
Assignment 2
Design and Analysis of Algorithms

Nilanjan Datta

Submission Deadline: 28/02/2023

1. Hrithik is given a data structure D maintaining an extrinsic order on n items,
supporting two standard sequence operations: D.get_at(i) in worst case Θ(1) times
and D.set_at(i, x) in worst case Θ(n log n) time. Which comparison based sorting
algorithm he should choose to sort the n items?

2. Prabal is working on an embedded device (an ATM) that only has 8 KB of free
memory, and he wishes to sort the 2, 000, 000 transactions withdrawal history by the
amount of money withdrawn (discarding the original order of transactions). Suggest
an efficient sorting algorithm for Prabal.

3. Krishnakanta claims that he has designed a Priority Queue in the comparison
model with both the following properties: EXTRACT-MAX running in Θ(1), and
BUILD-HEAP running in Θ(n) time. Justify correctness of his claim.

4. Suppose Sajani places n books on top of one another sorted according to the date of
publication. Now Sruti comes and swaps several pairs of adjacent books. Suggest
an efficient sorting algorithm to re-sort the books if Sruti performs at most log n
swapping.

5. Mriganka claims that any comparison based sorting algorithm can be made to be
stable, without affecting the running time by more than a constant factor. Justify
the correctness of Mriganka’s statement.

6. Pierre has designed a data structure D supports the following sequence operations:

D.insert_first(x),D.delete_first(),D.insert_last(x),D.delete_last(),

each in O(1) time. In addition, D also supports the operations

D.insert_at(x,i),D.delete_at(i),

both of which requires O(log n) time. Can you device efficient algorithms to implement
the following higher level operations using the above lower-level operations:

(a) reverse(D, i, k): Reverse in D the order of the k items starting at index i.
(b) shift_left(D, k): Move the first k items in order to the end of the sequene in D.

Compute the time complexity of each proposed algorithms. Assume that all the
delete operations return the value deleted.

7. Let A be an array of n integers containing the numbers {1, 2, . . . , n} in some arbitrary
order. For integers i and j such that 1 ≤ i < j ≤ n, let Reverse(A, i, j) be a procedure
that reverses the subarray A[i], A[i + 1], . . . , A[j] of the array A while leaving the
remaining elements of the array unaffected. Nikhil has suggested the following
algorithm to sort the array A:



2 Assignment 2 Design and Analysis of Algorithms Nilanjan Datta

for i := 1 to n-1
while A[i] != i do

Reverse(A, i, A[i])

Prove correctness of Nikhil’s algorithm.


