Formal Languages and Automata Theory

Rana Barua

Visiting Scientist
TAI, TCG CRES, Kolkata

1 Finite State Machines

A finite state machine also known as finite state automaton is a model for computers with very
low memory. It consists of a finite tape with cells with a tape-head and a finite control. The input
string w = ay . .. a, is placed onto the tape with the ith letter occupying the ith cell. The automaton
starts with the finite control at the initial state gy with the tape-head scanning the content of the
first cell.

Depending on the letter being scanned by the tape-head and the state of the finite control, the
automaton moves the tape-head one cell to the right and enters, perhaps, a new state. On scanning
the entire input string if the automaton enters an accepting or final state, then the input string is
accepted by the automaton.

Formally, a deterministic finite automaton(DFA) M is a 5-tuple (X, Q, qo, 6, F') where

. 2. a finite alphabet,

. Q: a finite set of states,

. qo € Q: the initial or start state,

. 0:Q x X — Q; the transition function,

. F C Q: the set of final or accepting states.

Uk W N =

Extension to X*: The transition function § is extended to X* as follows.
0 Qx X" —Q
6"(¢;\) =g,
6*(g,wa) = 6(0"(¢q,w), a).
It is clear that the equation
6" (g, w) =g

means that ”the automaton M in state g after reading the entire string w enters the state ¢”. Thus
we have

6*([)7 w1w2) = 5*(6*(1)7 w1)7w2)'
The language accepted by M is
LM) ={we X" :§(q,w) € F}.

A language £ C X* is said to be regular if for some DFA M, L = £L(M) i.e. it is accepted by some
DFA.

State Transition Diagram: The state transition diagram of an automaton M gives the entire
information about M and is defined as follows.

It is a labelled directed graph whose nodes, represented by circles, are labelled with the states of
M. There is a directed edge labelled a from a node with label p to a node with label ¢ if 4(p, a) = q.
The initial state is designated with an arrow while the accepting states are denoted with two circles.
Examples of DFA:

1. Construct a DFA that accepts all binary strings which are binary representation of non-negative
integers that are congruent to 0 mod 5
e.g. 6(q2,0) = qa;0(q2, 1) = qo-

2. Construct a DFA that accepts all binary strings containing an even numbers of 0’s and 1’s

3. Construct a DFA that accepts all binary strings containing 1101 as a substring.

1.1 Non-deterministic Finite Automaton(NFA)

To prove closure under concatenation and Kleene closure, we need the notion of non-determinism in
which the automaton has the choice of entering one of several states. Thus in the definition of DFA
we just need to change the state transition function § to the following.

§:Q x X —PQ).

Thus the equation
6(}7, a) = {q17 e 7(1k}

means that ”the automaton in state p reading the letter a has the choice of entering any one of the

states q1,q2, ..., qk.
Extension to X*:

5*(q7>\)=¢7
*(qwa) = |J 6(p,a).

pES*(q.w)

Definition 1. A string w € X* is accepted by M if §*(qo,w)(F # ¢. The language accepted by
M is
LM) = {w e 5% : (g0, w) [| F # 6}

Observe that a string a4a, is accepted by M if there is a sequence of states ¢, ..., g, such that
q1 € 0(qo,a1),q2 € 0(q1,a2),...,qn € 0(qn_1,0rn) and g, € F.

Also §*(¢q,w) denotes all the possible states reached by M starting from state ¢ and reading the
string w.

Equivalence:

Theorem 1. There is an algorithm that converts a given NFA M into an equivalent DFA M.
Consequently, L is reqular iff it is accepted by an NFA.

Proof idea: Given an NFA M = (X,Q, qo, 0, F) first observe that §*(gg,w) gives the set of all
possible states that can be reached by M from the initial state on reading w. This set of states
will be the state of the equivalent automaton M. Also M accepts w if this set of states contains
an accepting state of M. Thus an accepting state of M will be those sets of states that contain an
accepting state of M. Thus we construct M= (X, Q. Go. 5, F) as follows.

L Q=P«Q)
2. go ={qo}

3. For PCQ,and a € X,
3(Pa) = | 6(p.a)
peP

4. F={PCQ:PNF # ¢}

Claim:

5*(@0711}) = 6*(QO7U))

Thus R R X
w € LIM) < 6" (do,w) € F

> 6*(q0,w)ﬂF # ¢ we LM).

Example: Construct an NFA accepting all binary string containing 101 as a substring.

Closure Properties I: Closure under finite J, () and complementation

Theorem 2. The class of reqular languages is closed under finite | J , finite | and complementation.
Consequently, the regular languages form a Boolean algebra

Proof idea: Let M; and My be two DFAs accepting £1 and Lo respectively. We shall construct a
DFA M that accepts L1 (] L2. On input a string w, M runs both M; and M, on w simultaneously
i.c. in parallel. M accepts w iff both M; and M, enter accepting states.

Formally, let My = (X, Q1, 43,61, F1) and My = (£, Qa, ¢2, 69, F»). Define M = (X, Q, Go, 6, F)
as follows.

1. Q = Q1 X Q2

2. qo = (9, 43)

3. 9((p,q),a) = (41(p, a),d2(q, a))
4. F=F x Fy

w e LIM) < 5 (G, w) € F
& 0 (qh, w) € Fy & 63(q3,w) € Fy

Gwely&we Ly we Ly)L

Closure Properties II:
Closure under concatenation:

Theorem 3. If £y and Lo are reqular languages, then so is L£1.Ls.

Proof idea: Let M; and M5 be two DFAs accepting £1 and Lo respectively. The NFA M that
accepts L£1.Lo first runs M; and on entering an accepting state has the choice of continuing in M;
or to enter the initial state of Ms. This enables M to accept strings of the form w;.ws, where wy
is accepted by M; and ws is accepted by Mo.

Formally, let My = (X, Q1,43,01, F1) and My = (X, Q2,¢2, 02, F»). W.l.g. assume that A\ & £;.
Construct M = (X, Q, do, 6, F) as follows

L Q=Q:1UQ2
2. Go=q}

X {61(q,a)} if ger—F
3. 5(‘1’@) = {51((]7@)’62(61870')} if ge I
{02(g,a)} if ¢e@y
4. F=F,.

Clearly L(M) = L1.Ls.
If A € £y, then consider £} = £1 — {\}. Clearly, £} is regular and

L1.Ly=L,.LoU Ly

The first term of RHS is regular by above and L5 is given to be regular. So the union is regular and
we are done. U
Closure under Kleene *:

Theorem 4. Let L be a reqular language. Then L* is also regular.

Proof idea: Let M be a DFA that accepts £. W.l.g. assume that §(g,a) # go for all ¢ € Q and
a € X. (Such an automaton is called non-restarting.) We construct M that runs M and on entering
an accepting state has the option of either continuing as M or restart from the initial state of M.
Thus M = (X, Q. 4o, 9, F) is defined as follows.

if §(q,a) eQ—F
((],CL)J]()} if 6(61704) el ’

=~ w N
(S9N
~ S
=
S
N
Il

C—

A
S5
—
=
=
S~—
——

The NFA M accepts L* O
Exercise 1. Given a DFA M, construct a non-restarting DFA M’ that is equivalent to M.

1.2 Regular Expressions

An important notion in Automata Theory is the concept of regular expressions which we now
introduce.

Definition 2. A regqular expression over an alphabet X' is defined by induction as follows.

1. For each a € X, a is a reqular expression and represents the language {a},

2. X and ¢ are reqular expressions and represent {\} and ¢ respectively,

3. If r1 and ro are two regular expressions representing L1 and Lo respectively, then so is (r1 +12)
and it represents L1 La,

4. If 11 and ro are two regular expressions representing L1 and Lo respectively, then so is (ri.r2)
and it represents L1.Lo,

5. If r is a regular expression representing L the so is (r*) and it represents L*.

Notation: L(r) denotes the language represented by r

The following can be derived by induction on the length of regular expressions and from the closure
properties.

Lemma 1. The language represented by a regular expression is regular.

Properties of regular expressions:
For two regular expressions r and s we write r = s if £(r) = L(s).
The following identities hold for regular expressions.

lL.r+r=r.

2.r+s=s+r.

3. (r+s)+t=r+(s+t).

4. (r.s).t =r.(s.t).

5. r.(s+t)=rs+r.t.

6. (r+s).t=r.t+s.t.

7. (r*)* =r*.

8 A+r) =r*

9. (r+s)" = (r*.s)* = (r* +s%)*.
Exercise 2. .

1. Let r, s be two regular expressions. Consider the following equation in the regular expression X.
X =s+ Xur.
Prove that this equation has a solution
X=(s.r*).

Show that the solution is unique if A & L(r).

2. Let L = {z € {a,b}* : x # X and bb is not a substring of x}.
(a) Show that L is regular by constructing a DFA M such that £(M) = L.
(b) Find a regular expression r such that £(r) = L.

Theorem 5 (Kleene). A languagel over X is reqular iff there is a reqular expression over X that
represents L.

Proof idea: One direction follows from Lemma 1. For the other direction, suppose L is accepted
by a DFA M = (X,Q,q1,9, F). Suppose Q = {q1,92, - ..,qn }. Define
Rﬁj ={w e X* : §*(¢;,w) = ¢; & M does not pass through any intermediate state q with 1 > k}.

We shall show by induction on k that each Rf’ ; can be represented by a regular expression. Clearly,
R?’j ={a e X:0(¢;,a)=gq;}

and hence can be represented by a regular expression.
Claim:

Rfjl = Rﬁj UR;’C,k-&-l(Ri-&-l,k-&-l)*'Rﬁ-&-l,j (1)

By induction hypothesis, each term in RHS of (1) can be represented by a regular expression. So
the RHS can be represented by a regular expression..Hence the LHS term can also be represented
by a regular expression. Consequently,

o n
c=J Ry,
q;€F
can also be represented by a regular expression. O

Corollary 1. A language L is reqular iff it can be obtained from finite languages by finitely many
applications of | J,(and Kleene *.

1.3 The Pumping Lemma and Its Applications

Pumping Lemma: Let £ be a regular language accepted by a DFA M with n states. Then for
every x € L with |z| > n, x can be written as x = uvw where

1. |v| >0,
2. |uv| < n,
3. foralli=0,1,2,... w'w € L.

Proof idea: Let M = (X, Q, qo,0, F) with |Q| = n. Let * = a;...ag, where k& > n. Define for
1<i<k,6"(q,0a1...a;) = g;. Clearly, in the sequence qg, ¢1,. .., g, there exist ¢ < j <n such that
¢gi=¢qj-Set u=ai...a;,v = ait1...a5,W = @41 ...0a. It is easy to see that conditions (1)-(3) are
satisfied. |
Use the Pumping Lemma to show that the following languages are not regular.

{0"1" : n > 1}.

{0P : p is prime}.

{0"2 in > 1}

{0 :n > 1}

{0"1™: 0 < n < m}.
Binary strings with equal numbers of 0’s and 1’s.
{ww :w e {0,1}*}.
Set of all palindromes.
{0"1"2"|n > 0}.
{www|lw € {a,b}*.
{02"|n > 0}.

HFO OGO E W

—_ =

Proof idea: (2) Fix a DFA with n states accepting (2). Fix a prime p > n+2. By Pumping Lemma

. 0P = yow

. Jvl >0

cuv] <n

wv'w € L for all i.

=W N =

Let |v| = m. Then |uviw| = p+ (i — 1)m. Choose i = p+ 1. Then |uv?*1w| = p(m + 1) which is not
prime. Hence uvP™tw & £ contradicting (4). Hence £ cannot be regular. O

1.4 Decision Properties

I.LEmptiness:

Theorem 6. Let M be a DFA with n states that accepts L. Then L(M) # ¢ iff there is an x €
L(M) such that |x| < n.
Consequently, there is an algorithm to test whether L(M) is empty or not.

Proof idea: If £L(M) # ¢ then fix x € L(M) with smallest length.

Claim: |z| < n.

Algo: Enumerate all strings of length less than n. If none is accepted by M, then empty, else non-
empty. (Il

II. Finiteness:

Theorem 7. L(M) is infinite iff there is a string x € L(M) such that n < |z| < 2n.
Consequently, there is an algorithm to test whether L(M) is finite or infinite.

Proof idea: Let M be a DFA with n states accepting L.

<: If the condition holds, then L is infinite by the Pumping Lemma

—: So let £ be infinite. Fix a string # € £ such that |z| > n and |z| is as small as possible.
Claim: n < |z| < 2n.

By the Pumping Lemma, = can be written as x = uvw, where

1. [v| >0
2. |uv| < n and
3. wiwe L fori=0,1,2...

In particular, uw € L. Also |uw| < |z|. Hence by our choice of z, |[uw| < n. Now
|z| = Juw| + |v] < Juw| + |uv| < N+ n = 2n.

This complete the proof of the first part.
More decision problems:
Test whether

1. LM) =2,
2. L(My) C L(M).

Hint: Construct a DFA M such that £L(M) = L(M;) () L(M2)C.
3. LMy) = L(M3).

FExercise 3. .

1* Given an NFA M construct a regular expression that represents £(M).
(NB: You may take a look at the following notes
https://www.cs.unc.edu/ plaisted/comp455/slides/fare2.3.pdf)
2. Myhill-Nerode Theorem: Given a language £ C X*, and strings z,y € X*, define z =, y if

Yw € X (zw € L <> yw € L).

(i) Show that =, is an equivalence relation.
(ii) Show that if z =, y then for any w € X*, zw € L < yw € L.
(iii) Define the index of L to be the maximum number of inequivalent elements. Show that £ is
regular iff £ is of finite index. Moreover, its index is the size of the smallest DFA accepting it.
(Note: The index is the number of equivalence classes.)

