Formal Languages and Automata Theory

Rana Barua

Visiting Scientist IAI, TCG CRES, Kolkata

1 Finite State Machines

A finite state machine also known as **finite state automaton** is a model for computers with very low memory. It consists of a finite tape with cells with a tape-head and a finite control. The input string $w = a_1 \dots a_n$ is placed onto the tape with the *i*th letter occupying the *i*th cell. The automaton starts with the finite control at the initial state q_0 with the tape-head scanning the content of the first cell.

Depending on the letter being scanned by the tape-head and the state of the finite control, the automaton moves the tape-head one cell to the right and enters, perhaps, a new state. On scanning the entire input string if the automaton enters an **accepting** or **final** state, then the input string is accepted by the automaton.

Formally, a deterministic finite automaton(DFA) \mathcal{M} is a 5-tuple $(\Sigma, Q, q_0, \delta, F)$ where

- 1. Σ : a finite *alphabet*,
- 2. Q: a finite set of *states*,
- 3. $q_0 \in Q$: the *initial* or *start* state,
- 4. $\delta: Q \times \Sigma \to Q$; the transition function,
- 5. $F \subseteq Q$: the set of *final* or *accepting* states.

Extension to Σ^* : The transition function δ is extended to Σ^* as follows.

$$\begin{split} \delta^*:Q\times \varSigma^*\longmapsto Q\\ \delta^*(q,\lambda)&=q,\\ \delta^*(q,wa)&=\delta(\delta^*(q,w),a). \end{split}$$

It is clear that the equation

$$\delta^*(q,w) = \hat{q}$$

means that "the automaton \mathcal{M} in state q after reading the entire string w enters the state \hat{q} ". Thus we have

$$\delta^*(p, w_1 w_2) = \delta^*(\delta^*(p, w_1), w_2)$$

The language accepted by \mathcal{M} is

$$\mathcal{L}(\mathcal{M}) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}.$$

A language $\mathcal{L} \subseteq \Sigma^*$ is said to be **regular** if for some DFA $\mathcal{M}, \mathcal{L} = \mathcal{L}(\mathcal{M})$ i.e. it is accepted by some DFA.

State Transition Diagram: The state transition diagram of an automaton \mathcal{M} gives the entire information about \mathcal{M} and is defined as follows.

It is a labelled directed graph whose nodes, represented by circles, are labelled with the states of \mathcal{M} . There is a directed edge labelled a from a node with label p to a node with label q if $\delta(p, a) = q$. The initial state is designated with an arrow while the accepting states are denoted with two circles. **Examples of DFA**:

1. Construct a DFA that accepts all binary strings which are binary representation of non-negative integers that are congruent to 0 mod 5 $\,$

e.g. $\delta(q_2, 0) = q_4; \delta(q_2, 1) = q_0.$

- 2. Construct a DFA that accepts all binary strings containing an even numbers of 0's and 1's
- 3. Construct a DFA that accepts all binary strings containing 1101 as a substring.

1.1 Non-deterministic Finite Automaton(NFA)

To prove closure under concatenation and Kleene closure, we need the notion of non-determinism in which the automaton has the choice of entering one of several states. Thus in the definition of DFA we just need to change the state transition function δ to the following.

$$\delta: Q \times \varSigma \longmapsto \mathcal{P}(Q).$$

Thus the equation

$$\delta(p,a) = \{q_1,\ldots,q_k\}$$

means that "the automaton in state p reading the letter a has the choice of entering any one of the states q_1, q_2, \ldots, q_k .

Extension to Σ^* :

$$\delta^*(q,\lambda) = \phi,$$

$$\delta^*(q,wa) = \bigcup_{p \in \delta^*(q,w)} \delta(p,a)$$

Definition 1. A string $w \in \Sigma^*$ is accepted by \mathcal{M} if $\delta^*(q_0, w) \cap F \neq \phi$. The language accepted by \mathcal{M} is

$$\mathcal{L}(\mathcal{M}) = \{ w \in \Sigma^* : \delta^*(q_0, w) \bigcap F \neq \phi \}.$$

Observe that a string $a_1 \ldots a_n$ is accepted by \mathcal{M} if there is a sequence of states q_1, \ldots, q_n such that $q_1 \in \delta(q_0, a_1), q_2 \in \delta(q_1, a_2), \ldots, q_n \in \delta(q_{n-1}, a_n)$ and $q_n \in F$.

Also $\delta^*(q, w)$ denotes all the possible states reached by \mathcal{M} starting from state q and reading the string w.

Equivalence:

Theorem 1. There is an algorithm that converts a given NFA \mathcal{M} into an equivalent DFA $\hat{\mathcal{M}}$. Consequently, \mathcal{L} is regular iff it is accepted by an NFA.

Proof idea: Given an NFA $\mathcal{M} = (\Sigma, Q, q_0, \delta, F)$ first observe that $\delta^*(q_0, w)$ gives the set of all possible states that can be reached by \mathcal{M} from the initial state on reading w. This set of states will be the state of the equivalent automaton $\hat{\mathcal{M}}$. Also \mathcal{M} accepts w if this set of states contains an accepting state of \mathcal{M} . Thus an accepting state of $\hat{\mathcal{M}}$ will be those sets of states that contain an accepting state of \mathcal{M} . Thus we construct $\hat{\mathcal{M}} = (\Sigma, \hat{Q}, \hat{q}_0, \hat{\delta}, \hat{F})$ as follows.

1. $\hat{Q} = \mathcal{P}(Q)$

2. $\hat{q}_0 = \{q_0\}$

3. For $P \subseteq Q$, and $a \in \Sigma$,

$$\hat{\delta}(P,a) = \bigcup_{p \in P} \delta(p,a)$$

4. $\hat{F} = \{P \subseteq Q : P \bigcap F \neq \phi\}.$

Claim:

$$\hat{\delta}^*(\hat{q}_0, w) = \delta^*(q_0, w).$$

Thus

$$w \in \mathcal{L}(\hat{\mathcal{M}}) \leftrightarrow \hat{\delta}^*(\hat{q}_0, w) \in \hat{F}$$
$$\leftrightarrow \delta^*(q_0, w) \bigcap F \neq \phi \leftrightarrow w \in \mathcal{L}(\mathcal{M})$$

Example: Construct an NFA accepting all binary string containing 101 as a substring.

Closure Properties I: Closure under finite \bigcup, \bigcap and complementation

Theorem 2. The class of regular languages is closed under finite \bigcup , finite \bigcap and complementation. Consequently, the regular languages form a Boolean algebra

Proof idea: Let \mathcal{M}_1 and \mathcal{M}_2 be two DFAs accepting \mathcal{L}_1 and \mathcal{L}_2 respectively. We shall construct a DFA $\hat{\mathcal{M}}$ that accepts $\mathcal{L}_1 \cap \mathcal{L}_2$. On input a string w, $\hat{\mathcal{M}}$ runs both \mathcal{M}_1 and \mathcal{M}_2 on w simultaneously i.e. in parallel. $\hat{\mathcal{M}}$ accepts w iff both \mathcal{M}_1 and \mathcal{M}_2 enter accepting states.

Formally, let $\mathcal{M}_1 = (\Sigma, Q_1, q_0^1, \delta_1, F_1)$ and $\mathcal{M}_2 = (\Sigma, Q_2, q_0^2, \delta_2, F_2)$. Define $\hat{\mathcal{M}} = (\Sigma, \hat{Q}, \hat{q}_0, \hat{\delta}, \hat{F})$ as follows.

 $\begin{array}{ll} 1. & \hat{Q} = Q_1 \times Q_2 \\ 2. & \hat{q}_0 = (q_0^1, q_0^2) \\ 3. & \hat{\delta}((p,q), a) = (\delta_1(p,a), \delta_2(q,a)) \\ 4. & \hat{F} = F_1 \times F_2. \end{array}$

Claim: $\hat{\delta}^*((p,q),w) = (\delta_1^*(p,w), \delta_2^*(q,w)).$ Hence $w \in \mathcal{L}(\hat{\mathcal{M}}) \leftrightarrow \hat{\delta}^*(\hat{q}_0,w) \in \hat{F}$

$$w \in \mathcal{L}(\mathcal{M}) \leftrightarrow \delta \ (q_0, w) \in F$$
$$\leftrightarrow \delta_1^*(q_0^1, w) \in F_1 \& \ \delta_2^*(q_0^2, w) \in F_2$$
$$\leftrightarrow w \in \mathcal{L}_1 \& w \in \mathcal{L}_2 \leftrightarrow w \in \mathcal{L}_1 \bigcap \mathcal{L}_2$$

Closure Properties II: Closure under concatenation:

Theorem 3. If \mathcal{L}_1 and \mathcal{L}_2 are regular languages, then so is $\mathcal{L}_1.\mathcal{L}_2$.

Proof idea: Let \mathcal{M}_1 and \mathcal{M}_2 be two DFAs accepting \mathcal{L}_1 and \mathcal{L}_2 respectively. The NFA \mathcal{M} that accepts $\mathcal{L}_1.\mathcal{L}_2$ first runs \mathcal{M}_1 and on entering an accepting state has the choice of continuing in \mathcal{M}_1 or to enter the initial state of \mathcal{M}_2 . This enables \mathcal{M} to accept strings of the form $w_1.w_2$, where w_1 is accepted by \mathcal{M}_1 and w_2 is accepted by \mathcal{M}_2 .

Formally, let $\mathcal{M}_1 = (\Sigma, Q_1, q_0^1, \delta_1, F_1)$ and $\mathcal{M}_2 = (\Sigma, Q_2, q_0^2, \delta_2, F_2)$. W.l.g. assume that $\lambda \notin \mathcal{L}_1$. Construct $\hat{\mathcal{M}} = (\Sigma, \hat{Q}, \hat{q}_0, \hat{\delta}, \hat{F})$ as follows

1. $\hat{Q} = Q_1 \bigcup Q_2$ 2. $\hat{q}_0 = q_0^1$

3.
$$\hat{\delta}(q,a) = \begin{cases} \{\delta_1(q,a)\} & \text{if } q \in Q_1 - F_1 \\ \{\delta_1(q,a), \delta_2(q_0^2,a)\} & \text{if } q \in F_1 \\ \{\delta_2(q,a)\} & \text{if } q \in Q_2 \end{cases}$$

4. $\hat{F} = F_2.$

Clearly $\mathcal{L}(\mathcal{M}) = \mathcal{L}_1.\mathcal{L}_2.$ If $\lambda \in \mathcal{L}_1$, then consider $\mathcal{L}'_1 = \mathcal{L}_1 - \{\lambda\}$. Clearly, \mathcal{L}'_1 is regular and

$$\mathcal{L}_1.\mathcal{L}_2 = \mathcal{L}_1'.\mathcal{L}_2 \cup \mathcal{L}_2.$$

The first term of RHS is regular by above and \mathcal{L}_2 is given to be regular. So the union is regular and we are done.

Closure under Kleene *:

Theorem 4. Let \mathcal{L} be a regular language. Then \mathcal{L}^* is also regular.

Proof idea: Let \mathcal{M} be a DFA that accepts \mathcal{L} . W.l.g. assume that $\delta(q, a) \neq q_0$ for all $q \in Q$ and $a \in \Sigma$. (Such an automaton is called *non-restarting*.) We construct $\hat{\mathcal{M}}$ that runs \mathcal{M} and on entering an accepting state has the option of either continuing as \mathcal{M} or restart from the initial state of \mathcal{M} . Thus $\hat{\mathcal{M}} = (\Sigma, \hat{Q}, \hat{q}_0, \hat{\delta}, \hat{F})$ is defined as follows.

1. $\hat{Q} = Q$ 2. $\hat{q}_0 = q_0$ 3. $\hat{\delta}(q, a) = \begin{cases} \{\delta(q, a)\} & \text{if } \delta(q, a) \in Q - F \\ \{\delta(q, a), q_0\} & \text{if } \delta(q, a) \in F \end{cases}$. 4. $\hat{F} = \{q_0\}.$

The NFA $\hat{\mathcal{M}}$ accepts \mathcal{L}^*

Exercise 1. Given a DFA \mathcal{M} , construct a non-restarting DFA \mathcal{M}' that is equivalent to \mathcal{M} .

1.2 Regular Expressions

An important notion in Automata Theory is the concept of **regular expressions** which we now introduce.

Definition 2. A regular expression over an alphabet Σ is defined by induction as follows.

- 1. For each $a \in \Sigma$, **a** is a regular expression and represents the language $\{a\}$,
- 2. λ and ϕ are regular expressions and represent $\{\lambda\}$ and ϕ respectively,
- 3. If r_1 and r_2 are two regular expressions representing \mathcal{L}_1 and \mathcal{L}_2 respectively, then so is $(r_1 + r_2)$ and it represents $\mathcal{L}_1 \bigcup \mathcal{L}_2$,
- 4. If r_1 and r_2 are two regular expressions representing \mathcal{L}_1 and \mathcal{L}_2 respectively, then so is $(r_1.r_2)$ and it represents $\mathcal{L}_1.\mathcal{L}_2$,
- 5. If r is a regular expression representing \mathcal{L} the so is (r^*) and it represents \mathcal{L}^* .

Notation: $\mathcal{L}(\mathbf{r})$ denotes the language represented by \mathbf{r}

The following can be derived by induction on the *length* of regular expressions and from the closure properties.

Lemma 1. The language represented by a regular expression is regular.

Properties of regular expressions:

For two regular expressions \mathbf{r} and \mathbf{s} we write $\mathbf{r} = \mathbf{s}$ if $\mathcal{L}(\mathbf{r}) = \mathcal{L}(\mathbf{s})$. The following identities hold for regular expressions.

1. $\mathbf{r} + \mathbf{r} = \mathbf{r}$. 2. $\mathbf{r} + \mathbf{s} = \mathbf{s} + \mathbf{r}$. 3. $(\mathbf{r} + \mathbf{s}) + \mathbf{t} = \mathbf{r} + (\mathbf{s} + \mathbf{t})$. 4. $(\mathbf{r}.\mathbf{s}).\mathbf{t} = \mathbf{r}.(\mathbf{s}.\mathbf{t})$. 5. $\mathbf{r}.(\mathbf{s} + \mathbf{t}) = \mathbf{r}.\mathbf{s} + \mathbf{r}.\mathbf{t}$. 6. $(\mathbf{r} + \mathbf{s}).\mathbf{t} = \mathbf{r}.\mathbf{t} + \mathbf{s}.\mathbf{t}$. 7. $(\mathbf{r}^*)^* = \mathbf{r}^*$. 8. $(\lambda + \mathbf{r})^* = \mathbf{r}^*$. 9. $(\mathbf{r} + \mathbf{s})^* = (\mathbf{r}^*.\mathbf{s}^*)^* = (\mathbf{r}^* + \mathbf{s}^*)^*$.

Exercise 2. .

1. Let **r**, **s** be two regular expressions. Consider the following equation in the regular expression **X**.

$$\mathbf{X} = \mathbf{s} + \mathbf{X.r.}$$

Prove that this equation has a solution

$$X = (s.r^*).$$

Show that the solution is unique if $\lambda \notin \mathcal{L}(\mathbf{r})$.

- 2. Let $\mathcal{L} = \{x \in \{a, b\}^* : x \neq \lambda \text{ and bb is not a substring of } x\}.$
 - (a) Show that \mathcal{L} is regular by constructing a DFA \mathcal{M} such that $\mathcal{L}(\mathcal{M}) = \mathcal{L}$.
 - (b) Find a regular expression \mathbf{r} such that $\mathcal{L}(\mathbf{r}) = \mathcal{L}$.

Theorem 5 (Kleene). A language \mathcal{L} over Σ is regular iff there is a regular expression over Σ that represents \mathcal{L} .

Proof idea: One direction follows from Lemma 1. For the other direction, suppose \mathcal{L} is accepted by a DFA $\mathcal{M} = (\Sigma, Q, q_1, \delta, F)$. Suppose $Q = \{q_1, q_2, \ldots, q_n\}$. Define $R_{i,j}^k = \{w \in \Sigma^* : \delta^*(q_i, w) = q_j \& \mathcal{M} \text{ does not pass through any intermediate state } q_l \text{ with } l > k\}.$

We shall show by induction on k that each $R_{i,j}^k$ can be represented by a regular expression. Clearly,

$$R^0_{i,j} = \{a \in \Sigma : \delta(q_i, a) = q_j\}$$

and hence can be represented by a regular expression. Claim:

$$R_{i,j}^{k+1} = R_{i,j}^k \bigcup R_{i,k+1}^k (R_{k+1,k+1}^k)^* R_{k+1,j}^k$$
(1)

By induction hypothesis, each term in RHS of (1) can be represented by a regular expression. So the RHS can be represented by a regular expression. Hence the LHS term can also be represented by a regular expression. Consequently,

$$\mathcal{L} = \bigcup_{q_i \in F} R_{1,j}^n$$

can also be represented by a regular expression.

Corollary 1. A language \mathcal{L} is regular iff it can be obtained from finite languages by finitely many applications of \bigcup, \bigcap and Kleene *.

1.3 The Pumping Lemma and Its Applications

Pumping Lemma: Let \mathcal{L} be a regular language accepted by a DFA \mathcal{M} with n states. Then for every $x \in \mathcal{L}$ with $|x| \ge n$, x can be written as x = uvw where

- 1. |v| > 0,
- 2. |uv| < n,
- 3. for all $i = 0, 1, 2, ..., uv^i w \in \mathcal{L}$.

Proof idea: Let $\mathcal{M} = (\Sigma, Q, q_0, \delta, F)$ with |Q| = n. Let $x = a_1 \dots a_k$, where $k \ge n$. Define for $1 \le i \le k, \delta^*(q_0, a_1 \dots a_i) = q_i$. Clearly, in the sequence q_0, q_1, \dots, q_n there exist $i < j \le n$ such that $q_i = q_j$. Set $u = a_1 \dots a_i, v = a_{i+1} \dots a_j, w = a_{j+1} \dots a_k$. It is easy to see that conditions (1)-(3) are satisfied.

Use the Pumping Lemma to show that the following languages are not regular.

- 1. $\{0^n 1^n : n \ge 1\}.$
- 2. $\{0^p : p \text{ is prime}\}.$
- 3. $\{0^{n^2} : n \ge 1\}.$
- 4. $\{0^{n^3}: n \ge 1\}.$
- 5. $\{0^n 1^m : 0 < n \le m\}.$
- 6. Binary strings with equal numbers of 0's and 1's.
- 7. $\{ww : w \in \{0,1\}^*\}.$
- 8. Set of all palindromes.
- 9. $\{0^n 1^n 2^n | n \ge 0\}.$
- 10. $\{w.w.w|w \in \{a, b\}^*$.
- 11. $\{0^{2^n} | n \ge 0\}.$

Proof idea: (2) Fix a DFA with n states accepting (2). Fix a prime $p \ge n+2$. By Pumping Lemma

- 1. $0^p = uvw$
- 2. |v| > 0
- 3. $|uv| \leq n$
- 4. $uv^i w \in \mathcal{L}$ for all *i*.

Let |v| = m. Then $|uv^iw| = p + (i-1)m$. Choose i = p+1. Then $|uv^{p+1}w| = p(m+1)$ which is not prime. Hence $uv^{p+1}w \notin \mathcal{L}$ contradicting (4). Hence \mathcal{L} cannot be regular. \Box

1.4 Decision Properties

I.Emptiness:

Theorem 6. Let \mathcal{M} be a DFA with n states that accepts \mathcal{L} . Then $\mathcal{L}(\mathcal{M}) \neq \phi$ iff there is an $x \in \mathcal{L}(\mathcal{M})$ such that |x| < n.

Consequently, there is an algorithm to test whether $\mathcal{L}(\mathcal{M})$ is empty or not.

Proof idea: If $\mathcal{L}(\mathcal{M}) \neq \phi$ then fix $x \in \mathcal{L}(\mathcal{M})$ with smallest length. Claim: |x| < n.

Algo: Enumerate all strings of length less than n. If none is accepted by \mathcal{M} , then empty, else nonempty.

II. Finiteness:

Theorem 7. $\mathcal{L}(\mathcal{M})$ is infinite iff there is a string $x \in \mathcal{L}(\mathcal{M})$ such that $n \leq |x| < 2n$. Consequently, there is an algorithm to test whether $\mathcal{L}(\mathcal{M})$ is finite or infinite.

Proof idea: Let \mathcal{M} be a DFA with *n* states accepting \mathcal{L} .

 \leftarrow : If the condition holds, then \mathcal{L} is infinite by the Pumping Lemma

 \rightarrow : So let \mathcal{L} be infinite. Fix a string $x \in \mathcal{L}$ such that $|x| \ge n$ and |x| is as small as possible. Claim: $n \le |x| < 2n$.

By the Pumping Lemma, x can be written as x = uvw, where

- 1. |v| > 0
- 2. |uv| < n and
- 3. $uv^i w \in \mathcal{L}$ for i = 0, 1, 2...

In particular, $uw \in \mathcal{L}$. Also |uw| < |x|. Hence by our choice of x, |uw| < n. Now

$$|x| = |uw| + |v| \le |uw| + |uv| < n + n = 2n.$$

This complete the proof of the first part. More decision problems: Test whether

- 1. $\mathcal{L}(\mathcal{M}) = \Sigma^*$.
- 2. $\mathcal{L}(\mathcal{M}_1) \subseteq \mathcal{L}(\mathcal{M}_2)$. Hint: Construct a DFA \mathcal{M} such that $\mathcal{L}(\mathcal{M}) = \mathcal{L}(\mathcal{M}_1) \bigcap \mathcal{L}(\mathcal{M}_2)^C$. 3. $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$.

Exercise 3. .

1^{*} Given an NFA \mathcal{M} construct a regular expression that represents $\mathcal{L}(\mathcal{M})$.

(NB: You may take a look at the following notes

https://www.cs.unc.edu/ plaisted/comp455/slides/fare2.3.pdf)

2. Myhill-Nerode Theorem: Given a language $\mathcal{L} \subseteq \Sigma^*$, and strings $x, y \in \Sigma^*$, define $x \equiv_{\mathcal{L}} y$ if

$$\forall w \in \Sigma^* (xw \in \mathcal{L} \leftrightarrow yw \in \mathcal{L}).$$

- (i) Show that $\equiv_{\mathcal{L}}$ is an equivalence relation.
- (ii) Show that if $x \equiv_{\mathcal{L}} y$ then for any $w \in \Sigma^*$, $xw \in \mathcal{L} \leftrightarrow yw \in \mathcal{L}$.
- (iii) Define the *index* of \mathcal{L} to be the maximum number of inequivalent elements. Show that \mathcal{L} is regular iff \mathcal{L} is of finite index. Moreover, its index is the size of the smallest DFA accepting it. (Note: The index is the number of equivalence classes.)