
Formal Languages and Automata Theory

Rana Barua

Visiting Scientist
IAI, TCG CRES, Kolkata

1 Finite State Machines

A finite state machine also known as finite state automaton is a model for computers with very
low memory. It consists of a finite tape with cells with a tape-head and a finite control. The input
string w = a1 . . . an is placed onto the tape with the ith letter occupying the ith cell.The automaton
starts with the finite control at the initial state q0 with the tape-head scanning the content of the
first cell.

| a1 | a2 | | an |
− − −−−−−−−−−−
. ↑
− −−
| q0 |
− − −
Depending on the letter being scanned by the tape-head and the state of the finite control, the
automaton moves the tape-head one cell to the right and enters, perhaps, a new state. On scanning
the entire input string if the automaton enters an accepting or final state, then the input string is
accepted by the automaton.

Formally, a deterministic finite automaton(DFA) M is a 5-tuple (Σ,Q, q0, δ, F) where

1. Σ: a finite alphabet,
2. Q: a finite set of states,
3. q0 ∈ Q: the initial or start state,
4. δ : Q×Σ → Q; the transition function,
5. F ⊆ Q: the set of final or accepting states.

Extension to Σ∗: The transition function δ is extended to Σ∗ as follows.

δ∗ : Q×Σ∗ 7−→ Q

δ∗(q, λ) = q,

δ∗(q, wa) = δ(δ∗(q, w), a).

It is clear that the equation
δ∗(q, w) = q̂

means that ”the automatonM in state q after reading the entire string w enters the state q̂”. Thus
we have

δ∗(p, w1w2) = δ∗(δ∗(p, w1), w2).

The language accepted by M is

L(M) = {w ∈ Σ∗ : δ∗(q0, w) ∈ F}.

A language L ⊆ Σ∗ is said to be regular if for some DFAM,L = L(M) i.e. it is accepted by some
DFA.

State Transition Diagram: The state transition diagram of an automaton M gives the entire
information about M and is defined as follows.

It is a labelled directed graph whose nodes, represented by circles, are labelled with the states of
M. There is a directed edge labelled a from a node with label p to a node with label q if δ(p, a) = q.
The initial state is designated with an arrow while the accepting states are denoted with two circles.
Examples of DFA:

1. Construct a DFA that accepts all binary strings which are binary representation of non-negative
integers that are congruent to 0 mod 5
e.g. δ(q2, 0) = q4; δ(q2, 1) = q0.

2. Construct a DFA that accepts all binary strings containing an even numbers of 0’s and 1’s
3. Construct a DFA that accepts all binary strings containing 1101 as a substring.

1.1 Non-deterministic Finite Automaton(NFA)

To prove closure under concatenation and Kleene closure, we need the notion of non-determinism in
which the automaton has the choice of entering one of several states. Thus in the definition of DFA
we just need to change the state transition function δ to the following.

δ : Q×Σ 7−→ P(Q).

Thus the equation
δ(p, a) = {q1, . . . , qk}

means that ”the automaton in state p reading the letter a has the choice of entering any one of the
states q1, q2, . . . , qk.
Extension to Σ∗:

δ∗(q, λ) = φ,

δ∗(q, wa) =
⋃

p∈δ∗(q.w)

δ(p, a).

Definition 1. A string w ∈ Σ∗ is accepted by M if δ∗(q0, w)
⋂
F 6= φ. The language accepted by

M is
L(M) = {w ∈ Σ∗ : δ∗(q0, w)

⋂
F 6= φ}.

Observe that a string a1an is accepted byM if there is a sequence of states q1, . . . , qn such that
q1 ∈ δ(q0, a1), q2 ∈ δ(q1, a2), . . . , qn ∈ δ(qn−1, an) and qn ∈ F.
Also δ∗(q, w) denotes all the possible states reached by M starting from state q and reading the
string w.
Equivalence:

Theorem 1. There is an algorithm that converts a given NFA M into an equivalent DFA M̂.
Consequently, L is regular iff it is accepted by an NFA.

Proof idea: Given an NFA M = (Σ,Q, q0, δ, F) first observe that δ∗(q0, w) gives the set of all
possible states that can be reached by M from the initial state on reading w. This set of states
will be the state of the equivalent automaton M̂. Also M accepts w if this set of states contains
an accepting state of M. Thus an accepting state of M̂ will be those sets of states that contain an
accepting state of M. Thus we construct M̂ = (Σ, Q̂, q̂0, δ̂, F̂) as follows.

1. Q̂ = P(Q)
2. q̂0 = {q0}

2

3. For P ⊆ Q, and a ∈ Σ,
δ̂(P, a) =

⋃
p∈P

δ(p, a)

4. F̂ = {P ⊆ Q : P
⋂
F 6= φ}.

Claim:
δ̂∗(q̂0, w) = δ∗(q0, w).

Thus
w ∈ L(M̂)↔ δ̂∗(q̂0, w) ∈ F̂

↔ δ∗(q0, w)
⋂
F 6= φ↔ w ∈ L(M).

�
Example: Construct an NFA accepting all binary string containing 101 as a substring.

Closure Properties I: Closure under finite
⋃
,
⋂

and complementation

Theorem 2. The class of regular languages is closed under finite
⋃

, finite
⋂

and complementation.
Consequently, the regular languages form a Boolean algebra

Proof idea: Let M1 and M2 be two DFAs accepting L1 and L2 respectively. We shall construct a
DFA M̂ that accepts L1

⋂
L2. On input a string w, M̂ runs bothM1 andM2 on w simultaneously

i.e. in parallel. M̂ accepts w iff both M1 and M2 enter accepting states.
Formally, let M1 = (Σ,Q1, q

1
0 , δ1, F1) and M2 = (Σ,Q2, q

2
0 , δ2, F2). Define M̂ = (Σ, Q̂, q̂0, δ̂, F̂)

as follows.

1. Q̂ = Q1 ×Q2

2. q̂0 = (q10 , q
2
0)

3. δ̂((p, q), a) = (δ1(p, a), δ2(q, a))
4. F̂ = F1 × F2.

Claim: δ̂∗((p, q), w) = (δ∗1(p, w), δ∗2(q, w)).
Hence

w ∈ L(M̂)↔ δ̂∗(q̂0, w) ∈ F̂

↔ δ∗1(q10 , w) ∈ F1 & δ∗2(q20 , w) ∈ F2

↔ w ∈ L1 & w ∈ L2 ↔ w ∈ L1

⋂
L2.

�
Closure Properties II:
Closure under concatenation:

Theorem 3. If L1 and L2 are regular languages, then so is L1.L2.

Proof idea: Let M1 and M2 be two DFAs accepting L1 and L2 respectively. The NFA M that
accepts L1.L2 first runs M1 and on entering an accepting state has the choice of continuing in M1

or to enter the initial state of M2. This enables M to accept strings of the form w1.w2, where w1

is accepted by M1 and w2 is accepted by M2.
Formally, let M1 = (Σ,Q1, q

1
0 , δ1, F1) and M2 = (Σ,Q2, q

2
0 , δ2, F2). W.l.g. assume that λ 6∈ L1.

Construct M̂ = (Σ, Q̂, q̂0, δ̂, F̂) as follows

1. Q̂ = Q1

⋃
Q2

2. q̂0 = q10

3

3. δ̂(q, a) =

{δ1(q, a)} if q ∈ Q1 − F1

{δ1(q, a), δ2(q20 , a)} if q ∈ F1

{δ2(q, a)} if q ∈ Q2

4. F̂ = F2.

Clearly L(M) = L1.L2.
If λ ∈ L1, then consider L′1 = L1 − {λ}. Clearly, L′1 is regular and

L1.L2 = L′1.L2 ∪ L2.

The first term of RHS is regular by above and L2 is given to be regular. So the union is regular and
we are done. �
Closure under Kleene *:

Theorem 4. Let L be a regular language. Then L∗ is also regular.

Proof idea: Let M be a DFA that accepts L. W.l.g. assume that δ(q, a) 6= q0 for all q ∈ Q and
a ∈ Σ. (Such an automaton is called non-restarting.) We construct M̂ that runsM and on entering
an accepting state has the option of either continuing as M or restart from the initial state of M.
Thus M̂ = (Σ, Q̂, q̂0, δ̂, F̂) is defined as follows.

1. Q̂ = Q
2. q̂0 = q0

3. δ̂(q, a) =

{
{δ(q, a)} if δ(q, a) ∈ Q− F
{δ(q, a), q0} if δ(q, a) ∈ F .

4. F̂ = {q0}.

The NFA M̂ accepts L∗ �

Exercise 1. Given a DFA M, construct a non-restarting DFA M′ that is equivalent to M.

1.2 Regular Expressions

An important notion in Automata Theory is the concept of regular expressions which we now
introduce.

Definition 2. A regular expression over an alphabet Σ is defined by induction as follows.

1. For each a ∈ Σ, a is a regular expression and represents the language {a},
2. λ and φ are regular expressions and represent {λ} and φ respectively,
3. If r1 and r2 are two regular expressions representing L1 and L2 respectively, then so is (r1 + r2)

and it represents L1

⋃
L2,

4. If r1 and r2 are two regular expressions representing L1 and L2 respectively, then so is (r1.r2)
and it represents L1.L2,

5. If r is a regular expression representing L the so is (r∗) and it represents L∗.

Notation: L(r) denotes the language represented by r

The following can be derived by induction on the length of regular expressions and from the closure
properties.

Lemma 1. The language represented by a regular expression is regular.

4

Properties of regular expressions:
For two regular expressions r and s we write r = s if L(r) = L(s).
The following identities hold for regular expressions.

1. r + r = r.
2. r + s = s + r.
3. (r + s) + t = r + (s + t).
4. (r.s).t = r.(s.t).
5. r.(s + t) = r.s + r.t.
6. (r + s).t = r.t + s.t.
7. (r∗)∗ = r∗.
8. (λ+ r)∗ = r∗.
9. (r + s)∗ = (r∗.s∗)∗ = (r∗ + s∗)∗.

Exercise 2. .

1. Let r, s be two regular expressions. Consider the following equation in the regular expression X.

X = s + X.r.

Prove that this equation has a solution

X=(s.r*).

Show that the solution is unique if λ 6∈ L(r).
2. Let L = {x ∈ {a, b}∗ : x 6= λ and bb is not a substring of x}.

(a) Show that L is regular by constructing a DFA M such that L(M) = L.
(b) Find a regular expression r such that L(r) = L.

Theorem 5 (Kleene). A languageL over Σ is regular iff there is a regular expression over Σ that
represents L.

Proof idea: One direction follows from Lemma 1. For the other direction, suppose L is accepted
by a DFA M = (Σ,Q, q1, δ, F). Suppose Q = {q1, q2, . . . , qn}. Define
Rki,j = {w ∈ Σ∗ : δ∗(qi, w) = qj &M does not pass through any intermediate state ql with l > k}.
We shall show by induction on k that each Rki,j can be represented by a regular expression. Clearly,

R0
i,j = {a ∈ Σ : δ(qi, a) = qj}

and hence can be represented by a regular expression.
Claim:

Rk+1
i,j = Rki,j

⋃
Rki,k+1(Rkk+1,k+1)∗.Rkk+1,j (1)

By induction hypothesis, each term in RHS of (1) can be represented by a regular expression. So
the RHS can be represented by a regular expression..Hence the LHS term can also be represented
by a regular expression. Consequently,

L =
⋃
qj∈F

Rn1,j

can also be represented by a regular expression. �

Corollary 1. A language L is regular iff it can be obtained from finite languages by finitely many
applications of

⋃
,
⋂

and Kleene ∗.

5

1.3 The Pumping Lemma and Its Applications

Pumping Lemma: Let L be a regular language accepted by a DFA M with n states. Then for
every x ∈ L with |x| ≥ n, x can be written as x = uvw where

1. |v| > 0,
2. |uv| ≤ n,
3. for all i = 0, 1, 2, . . . uviw ∈ L.

Proof idea: Let M = (Σ,Q, q0, δ, F) with |Q| = n. Let x = a1 . . . ak, where k ≥ n. Define for
1 ≤ i ≤ k, δ∗(q0, a1 . . . ai) = qi. Clearly, in the sequence q0, q1, . . . , qn there exist i < j ≤ n such that
qi = qj . Set u = a1 . . . ai, v = ai+1 . . . aj , w = aj+1 . . . ak. It is easy to see that conditions (1)-(3) are
satisfied. �
Use the Pumping Lemma to show that the following languages are not regular.

1. {0n1n : n ≥ 1}.
2. {0p : p is prime}.
3. {0n2

: n ≥ 1}.
4. {0n3

: n ≥ 1}.
5. {0n1m : 0 < n ≤ m}.
6. Binary strings with equal numbers of 0’s and 1’s.
7. {ww : w ∈ {0, 1}∗}.
8. Set of all palindromes.
9. {0n1n2n|n ≥ 0}.

10. {w.w.w|w ∈ {a, b}∗.
11. {02n |n ≥ 0}.

Proof idea: (2) Fix a DFA with n states accepting (2). Fix a prime p ≥ n+2. By Pumping Lemma

1. 0p = uvw
2. |v| > 0
3. |uv| ≤ n
4. uviw ∈ L for all i.

Let |v| = m. Then |uviw| = p+ (i− 1)m. Choose i = p+ 1. Then |uvp+1w| = p(m+ 1) which is not
prime. Hence uvp+1w 6∈ L contradicting (4). Hence L cannot be regular. �

1.4 Decision Properties

I.Emptiness:

Theorem 6. Let M be a DFA with n states that accepts L. Then L(M) 6= φ iff there is an x ∈
L(M) such that |x| < n.
Consequently, there is an algorithm to test whether L(M) is empty or not.

Proof idea: If L(M) 6= φ then fix x ∈ L(M) with smallest length.
Claim: |x| < n.
Algo: Enumerate all strings of length less than n. If none is accepted by M, then empty, else non-
empty. �

6

II. Finiteness:

Theorem 7. L(M) is infinite iff there is a string x ∈ L(M) such that n ≤ |x| < 2n.
Consequently, there is an algorithm to test whether L(M) is finite or infinite.

Proof idea: Let M be a DFA with n states accepting L.
←: If the condition holds, then L is infinite by the Pumping Lemma
→: So let L be infinite. Fix a string x ∈ L such that |x| ≥ n and |x| is as small as possible.
Claim: n ≤ |x| < 2n.
By the Pumping Lemma, x can be written as x = uvw, where

1. |v| > 0
2. |uv| < n and
3. uviw ∈ L for i = 0, 1, 2 . . .

In particular, uw ∈ L. Also |uw| < |x|. Hence by our choice of x, |uw| < n. Now

|x| = |uw|+ |v| ≤ |uw|+ |uv| < n+ n = 2n.

This complete the proof of the first part.
More decision problems:
Test whether

1. L(M) = Σ∗.
2. L(M1) ⊆ L(M2).

Hint: Construct a DFA M such that L(M) = L(M1)
⋂
L(M2)C .

3. L(M1) = L(M2).

Exercise 3. .

1∗ Given an NFA M construct a regular expression that represents L(M).
(NB: You may take a look at the following notes
https://www.cs.unc.edu/ plaisted/comp455/slides/fare2.3.pdf)
2. Myhill-Nerode Theorem: Given a language L ⊆ Σ∗, and strings x, y ∈ Σ∗, define x ≡L y if

∀w ∈ Σ∗(xw ∈ L ↔ yw ∈ L).

(i) Show that ≡L is an equivalence relation.
(ii) Show that if x ≡L y then for any w ∈ Σ∗, xw ∈ L ↔ yw ∈ L.

(iii) Define the index of L to be the maximum number of inequivalent elements. Show that L is
regular iff L is of finite index. Moreover, its index is the size of the smallest DFA accepting it.
(Note: The index is the number of equivalence classes.)

7

