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1 Context-free Grammars and Languages

Definition 1. A context-free grammar(CFG) G is a 4-tuple (V, T,P, S) where

1. V: a finite set of variables,
2. T : a finite set of terminals,
3. P: a set of productions or (rewriting) rules of the form X → α, where X is a variable and

α ∈ (V
⋃
T )∗.

4. S: the start symbol or variable.

Derivation: We write β ⇒ δ if β = β1Xβ2 and δ = β1αβ2 and X → α is a production of G. We
write β ⇒∗ δ if β = δ or there is a sequence of strings α0, α1, . . . , αn, where α0 = β, αn = δ and
αi ⇒ αi+1 for all 0 ≤ i < n.
n is called the length of the derivation.
If in each step in a derivation the left-most(right-most) variable is replaced using a production of G
then we have a left-most(right-most) derivation.

The language generated by G is

L(G) = {w ∈ T ∗ : S ⇒∗ w}.

Such languages are called context-free languages (CFL).

Definition 2. Null productions are productions of the form X → λ.
Unit productions are productions of the form X → Y .

Examples: 1.The follow grammar generates the language {anbn : n ≥ 1}.

S → aSb | ab.

2. The grammar
S → 0 | 1 | 0S0 | 1S1 | λ

generates all palindromes over {0, 1}.
3. Construct a context-free grammar that generates all strings of properly nested parentheses.
4. Construct context-free grammars G1, G2 such that

L(G1) = {aibj |i ≥ j > 0},

L(G2) = {a2ibi|i > 0}.

5. Consider the following grammar
S → 0S1S/1S0S/λ.

Show that it generates all binary strings with an equal number of 0’s and 1’s.



Parse Tree:
Let G be a context-free grammar. A parse tree in G is a labelled tree with the internal nodes
labelled with variables (and the root is labelled with S). If α1, . . . , αk are the labels of the children
of X, then X → α1 . . . αk is a production of G.
Let T be a parse tree. The yield of T denoted by < T > is the string obtained by reading the labels
of the leaves from left to right. If < T >= α then T is called a parse tree for α in G.

Theorem 1. Let G be a context-free grammar with start symbol S. Then X ⇒∗ α 6= λ iff there is
a parse tree T for α in G, with the root labelled by X.

Proof. By induction(Exercise)

Corollary 1. Let G be a context-free grammar. The following statements are equivalent.( TFAE )

1. S ⇒∗ w 6= λ
2. There is a derivation tree for w in G
3. There is a leftmost derivation of w from S in G
4. There is a rightmost derivation of w from S in G.

Regular implies Context-free:

Theorem 2. If L is regular, then L is context-free.

Proof idea: Let M = (Σ,Q, δ, F ) be a DFA accepting L. Construct a grammar G as follows.

1. Q=set of variables,
2. Σ=set of terminals
3. Productions: Add all productions of the form p→ aq if δ(p, a) = q. Also, for every q ∈ F , add

the production q → λ..
4. q0= start variable.

We claim that
w ∈ L(M)↔ q0 ⇒∗ w. (1)

To prove (1) we shall prove, more generally, the following

δ∗(p, w) = q ↔ p⇒∗ wq.

”→ ”: Suppose δ∗(p, w) = q. We shall prove by induction on the length of w that p⇒∗ wq. Suppose
|w| = 1. Then w = a ∈ Σ and hence δ∗(p, w) = δ(p, a) = q. Thus, by definition, p → aq is a
production and we are done. So assume that w = w′a and the induction hypothesis. Then

q = δ∗(p, w′a) = δ(δ∗(p, w′), a).

Let δ∗(p, w′) = q′. Then by induction hypothesis we have

p⇒∗ w′q′.

Also, since δ(q′, a) = q, by definition, q′ → aq is a production of G. Thus we have the following
derivation

p⇒∗ w′q′ ⇒ w′aq = wq.

”← ” Exercise
Hence

w ∈ L(M)↔ δ∗(q0, w) = qf for some qf ∈ F

↔ q0 ⇒∗ wqf for some qf ∈ F

↔ q0 ⇒∗ w ↔ w ∈ L(G).

Hence L(G) = L. �
Thus the class of regular languages is strictly contained in the class of context-free languages.
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Remark 1. Note that the productions of G are of the form X → aY or X → a. Such grammars
are called regular grammars. One can show that the language generated by a regular grammar is
regular. (Exercise)

1.1 Normal Forms

Chomsky Normal Form:

Definition 3. A CFG G is said to be in Chomsky Normal Form (CNF) if all productions are of
one of the following forms.

X → Y Z

X → a.

In addition, one may have the null production S → λ, where S is the start variable.

Theorem 3. There is an algorithm that converts a given CFG G = (V, T,P, S) into a grammar in
Chomsky Normal Form.

Proof idea.
Step 1. Introduce a new start variable S0 and add the production S0 → S
Step 2. Eliminate all null productions.
Eliminate all null productions of the form A → λ, where A is not the start symbol. Then for each
occurrence of A on the RHS of a production, add a new production with that occurrence deleted.
Thus if X → αAβAγ is a production, then we add the productions X → αβAγ,X → αAβγ and
X → αβγ. If we have the production X → A then we add the production X → λ unless it has
already been removed. These steps are repeated until all null productions not involving the start
symbol are eliminated. The resulting grammar is equivalent to G.
Step 3. Eliminate all unit productions
We remove the unit production A→ B. Then, whenever a production B → α appears, we add the
production A → α, unless this was a unit production previously removed. Repeat these steps until
all unit productions are removed. Again the resulting grammar is equivalent to G.
Step 4. Replace each terminal a occurring in the RHS of a production by a new variable Ua and
add the production Ua → a.
Step 5. For each production of the form

X → Y1 . . . .Ym,m > 2

add new variables Z1, . . . , Zm−2 and add the productions

X → Y1Z1

Z1 → Y2Z2

...

Zm−3 → Ym−2Zm−2

Zm−2 → Ym−1Ym.

The resulting grammar is in CNF and is equivalent to G. �
Example: Illustrate the proof with the following grammar:

S → ASA | aB;

A→ B | S;
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B → b | λ.

Exercise: Convert the following context-free grammar into a grammar in Chomsky normal form.

S → BSB/B/λ

B → 00/λ.

1.2 Bar-Hillel’s Pumping Lemma

We now introduce an analogue of the Pumping Lemma for regular languages. It ois known as the
Bar-Hillel’s Pumping Lemma for context-free languages. We first need the following

Lemma 1. Let G be a Chomsky Normal form grammar and let S ⇒∗ u. Let T be a parse tree for
u in G. Assume that no path in T has more than k nodes. Then |u| ≤ 2k−2.

Proof. First, suppose that T has one leaf node labelled by a terminal a. Then u = a and T has two
nodes labelled by s and a. Thus T has only one path with two nodes and

|u| = 1 ≤ 22−2.

So assume that T has more than one leaf node and the induction hypothesis. Since G is in Chomsky
normal form, the root of T has exactly two immediate successors labelled by, say, X and Y . Let T1
(respectively, T2) be the subtree at the node labelled by X (respectively, Y ). Clearly, no path in T1
or T2 has more than k − 1 nodes. Hence, by induction hypothesis | < T1 > |, | < T2 > | ≤ 2k−3.
Clearly, u =< T1 > . < T2 >. Hence

|u| = | < T1 > |+ | < T2 > | ≤ 2k−3 + 2k−3 = 2k−2.

This completes the proof �
Exercise: Let G be a Chonsky normal form grammar. Let S ⇒∗ u. Show that there is a derivation
of u in G of length at most 2|u| − 1.

Theorem 4. Suppose G is a grammar in Chomsky normal form with n variables and let L = L(G)..
Then for every string w ∈ L with |w| > 2n, w can be written as w = r1q1rq2r2 where

1. |q1rq2| ≤ 2n.
2. q1q2 6= λ.
3. For all i ≥ 0, r1q

i
1rq

i
2r2 ∈ L.

Proof. Let x ∈ L and |x| > 2n. Let T be a parse tree for x in G. Let η1, η2 . . . , ηm be a path in T ,
where m is as large as possible. Then m ≥ n + 2. Otherwise, if m ≤ n + 1, then by the Lemma,
|x| ≤ 2n−1, contrary to our choice of x. Note that ηm must be a leaf node (why?). Let

γi = ηm−n−2+i, 1 ≤ i ≤ n+ 2.

Clearly, the sequence γ1, . . . , γn+2 is simply the path ηm−n−1, . . . , ηm, where γn+2 = ηm. is labelled
by a terminal and γ1, . . . , γn+1 are labelled by variables. Since there are only n variables, by PHP
there exist distinct vertices α = γi and β = γj , i < j, that are labelled by the same variable X. Let
T1, T2 denote the subtrees at α, β respectively. Observe that T2 is a subtree of T1. Let r1 (respectively
r2) be the string obtained by reading-from left to right- the labels of the leaves to the left( respectively
right) of T1. Let q1 (respectively q2) be the string obtained by reading-from left to right- the labels
of the leaves of T1 lying to the left( respectively right) of T2. Let < T2 >= r. Clearly, we have

1. < T >= x = r1q1rq2r2
2. q1q2 6= λ, since G is in Chomsky normal form
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3. < T1 >= q1rq2

Now let Tp denote the tree obtained by pruning the tree at α i.e. Tp is the tree obtained by replacing
the tree T1 by T2. The resulting tree is a parse tree and

< Tp >= r1rr2

and thus is in L.
Let Ts be the tree obtained from T by splicing the tree T at β i.e. Ts is the tree obtained from

T by replacing T2 by the larger tree T1. The resulting tree is still a parse tree and we have

< Ts >= r1q1 < T1 > q2r2 = r1q
2
1rq

2
2r2.

Hence r1q
2
1rq

2
2r2 ∈ L. By repeated splicing, one can show that for any k, r1q

k
1rq

k
2r2 is in L.

Finally, note that the path γi, . . . , γm contains at most n + 2 nodes and no path in T1 can be
longer. Since, if there is a path in T1 containing more than n+3 nodes, then there would be a path in
T containing more than m nodes, a contradiction. Hence by the Lemma , | < T1 > | = |q1rq2| ≤ 2n.
This completes the proof. �
Applications: Use Pumping Lemma to show that the following languages are not context-free.

1. {anbncn : n ≥ 1}.
2. {0p : p is prime }.
3. {0n2 |n > 0}.
4. {ww : w ∈ {0, 1}∗}.
5. {0m1n : m 6= n}.
6. {aibjck|0 ≤ i ≤ j ≤ k}.
7. {0i1j |j = i2}.

Solution (4). Let L = {ww|w ∈ {0, 1}∗} be context-free. Let N be the integer of the Pumping
Lemma for CFG and consider the string x = 0N1N0N1N . Then by the Pumping Lemma, x can be
written as x = r1q1rq2r2 where

1. |q1rq2| ≤ N
2. q1q2 6= λ, and
3. r1q

k
1rq

k
2r2 ∈ L for k = 0, 1, 2, . . ..

If the string q1rq2 lies in the first half of x, then by pumping q1, q2 we see that the (first) block of
1’s shifts to the right. Hence the first letter of the second half of the resulting string is a 1, whereas
the first letter of the first half is a 0. Hence the resulting string cannot be in L, a contradiction.

Similarly, if q1rq2 is lies in the second half of x, then by pumping q1, q2, the second block of 0’s
shifts to the left. Hence the last letter of the first half would be a 0, while the last letter of the second
half is a 1. So the string is not of the form ww, a contradiction. So q1rq2 is a part of the first block
of 1’s and a part of the second block of 0’s. But then the string r1rr2 is of the form 0N1i0j1N and
hence not in L, again a contradiction. Thus L cannot be context-free. �
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