot (c \oplus k_1) = 1$ with probability 7/8.
- $\alpha \cdot k_0 \oplus \beta \cdot k_1 = \alpha \cdot m \oplus \beta \cdot c \oplus 1$ with probability 7/8.



Linear Approximation of the S-Box

• Key Recovery complexity reduces from 2^8 from 2^7 .



Interesting Observation

- If the probability of the linear approximation is 1/2, you can not mount the attack.
- Goal: Find a linear approximation that has high deviation from 1/2.

Consider two random binary variables X_1 and X_2 . Let $Pr[X_1 = 0] = p_1$ and $Pr[X_2 = 0] = p_2$

• Bias of X_i is defined by $p_i - 1/2$.

3

イロト 人間 ト イヨト イヨト

Consider two random binary variables X_1 and X_2 . Let $\Pr[X_1 = 0] = p_1$ and $\Pr[X_2 = 0] = p_2$

- Bias of X_i is defined by $p_i 1/2$.
- If X_1 has bias ϵ_1 and X_2 has bias ϵ_2 and they are independent, what is the bias of $X_1 \oplus X_2$?

イロト 不得 トイヨト イヨト 二日

Consider two random binary variables X_1 and X_2 . Let $Pr[X_1 = 0] = p_1$ and $Pr[X_2 = 0] = p_2$

- Bias of X_i is defined by $p_i 1/2$.
- If X_1 has bias ϵ_1 and X_2 has bias ϵ_2 and they are independent, what is the bias of $X_1 \oplus X_2$?
- Can you generalize it for any X_1, \ldots, X_l ?

イロト 不得 トイヨト イヨト 二日

Consider two random binary variables X_1 and X_2 . Let $\Pr[X_1 = 0] = p_1$ and $\Pr[X_2 = 0] = p_2$

- Bias of X_i is defined by $p_i 1/2$.
- If X_1 has bias ϵ_1 and X_2 has bias ϵ_2 and they are independent, what is the bias of $X_1 \oplus X_2$?
- Can you generalize it for any X_1, \ldots, X_l ?

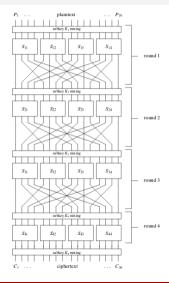
Piling-Up Lemma

If $\epsilon_{i_1,...,i_l}$ denotes the bias of the random variable $X_{i_1}\oplus\cdots\oplus X_{i_l}$, then

$$\epsilon_{i_1,\ldots,i_l} = 2^{l-1} \prod_{j=1}^l \epsilon_{i_j}$$

イロト 不得下 イヨト イヨト

Example of an Iterative SPN Block Cipher



Cipher4

- 16-bit Cipher
- Number of rounds: 4
- S-Box size: 4-bit

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
-[E	4	D	1	2	F	В	8	3	A	6	С	5	9	0	7

Table: S-Box

・ロマ・山マ・山田・ 山田・ うろう

Examine Linear Pairs of the S-Box

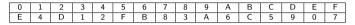


Table: S-Box

<i>X</i> ₁	X_2	X_3	X_4	Y_1	Y_2	<i>Y</i> ₃	Y_4	$X_2 \\ \oplus X_3$	Y_1 $\oplus Y_3$ $\oplus Y_4$	$X_1 \\ \oplus X_4$	<i>Y</i> ₂	$X_3 \\ \oplus X_4$	$Y_1 \\ \oplus Y_4$
0	0	0	0	1	1	1	0	0	0	0	1	0	1
0	0	0	1	0	1	0	0	0	0	1	1	1	0
0	0	1	0	1	1	0	1	1	0	0	1	1	0
0	0	1	1	0	0	0	1	1	1	1	0	0	1
0	1	0	0	0	0	1	0	1	1	0	0	0	0
0	1	0	1	1	1	1	1	1	1	1	1	1	0
0	1	1	0	1	0	1	1	0	1	0	0	1	0
0	1	1	1	1	0	0	0	0	1	1	0	0	1
1	0	0	0	0	0	1	1	0	0	1	0	0	1
1	0	0	1	1	0	1	0	0	0	0	0	1	1
1	0	1	0	0	1	1	0	1	1	1	1	1	0
1	0	1	1	1	1	0	0	1	1	0	1	0	1
1	1	0	0	0	1	0	1	1	1	1	1	0	1
1	1	0	1	1	0	0	1	1	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1	0	1	0
1	1	1	1	0	1	1	1	0	0	0	1	0	1

Linear Approximation

Linear Approximation Table (LAT)

 $2^n \times 2^n$ table to capture the linear approximation:

$$L_{S}(a,b) = |\{x \in \mathbb{F}_{2}^{n} : (a \cdot x) = (b \cdot S(x))\}| - 2^{n-1}$$

Linearity

Maximum value in the LAT (non-zero appoximation):

 $L_S = |max_{a,b\neq 0}L_S(a,b)|.$

High Propagation Ratios for Linear Approximation Table (LAT) for the S-Box

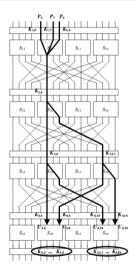
								(Dutpu	t Sun	n						
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	+8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I 1	1	0	0	-2	-2	0	0	-2	+6	+2	+2	0	0	+2	+2	0	0
	2	0	0	-2	-2	0	0	-2	-2	0	0	+2	+2	0	0	-6	+2
1	3	0	0	0	0	0	0	0	0	+2	-6	-2	-2	+2	+2	-2	-2
n	4	0	+2	0	-2	-2	4	-2	0	0	-2	0	+2	+2	4	+2	0
p u	5	0	-2	-2	0	-2	0	+4	+2	-2	0	-4	+2	0	-2	-2	0
t	6	0	+2	-2	+4	+2	0	0	+2	0	-2	+2	+4	-2	0	0	-2
	7	0	-2	0	+2	+2	-4	+2	0	-2	0	+2	0	+4	+2	0	+2
S	8	0	0	0	0	0	0	0	0	-2	+2	+2	-2	+2	-2	-2	-6
u	9	0	0	-2	-2	0	0	-2	-2	-4	0	-2	+2	0	+4	+2	-2
m	Α	0	+4	-2	+2	-4	0	+2	-2	+2	+2	0	0	+2	+2	0	0
I 1	в	0	+4	0	-4	+4	0	+4	0	0	0	0	0	0	0	0	0
I 1	С	0	-2	+4	-2	-2	0	+2	0	+2	0	+2	+4	0	+2	0	-2
1	D	0	+2	+2	0	-2	+4	0	+2	-4	-2	+2	0	+2	0	0	+2
1	Е	0	+2	+2	0	-2	-4	0	+2	-2	0	0	-2	-4	+2	-2	0
	F	0	-2	-4	-2	-2	0	+2	0	0	-2	+4	-2	-2	0	+2	0

$$\mathsf{Bias}_{[1011 \to 0100]} = \frac{1}{4}, \quad \mathsf{Bias}_{[0100 \to 0101]} = -\frac{1}{4}$$

Nilanjan Datta (IAI, TCG CREST)

・ロ・・母・・ヨ・・ヨ・ シック

16/31

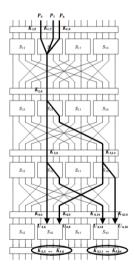


Computing Biases in the Propagation for the S-Boxes

• Bias of
$$1011 \xrightarrow{S_2^1} 0100$$
 is $\frac{1}{4}$
• Bias of $0100 \xrightarrow{S_2^2} 0101$ is $-\frac{1}{4}$
• Bias of $0100 \xrightarrow{S_2^3} 0101$ is $-\frac{1}{4}$
• Bias of $0100 \xrightarrow{S_4^3} 0101$ is $-\frac{1}{4}$

3

イロト 不得 トイヨト イヨト

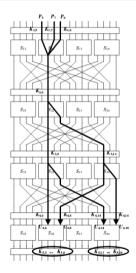


Linear Approximation for the First Round:

- $V_6^1 = U_5^1 \oplus U_7^1 \oplus U_8^1$ with bias 1/4.
- $V_6^1 = (P_5 \oplus K_5^1) \oplus (P_7 \oplus K_7^1) \oplus (P_8 \oplus K_8^1)$ with bias 1/4.

э

A (10) × (10)



Linear Approximation for the First Round:

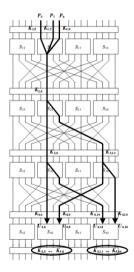
- $V_6^1 = U_5^1 \oplus U_7^1 \oplus U_8^1$ with bias 1/4.
- $V_6^1 = (P_5 \oplus K_5^1) \oplus (P_7 \oplus K_7^1) \oplus (P_8 \oplus K_8^1)$ with bias 1/4.

Linear Approximation for the Second Round:

V₆² ⊕ V₈² = U₆² with bias -1/4.
V₆² ⊕ V₈² = V₆¹ ⊕ K₆² with bias -1/4.

э

(1日) (1日) (1日)

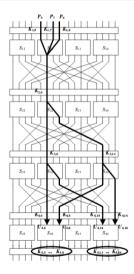


Linear Approximation upto Second Round (Piling-up Lemma):

• $V_6^2 \oplus V_8^2 \oplus P_5 \oplus K_5^1 \oplus P_7 \oplus K_7^1 \oplus P_8 \oplus K_8^1 \oplus K_6^2 = 0$ has bias -1/8.

э

イロト 不得 トイヨト イヨト



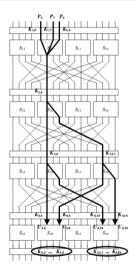
First Linear Approximation for the Third Round:

• $V_6^3 \oplus V_8^3 = U_6^3$ with bias -1/4.

•
$$V_6^3 \oplus V_8^3 = V_6^2 \oplus K_6^3$$
 with bias $-1/4$.

3

イロト 人間ト イヨト イヨト



First Linear Approximation for the Third Round:

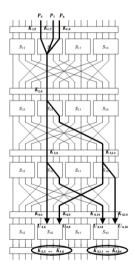
- $V_6^3 \oplus V_8^3 = U_6^3$ with bias -1/4.
- $V_6^3 \oplus V_8^3 = V_6^2 \oplus K_6^3$ with bias -1/4.

Second Linear Approximation for the Third Round:

- $V_{14}^3 \oplus V_{16}^3 = U_{14}^3$ with bias -1/4.
- $V_{14}^3 \oplus V_{16}^3 = V_8^2 \oplus K_{14}^3$ with bias -1/4.

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

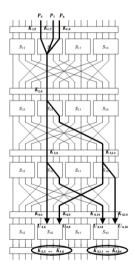


Linear Approximation for Third Round (Piling-up Lemma):

• $V_6^3 \oplus V_8^3 \oplus V_6^2 \oplus K_6^3 \oplus V_{14}^3 \oplus V_{16}^3 \oplus V_8^2 \oplus K_{14}^3 = 0$ has bias 1/8.

3

イロト 人間ト イヨト イヨト

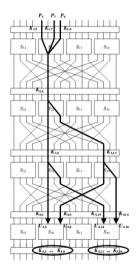


Linear Approximation Upto Third Round (Piling-up Lemma):

• $P_5 \oplus K_5^1 \oplus P_7 \oplus K_7^1 \oplus P_8 \oplus K_8^1 \oplus K_6^2 \oplus U_6^4 \oplus K_6^4 \oplus U_{14}^4 \oplus K_{14}^4 \oplus K_6^3 \oplus U_8^4 \oplus K_8^4 \oplus U_{16}^4 \oplus K_{16}^4 \oplus K_{14}^3 = 0$ has bias -1/32.

э

ヘロト 人間 ト ヘヨト ヘヨト

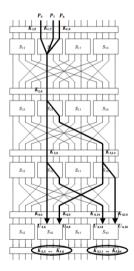


Linear Approximation Upto Third Round (Piling-up Lemma):

- $P_5 \oplus P_7 \oplus P_8 \oplus U_6^4 \oplus U_{14}^4 \oplus U_8^4 \oplus U_{16}^4 \oplus \Sigma_K = 0$ has bias -1/32.
- Since Σ_K is fixed (either 0 or 1), $P_5 \oplus P_7 \oplus P_8 \oplus U_6^4 \oplus U_{14}^4 \oplus U_8^4 \oplus U_{16}^4 = 0$ has bias of magnitude 1/32.

э

イロト 不得下 イヨト イヨト



Objective

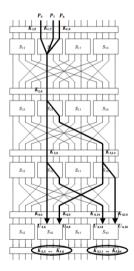
Extract bits from subkey K_5

Target partial sub-key bits

- $K_5^5, K_6^5, K_7^5, K_8^5$
- $K_{13}^5, K_{14}^5, K_{15}^5, K_{16}^5$

э

イロト 不得 トイヨト イヨト



Objective

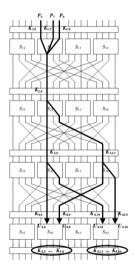
Extract bits from subkey K_5

Target partial sub-key bits

- $K_5^5, K_6^5, K_7^5, K_8^5$
- $K_{13}^5, K_{14}^5, K_{15}^5, K_{16}^5$

э

イロト 不得 トイヨト イヨト



Towards Obtaining the partial key

- Collect 10000 (plaintext-ciphertext).
- For all possible values of the partial key:
 - Execute partial decryption to get U^4 values
 - Count = # the linear approximation holds
 - Compute the bias: |bias| = |Count 5000|/10000

.

partial subkey	bias	partial subkey	bias
$[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$		$[K_{5,5}K_{5,8}, K_{5,13}K_{5,16}]$	
1 C	0.0031	2 A	0.0044
1 D	0.0078	2 B	0.0186
1 E	0.0071	2 C	0.0094
1 F	0.0170	2 D	0.0053
2 0	0.0025	2 E	0.0062
21	0.0220	2 F	0.0133
2 2	0.0211	3 0	0.0027
23	0.0064	3 1	0.0050
24	0.0336	3 2	0.0075
2 5	0.0106	3 3	0.0162
26	0.0096	3 4	0.0218
27	0.0074	3 5	0.0052
2 8	0.0224	36	0.0056
29	0.0054	37	0.0048

Report the partial sub-key with highest prob (here 0010 0100)

・ロ・・聞・・問・・問・・日・

Estimation on the Number of Known (Plaintext, Ciphertext)

Active S-Boxes

S-Boxes involved in a linear characteristic

Find Linear Bias

 γ : # Active S-Boxes

 β_i : occurrence of the particular linear approximation in the i^{th} Active S-box of the characteristic

$$\mathrm{LB} = 2^{\gamma - 1} \prod \beta_i,$$

• Number of Chosen (Plaintext, Ciphertext) Pair: $N_L = \frac{1}{LB^2}$ (Result by Matsui)

How to Build Linear Cryptanalysis Resistant Cipher

Step 1: Calculate Minimum Number of Active S-Box (w) for round r Use Mixed Integer Linear Programming (MILP)

< 一門

How to Build Linear Cryptanalysis Resistant Cipher

Step 1: Calculate Minimum Number of Active S-Box (w) for round r Use Mixed Integer Linear Programming (MILP)

Step 2: Find An (Trivial) Upper bound on the Linear Probability for round r

- Find Linear Characteristics (lc) of the S-Box (maximum propagation ratio)
- Compute $LB = 2^{w-1} (lc)^w$

How to Build Linear Cryptanalysis Resistant Cipher

Step 1: Calculate Minimum Number of Active S-Box (*w*) for round *r* Use Mixed Integer Linear Programming (MILP)

Step 2: Find An (Trivial) Upper bound on the Linear Probability for round r

- Find Linear Characteristics (lc) of the S-Box (maximum propagation ratio)
- Compute $LB = 2^{w-1} (lc)^w$

Step 3: Estimate Number of Rounds r

Find r such that $LB^2 \leq 2^{-n}$ (Recall number of Known Plaintext-Ciphertext Pairs)

Given the following facts, find the minimum number of rounds for GIFT-64 to resist linear cryptanalysis:

- Linear bias of the S-Box is 2^{-2} .
- Number of active S-Boxes in the linear trail for any r rounds of GIFT-64 is 2r.

(a) < (a) < (b) < (b)

References

- Howard Heys, "A Tutorial on Linear and Differential Cryptanalysis"
- Kazuo Sakiyama, Yu Sasaki and Yang Li, *"Security of Block Ciphers: From Algorithm Design to Hardware Implementation"*
- Douglas Stinson, "Cryptography Theory and Practice"

イロト イヨト イヨト

Thank You..!!!

Nilanjan Datta (IAI, TCG CREST)

Linear Cryptanalysis

・ロト・日本・日本・日本・日本・日本

31/31