
Formal Languages and Automata Theory IV

Rana Barua

Visiting Scientist
IAI, TCG CREST, Kolkata

1 Turing Machines

Turing machine (TM) was introduced by Alan Turing as a model of ”any possible computation”. It
consists of an infinite tape with cells, a finite control and a tape-head scanning the content of a cell
at any given instant. Depending on the state of the finite control and the letter being scanned by
the tape-head, the the TM in one move can print a symbol in place of the scanned letter, move the
tape-head one cell to the right or left and enters, perhaps, a new state. Initially, the input string w
is placed in consecutive cells with all other cells occupied by the blank symbol B.The TM starts at
an initial state scanning the first letter of the input string w. If after finitely many moves, the TM
enters an accepting state then the TM accepts the input w. Formally,

Definition 1. A Turing machineM is a 7-tuple (Σ,Γ,Q, q0, δ, B, F), where

1. Σ ⊆ Γ : is the input alphabet not containing B,
2. Γ : is the tape alphabet,
3. Q: is the finite set of states,
4. q0 ∈ Q: is the initial state,
5. δ : Q× Γ → Q× Γ × {L,R}, is the transition function,
6. B ∈ Γ : is the blank symbol,
7. F ⊆ Q: is the set of accepting or final states.

Instantaneous Description(ID): Gives the configuration of a TM at any given instant. It should
give information about

1. the state of the Turing machine
2. the contents of the tape and
3. the position of the tape-head.

Hence, it is encoded by
w1qw2

with the TM in state q scanning the first letter of w2. Here w1 is the portion of the string to the left
of the tape-head starting from the first non-blank symbol, while w2 is the portion of the string star-
ing from the symbol being scanned by the tape-head till the last non-blank symbol. If the first/last
non-blank symbol is to the right/left of the tape-head, then w1/w2 is λ/B.
For instance, the configuration

← | B | a1 | B | a2 | a3 | B →
−−−−−−−−− ↑ −−−−−−−−−
. |q|

is encoded by a1Ba2qa3.
Initial configuration or ID: Clearly, the starting configuration/ID is q0w, where w is the input
string.

Final or accepting ID: If a configuration contains an accepting state then the ID is an accepting
or final ID. For IDs I, J , if I yields J in one move ofM then we write

I ⊢M J.

If ID I yields ID J in 0 or more steps then we write I ⊢∗M J .(If M is clear from the context we
omitM.) Thus I ⊢∗ J if I = J or there is a sequence of ID’s I0, I1, . . . , In such that I0 = I, In = J
and for each k < n, Ik ⊢ Ik+1.

A string w ∈ Σ∗ is accepted by M, if starting from the initial configuration, in finitely many
moves,M enters an accepting state.
The language accepted by M is

L(M) = {w ∈ Σ∗ : q0w ⊢∗ I, for some accepting ID I}.

Thus L(M) is the set of all strings over Σ accepted by M. Such languages are called Turing-
recognizable or recursively enumerable (re).

Remark 1. We may w.l.g. assume that a TM M halts whenever it enters an accepting state. This
may be done as follows. Add a new ”halting state” qh. Modify the transition function such that
from any accepting stateM enters the state qh. Thus wheneverM enters an accepting state, it then
immediately enters qh and halts i.e. it has no next move.

Definition 2. A language is said to be decidable or recursive if it is accepted by a Turing machine
that halts on every input.

Simple examples:

Example 1. We shall construct a TMM that accepts all palindromes over the alphabet {0, 1}. We
first given an informal description ofM. Given an input,M reads the first letter of the input and
”marks” it. If it is a 0 (respectively 1) it marks it with an X (respectively Y). It then moves right
skipping over the 0’s and 1’s until it finds the last unmarked letter. If it matches with the letter
already marked, then it replaces it with an X or a Y as the case may be. It then moves left skipping
over the 0’s and 1’s until it finds the first unmarked letter of the input.M then repeats the process.
If after marking the last unmarked letter,M does not find any unmarked letter, then the input is
an even palindrome and M accepts. If after marking the first unmarked symbol, M does not find
any unmarked letter, then the input is an odd palindrome andM accepts.

Exercise 1. Give a formal definition of the transition function ofM.
Hence describe, formally, an accepting computation on input 10101

Remark 2. The TM constructed above halts on every inputs and hence the set of palindromes over
{0, 1} is recursive.

Exercise 2. Construct a Turing machine that accepts

{ww : w ∈ {0, 1}∗}.

1.1 Variants of TMs:

1. Multi-tracks single-tape TM.
2. Single-tape one-way infinite.
3. Multi-tape TM

2

1. Multi-track TM: In a k-track TMM, at any given instant, the tape-head would be scanning the
contents of all the cells in the tracks. Thus,M would be reading a k-tuple of symbols . Depending on
the k-tuple being read, and the state of the finite control,M would print a k-tuple of symbols–one
for each track–move the tape-head one position to the right or left and enters a, possibly, new state.
The input string is placed onto the first track with all other cells being blank. Thus if a ∈ Σ is
identified with the k-tuple (a,B, . . . , B) and the blank is identified with (B, . . . , B), then a muti-
track TM is simply a single-tape TM whose tape alphabet is Γ k with blank being identified with
(B, . . . , B).
2. Exercise: Show that a two-way infinite tape TM can be simulated by a one-way infinite single
tape TM.
3. Multi-Tape TM: In a k−tape TM M, there are k tapes and for each tape there is a tape-
head scanning the content of a cell at each instant. Depending on the letters being scanned by the
tape-heads and the state of the finite-control, in one moveM

1. prints a letter in each of the cell being scanned
2. moves the tape-heads–independent of each other– one cell to the right or left, and
3. enters a possibly new state.

The input string is placed on the first tape with the corresponding tape-head scanning the first cell
and all other cells are blank. The TM M starts in the initial state q0 and if after finitely many
moves,M enters an accepting state, the input string is accepted byM. The language accepted by
M is

L(M) = {w ∈ Σ | M accepts w}.

Thus the transition-function of a k-tape TM is a function of the form

δ : Q× Γ k → Q× Γ k × {L,R}k.

Theorem 1. Every multi-tape TMM can be simulated by a single tape TM M̂.
Consequently, L is re iff it is accepted by a multi-tape TM.

Proof. LetM be a k-tape TM. We shall construct a single-tape TM M̂ with 2k tracks–2 tracks for
each tape– to simulateM. The upper track contains the contents of the corresponding tape, while
the lower track contains a single marker that indicates the position of the corresponding tape-head.
To simulate a move ofM, M̂ starts from the cell containing the leftmost marker in the state ofM.
M̂ then makes a sweep from left to right visiting all the cells containing a marker and also noting

the letters above the markers. A part of the finite control counts the number of markers visited as
well as the letters being ”read” by the markers. When M̂ has visited all the cells containing a marker,
it has enough information to simulate a move ofM. M̂ then makes a leftward journey updating the
letters above the markers and also moving the marker either to the left or to the right in order to sim-
ulate the move ofM. M̂ then enters the state to whichM enters. M̂ accepts wheneverM accepts.□

Exercise 3. Show that to simulate n moves ofM, M̂ requires O(n2) moves.

Non-deterministic TM: In a non-deterministic TMM, at each instant, the TM –depending
on the letter being scanned and the state of the finite control–has several choices for the next move.
Thus the transition function is a function of the form

δ : Q× Γ → P(Q× Γ × {L,R}).

The equation
δ(q, a) = {(p1, a1, D1), . . . , (pk, ak, Dk)}

means that the TM in state q, reading the letter a, has the choice of printing ai in place of a, enter
the state pi and move the tape-head in the direction Di, where i is one of 1, 2, . . . , k.

3

A string w is accepted byM if, starting from the initial configuration,M has a choice of moves
that will lead to an accepting configuration.

We shall now show that a non-deterministic TM is no more powerful that a deterministic one.

Theorem 2. Every non-deterministic Turing machineM can be simulated by a deterministic Tur-
ing machine M̂.

Consequently, a language L is re iff it is accepted by non-deterministic Turing machine.

Proof. Let us viewM’s computation on w as a tree where each node is labelled by a configuration,
while the children of a node, labelled by I, are labelled by the all the possible configurations that
M can enter in one move from the configuration I. The root is labelled by the initial configuration.
The TM M̂ explores the tree by using the breath-first search. As soon as M̂ finds an accepting
configuration, it halts and accepts.

Thus, M̂ consists of three tapes. The first tape is the input tape, while the second tape is the
simulation or computation tape. The third tape is an address tape. Suppose each node of the tree
has at most k children. Then each node is assigned an address which is a string over the alphabet
{1, 2, . . . , k}. For instance 231 is assigned to the node we arrive at by starting at the root, then going
to its 2nd child, then going to that node’s 3rd child and finally going to that node’s 1st child. The
TM M̂ behaves as follows. Initially, the first tape contains the input w, while the other tapes are
blank.

1. Copy the input w onto the second tape.
2. SimulateM on w as dictated by the address on the 3rd tape, aborting if the address is invalid.

Accept the input string if the configuration on the node visited is accepting.
3. Replace the string on the 3rd tape with the lexicographically next string and go to step 2.

Clearly, M̂ simulatesM. □

Exercise 4. Show that to simulate n moves ofM, M̂ requires about O(2n) steps.

1.2 Properties of re and recursive languages.

Theorem 3. A language L ⊆ Σ∗ is recursive iff L and LC are both re.

Proof. Suppose L is recursive. Fix a TM M that accepts L and halts on all inputs. Clearly L is
re. LetM′ be the TM obtained fromM by interchanging the accepting and rejecting states.Then
clearly,M′ accepts LC .

Conversely, suppose both L and LC are re. Fix single-tape TMs M1,M2 accepting L,LC re-
spectively. W.l.g. assume that both M1 and M2 halt whenever they enter an accepting state i.e.
bothM1,M2 halt on acceptance. Construct a two-tape TM M̂ as follows.

On input w, M̂ copies w onto the second tape and then runsM1 on tape-1 andM2 on tape-2.
M̂ accepts wheneverM1 accepts and halts when one of them halts. Clearly, M̂ accepts L and for
any input w either w ∈ L or w ∈ LC and hence one of M1,M2 halts on input w. So M̂ halts on
any input. Hence, L is recursive. □

Theorem 4. Recursive/re languages are closed under finite
⋃

and
⋂
.

Recursive languages are closed under complementation.

Proof. We shall prove closure under finite
⋃

for re. The remaining proofs are similar.
Let L1,L2 be re languages. Fix single-tape TMsM1,M2 accepting L1,L2 respectively. We shall

construct a two-tape TM M̂ as follows.
On input w, M̂ copies w onto the second tape and then runsM1 on tape-1 andM2 on tape-2.

M̂ accepts whenever one ofM1,M2 accepts. Clearly, M̂ accepts L1

⋃
L2. □

4

1.3 Undecidability

Encoding TMs: LetM =< {0, 1}, Γ,Q, q1, δ, B, F > be a Turing machine over the alphabet {0, 1}.
Let

Q = {q1, q2, . . . , qn},

where q1 is the initial state and q2 is the only accepting state. Let

Γ = {X1, X2, X3, . . . , Xk},

for some integer k, where X1 = 0, X2 = 1 and X3 = B. Let D0 = L,D1 = R. Then each move or
transition of a TMM is given by an equation of the form

δ(qi, Xj) = (qk, Xl, Dm), (1)

where 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ k and m = 1, 2. This can be encoded by the binary string

0i10j10k10l10m

The collection of these binary encodings completely describes δ and can be combined to give an
encoding of the TMM as follows.
Let C1, C2, . . . , Cm be the encodings of all the transitions ofM. Then a code of the entire TMM is

C111C211 . . . 11Cm

and is denoted by <M >.
This also gives an enumeration of all TM’s over the alphabet {0, 1} as follows.

Let w1, w2, . . . be the canonical enumeration of all binary strings. Thus w1 = 0, w2 = 1, w3 =
00, w4 = 01, w5 = 10 and so on. Then the ith Turing machine, denoted by Mi, is the Turing
machine over {0, 1} whose code is wi. If wi is not a code of a TM, thenMi is a fixed TMM∗ such
that L(M∗) = ϕ. Note that <Mi >= wi, if wi is a code of a TM.

Exercise 5. Find an algorithm A which when given an input a binary string w outputs an integer i
such tha w = wi.

What is the complexity of your algorithm?

Define the diagonalization language Ld by

Ld = {wi :Mi does not accept wi}.

Theorem 5. The language Ld is not recursively enumerable

Proof. Suppose Ld is recursively enumerable. Then there is a TM, sayMi∗ , such that

L(Mi∗) = Ld.

Now consider the string wi∗ . If wi∗ ∈ Ld, then by our assumption, Mi∗ accepts wi∗ . This implies
that wi∗ /∈ Ld, a contradiction. On the other hand, if wi∗ /∈ Ld, thenMi∗ does not accepts wi∗ . By
definition of Ld, this means that wi∗ ∈ Ld, again a contradiction. Thus Ld cannot be re. □

5

Universal language: Let

LU = {<M > 111w :M accepts w}.

We shall show that LU is re but not recursive. The language LU is called a universal language and
the TM accepting LU is called a universal TM.

Theorem 6. The language LU is recursively enumerable.

Proof. We shall construct a 3-tape TMMU that accepts LU .MU works as follows.

1. MU first checks that the input is of the form <M > 111w. If not, thenMU rejects the input
string.

2. MU then copies w onto the second tape. Note that w is the string that follows the first block of
111.

3. The third tape contains a string of 0’s with 0i representing the state qi. Initially, the third tape
consists of 0 to represent the initial state q1.

4. To simulate a move ofM,MU searches within <M > a substring of the form 0i10j10k10l10m,
where 0i is the string on the 3rd tape and Xj is the symbol of M at the position on tape 2
scanned byMU . This represents the transition thatM would next make. ThusMU behaves as
follows.
(a) Change the contents of tape 3 to 0k i.e. simulate the state change ofM
(b) Replace Xj by Xl i.e. change the tape symbol ofM,
(c) Shift the tape head on tape 2 one cell to the left if m = 1 or one cell to the right if m = 2.

ThusMU simulates the move ofM to the left or to the right.
5. If no such substring is found, then M has no next move and hence halts in the simulated

configuration.MU does likewise.
6. IfM enters the accepting state, then the contents of tape 3 is 00 and soMU accepts.

In this way,MU simulatesM on w and accepts <M > 111w iffM accepts w. □

Theorem 7. The universal language LU is not recursive.
Consequently, the class of recursive languages is strictly contained in the class of re languages.

Proof. Suppose LU is recursive. Then LC
U is re. Hence there is a TMM accepting LC

U . UsingM we
shall construct a TMM′ that accepts Ld. Given input wi,M′ first checks if wi is a code of a TM. If
it is not a code, thenMi =M∗ and henceMi doe not accept wi and soM′ accepts wi. Suppose wi

is a code, then it is a code of the ith TMMi. The TMM′ then runsM on wi111wi. IfM accepts,
thenM′ accepts wi. Note thatM accepts wi111wi iff <Mi > 111wi ̸∈ LU iffMi does not accepts
wi. ThusMi accepts Ld. This contradicts the fact that Ld is not re. Thus LU can not be recursive.□

6

