
Formal Languages and Automata Theory IV

Rana Barua

Visiting Scientist
IAI, TCG CREST, Kolkata

1 Turing Machines

Turing machine (TM) was introduced by Alan Turing as a model of ”any possible
computation”. It consists of an infinite tape with cells, a finite control and a tape-
head scanning the content of a cell at any given instant. Depending on the state of
the finite control and the letter being scanned by the tape-head, the the TM in one
move can print a symbol in place of the scanned letter, move the tape-head one cell
to the right or left and enters, perhaps, a new state. Initially, the input string w is
placed in consecutive cells with all other cells occupied by the blank symbol B.The
TM starts at an initial state scanning the first letter of the input string w. If after
finitely many moves, the TM enters an accepting state then the TM accepts the input
w. Formally,

Definition 1. A Turing machineM is a 7-tuple (Σ,Γ,Q, q0, δ, B, F), where

1. Σ ⊆ Γ : is the input alphabet not containing B,
2. Γ : is the tape alphabet,
3. Q: is the finite set of states,
4. q0 ∈ Q: is the initial state,
5. δ : Q× Γ → Q× Γ × {L,R}, is the transition function,
6. B ∈ Γ : is the blank symbol,
7. F ⊆ Q: is the set of accepting or final states.

Instantaneous Description(ID): Gives the configuration of a TM at any given
instant. It should give information about

1. the state of the Turing machine
2. the contents of the tape and
3. the position of the tape-head.

Hence, it is encoded by
w1qw2

with the TM in state q scanning the first letter of w2. Here w1 is the portion of the
string to the left of the tape-head starting from the first non-blank symbol, while w2

is the portion of the string staring from the symbol being scanned by the tape-head
till the last non-blank symbol. If the first/last non-blank symbol is to the right/left
of the tape-head, then w1/w2 is λ/B.

For instance, the configuration

← | B | a1 | B | a2 | a3 | B →
−−−−−−−−− ↑ −−−−−−−−−
. |q|

is encoded by a1Ba2qa3.
Initial configuration or ID: Clearly, the starting configuration/ID is q0w, where
w is the input string.
Final or accepting ID: If a configuration contains an accepting state then the ID
is an accepting or final ID. For IDs I, J , if I yields J in one move ofM then we write

I ⊢M J.

If ID I yields ID J in 0 or more steps then we write I ⊢∗M J .(IfM is clear from the
context we omitM.) Thus I ⊢∗ J if I = J or there is a sequence of ID’s I0, I1, . . . , In
such that I0 = I, In = J and for each k < n, Ik ⊢ Ik+1.

A string w ∈ Σ∗ is accepted by M, if starting from the initial configuration, in
finitely many moves,M enters an accepting state.
The language accepted by M is

L(M) = {w ∈ Σ∗ : q0w ⊢∗ I, for some accepting ID I}.

Thus L(M) is the set of all strings over Σ accepted byM. Such languages are called
Turing-recognizable or recursively enumerable (re).

Remark 1. We may w.l.g. assume that a TMM halts whenever it enters an accepting
state. This may be done as follows. Add a new ”halting state” qh. Modify the transition
function such that from any accepting state M enters the state qh. Thus whenever
M enters an accepting state, it then immediately enters qh and halts i.e. it has no
next move.

Definition 2. A language is said to be decidable or recursive if it is accepted by
a Turing machine that halts on every input.

Simple examples:

Example 1. We shall construct a TMM that accepts all palindromes over the alpha-
bet {0, 1}. We first given an informal description ofM. Given an input,M reads the
first letter of the input and ”marks” it. If it is a 0 (respectively 1) it marks it with an
X (respectively Y). It then moves right skipping over the 0’s and 1’s until it finds the
last unmarked letter. If it matches with the letter already marked, then it replaces it
with an X or a Y as the case may be. It then moves left skipping over the 0’s and 1’s
until it finds the first unmarked letter of the input. M then repeats the process. If

2

after marking the last unmarked letter,M does not find any unmarked letter, then
the input is an even palindrome andM accepts. If after marking the first unmarked
symbol,M does not find any unmarked letter, then the input is an odd palindrome
andM accepts.

Exercise 1. Give a formal definition of the transition function ofM.
Hence describe, formally, an accepting computation on input 10101

Remark 2. The TM constructed above halts on every inputs and hence the set of
palindromes over {0, 1} is recursive.

Exercise 2. Construct a Turing machine that accepts

{ww : w ∈ {0, 1}∗}.

1.1 Variants of TMs:

1. Multi-tracks single-tape TM.
2. Single-tape one-way infinite.
3. Multi-tape TM

1. Multi-track TM: In a k-track TMM, at any given instant, the tape-head would
be scanning the contents of all the cells in the tracks. Thus,M would be reading a
k-tuple of symbols . Depending on the k-tuple being read, and the state of the finite
control,M would print a k-tuple of symbols–one for each track–move the tape-head
one position to the right or left and enters a, possibly, new state. The input string is
placed onto the first track with all other cells being blank. Thus if a ∈ Σ is identified
with the k-tuple (a,B, . . . , B) and the blank is identified with (B, . . . , B), then a
muti-track TM is simply a single-tape TM whose tape alphabet is Γ k with blank
being identified with (B, . . . , B).
2. Exercise: Show that a two-way infinite tape TM can be simulated by a one-way
infinite single tape TM.
3. Multi-Tape TM: In a k−tape TMM, there are k tapes and for each tape there
is a tape-head scanning the content of a cell at each instant. Depending on the letters
being scanned by the tape-heads and the state of the finite-control, in one moveM

1. prints a letter in each of the cell being scanned
2. moves the tape-heads–independent of each other– one cell to the right or left, and
3. enters a possibly new state.

The input string is placed on the first tape with the corresponding tape-head scanning
the first cell and all other cells are blank. The TMM starts in the initial state q0 and
if after finitely many moves,M enters an accepting state, the input string is accepted
byM. The language accepted byM is

L(M) = {w ∈ Σ | M accepts w}.

3

Thus the transition-function of a k-tape TM is a function of the form

δ : Q× Γ k → Q× Γ k × {L,R}k.

Theorem 1. Every multi-tape TMM can be simulated by a single tape TM M̂.
Consequently, L is re iff it is accepted by a multi-tape TM.

Proof. Let M be a k-tape TM. We shall construct a single-tape TM M̂ with 2k
tracks–2 tracks for each tape– to simulateM. The upper track contains the contents
of the corresponding tape, while the lower track contains a single marker that indicates
the position of the corresponding tape-head. To simulate a move ofM, M̂ starts from
the cell containing the leftmost marker in the state ofM.
M̂ then makes a sweep from left to right visiting all the cells containing a marker

and also noting the letters above the markers. A part of the finite control counts
the number of markers visited as well as the letters being ”read” by the markers.
When M̂ has visited all the cells containing a marker, it has enough information to
simulate a move ofM. M̂ then makes a leftward journey updating the letters above
the markers and also moving the marker either to the left or to the right in order to
simulate the move of M. M̂ then enters the state to which M enters. M̂ accepts
wheneverM accepts. □

Exercise 3. Show that to simulate n moves ofM, M̂ requires O(n2) moves.

Non-deterministic TM: In a non-deterministic TM M, at each instant, the
TM –depending on the letter being scanned and the state of the finite control–has
several choices for the next move. Thus the transition function is a function of the
form

δ : Q× Γ → P(Q× Γ × {L,R}).

The equation

δ(q, a) = {(p1, a1, D1), . . . , (pk, ak, Dk)}

means that the TM in state q, reading the letter a, has the choice of printing ai in
place of a, enter the state pi and move the tape-head in the direction Di, where i is
one of 1, 2, . . . , k.

A string w is accepted byM if, starting from the initial configuration,M has a
choice of moves that will lead to an accepting configuration.

We shall now show that a non-deterministic TM is no more powerful that a de-
terministic one.

Theorem 2. Every non-deterministic Turing machineM can be simulated by a de-
terministic Turing machine M̂.

Consequently, a language L is re iff it is accepted by non-deterministic Turing
machine.

4

Proof. Let us viewM’s computation on w as a tree where each node is labelled by a
configuration, while the children of a node, labelled by I, are labelled by the all the
possible configurations thatM can enter in one move from the configuration I. The
root is labelled by the initial configuration. The TM M̂ explores the tree by using
the breath-first search. As soon as M̂ finds an accepting configuration, it halts and
accepts.

Thus, M̂ consists of three tapes. The first tape is the input tape, while the second
tape is the simulation or computation tape. The third tape is an address tape. Suppose
each node of the tree has at most k children. Then each node is assigned an address
which is a string over the alphabet {1, 2, . . . , k}. For instance 231 is assigned to the
node we arrive at by starting at the root, then going to its 2nd child, then going to
that node’s 3rd child and finally going to that node’s 1st child. The TM M̂ behaves
as follows. Initially, the first tape contains the input w, while the other tapes are
blank.

1. Copy the input w onto the second tape.
2. Simulate M on w as dictated by the address on the 3rd tape, aborting if the

address is invalid. Accept the input string if the configuration on the node visited
is accepting.

3. Replace the string on the 3rd tape with the lexicographically next string and go
to step 2.

Clearly, M̂ simulatesM. □

Exercise 4. Show that to simulate n moves ofM, M̂ requires about O(2n) steps.

1.2 Properties of re and recursive languages.

Theorem 3. A language L ⊆ Σ∗ is recursive iff L and LC are both re.

Proof. Suppose L is recursive. Fix a TMM that accepts L and halts on all inputs.
Clearly L is re. LetM′ be the TM obtained fromM by interchanging the accepting
and rejecting states.Then clearly,M′ accepts LC .

Conversely, suppose both L and LC are re. Fix single-tape TMsM1,M2 accepting
L,LC respectively. W.l.g. assume that both M1 and M2 halt whenever they enter
an accepting state i.e. both M1,M2 halt on acceptance. Construct a two-tape TM
M̂ as follows.

On input w, M̂ copies w onto the second tape and then runsM1 on tape-1 and
M2 on tape-2. M̂ accepts wheneverM1 accepts and halts when one of them halts.
Clearly, M̂ accepts L and for any input w either w ∈ L or w ∈ LC and hence one of
M1,M2 halts on input w. So M̂ halts on any input. Hence, L is recursive. □

Theorem 4. Recursive/re languages are closed under finite
⋃

and
⋂
.

Recursive languages are closed under complementation.

5

Proof. We shall prove closure under finite
⋃

for re. The remaining proofs are similar.
Let L1,L2 be re languages. Fix single-tape TMsM1,M2 accepting L1,L2 respec-

tively. We shall construct a two-tape TM M̂ as follows.
On input w, M̂ copies w onto the second tape and then runsM1 on tape-1 and

M2 on tape-2. M̂ accepts whenever one of M1,M2 accepts. Clearly, M̂ accepts
L1

⋃
L2. □

1.3 Undecidability

Encoding TMs: LetM =< {0, 1}, Γ,Q, q1, δ, B, F > be a Turing machine over the
alphabet {0, 1}. Let

Q = {q1, q2, . . . , qn},
where q1 is the initial state and q2 is the only accepting state. Let

Γ = {X1, X2, X3, . . . , Xk},

for some integer k, where X1 = 0, X2 = 1 and X3 = B. Let D0 = L,D1 = R. Then
each move or transition of a TMM is given by an equation of the form

δ(qi, Xj) = (qk, Xl, Dm), (1)

where 1 ≤ i, k ≤ n, 1 ≤ j, l ≤ k and m = 1, 2. This can be encoded by the binary
string

0i10j10k10l10m

The collection of these binary encodings completely describes δ and can be combined
to give an encoding of the TMM as follows.
Let C1, C2, . . . , Cm be the encodings of all the transitions ofM. Then a code of the
entire TMM is

C111C211 . . . 11Cm

and is denoted by <M >.
This also gives an enumeration of all TM’s over the alphabet {0, 1} as follows.

Let w1, w2, . . . be the canonical enumeration of all binary strings. Thus w1 = 0, w2 =
1, w3 = 00, w4 = 01, w5 = 10 and so on. Then the ith Turing machine, denoted by
Mi, is the Turing machine over {0, 1} whose code is wi. If wi is not a code of a TM,
thenMi is a fixed TMM∗ such that L(M∗) = ϕ. Note that <Mi >= wi, if wi is a
code of a TM.

Exercise 5. Find an algorithmA which when given an input a binary string w outputs
an integer i such tha w = wi.

What is the complexity of your algorithm?

Define the diagonalization language Ld by

Ld = {wi :Mi does not accept wi}.

6

Theorem 5. The language Ld is not recursively enumerable

Proof. Suppose Ld is recursively enumerable. Then there is a TM, sayMi∗ , such that

L(Mi∗) = Ld.

Now consider the string wi∗ . If wi∗ ∈ Ld, then by our assumption,Mi∗ accepts wi∗ .
This implies that wi∗ /∈ Ld, a contradiction. On the other hand, if wi∗ /∈ Ld, then
Mi∗ does not accepts wi∗ . By definition of Ld, this means that wi∗ ∈ Ld, again a
contradiction. Thus Ld cannot be re. □

7

Universal language: Let

LU = {<M > 111w :M accepts w}.

We shall show that LU is re but not recursive. The language LU is called a universal
language and the TM accepting LU is called a universal TM.

Theorem 6. The language LU is recursively enumerable.

Proof. We shall construct a 3-tape TMMU that accepts LU .MU works as follows.

1. MU first checks that the input is of the form < M > 111w. If not, then MU

rejects the input string.
2. MU then copies w onto the second tape. Note that w is the string that follows

the first block of 111.
3. The third tape contains a string of 0’s with 0i representing the state qi. Initially,

the third tape consists of 0 to represent the initial state q1.
4. To simulate a move of M, MU searches within <M > a substring of the form

0i10j10k10l10m, where 0i is the string on the 3rd tape and Xj is the symbol ofM
at the position on tape 2 scanned byMU . This represents the transition thatM
would next make. ThusMU behaves as follows.

(a) Change the contents of tape 3 to 0k i.e. simulate the state change ofM
(b) Replace Xj by Xl i.e. change the tape symbol ofM,
(c) Shift the tape head on tape 2 one cell to the left if m = 1 or one cell to the

right if m = 2. ThusMU simulates the move ofM to the left or to the right.

5. If no such substring is found, then M has no next move and hence halts in the
simulated configuration.MU does likewise.

6. If M enters the accepting state, then the contents of tape 3 is 00 and so MU

accepts.

In this way,MU simulatesM on w and accepts <M > 111w iffM accepts w. □

Theorem 7. The universal language LU is not recursive.
Consequently, the class of recursive languages is strictly contained in the class of

re languages.

Proof. Suppose LU is recursive. Then LC
U is re. Hence there is a TMM accepting LC

U .
UsingM we shall construct a TMM′ that accepts Ld. Given input wi,M′ first checks
if wi is a code of a TM. If it is not a code, then Mi =M∗ and hence Mi doe not
accept wi and soM′ accepts wi. Suppose wi is a code, then it is a code of the ith TM
Mi. The TMM′ then runsM on wi111wi. IfM accepts, thenM′ accepts wi. Note
thatM accepts wi111wi iff <Mi > 111wi ̸∈ LU iffMi does not accepts wi. ThusMi

accepts Ld. This contradicts the fact that Ld is not re. Thus LU can not be recursive.□

8

1.4 Intractable Problems

Definition 3. A function

f : Σ∗
1 → Σ∗

2

is said to be polynomial-time computable if there is a polynomial p(x) and a TM
M with an output tape such that for every input w of length n, in at most p(n)
moves ofM, f(w) is obtained on the output tape ofM.

Definition 4. Let L1,L2 be two languages.
L1 is polynomial-time reducible to L2 and we write L1 ≤p L2 if there is a

polynomial-time computable function f such that

w ∈ L1 ↔ f(w) ∈ L2.

Intuition: L1 is not more complex than L2.

Proposition 1. ≤p is reflexive and transitive.

Proof. Clearly, ≤p is reflexive. For transitivity, let L1 ≤p L2 and L2 ≤p L3. Fix two
polynomial-time computable functions f, g such that

w ∈ L1 ↔ f(w) ∈ L2,

x ∈ L2 ↔ g(x) ∈ L3.

Set h = g ◦ f . Then

w ∈ L1 ↔ f(w) ∈ L2 ↔ g(f(w)) ∈ L3,

i.e.

w ∈ L1 ↔ h(w) ∈ L3.

We claim that h is a polynomial-time computable function.
Let p(n), q(n) be the polynomial bounds for the functions f, g respectively. Let

M1,M2 be the TMs computing f, g respectively. We shall construct a TM M by
combining M1,M2 as follows. On input w of length n, M first runs M1 on w and
obtains f(w) on the output tape in at most p(n) moves. Since in one move,M1 can
print only one symbol, the length of f(w) is at most p(n).M now runsM2 on f(w)
and obtains g(f(w)) = h(w) on the output tape. Note thatM2 takes at most q(p(n))
steps to compute g(f(w)) = h(w). Thus the total time taken by M to compute
h(w) is at most p(n) + q(p(n)), which is a polynomial. Thus h is polynomial-time
computable function.

Remark 3. The proof shows that if f and g are polynomial-time computable functions
then so is h = g ◦ f .

9

Definition 5. A TM M is said to be T (n)-time bounded if for every input w of
length n accepted by M, it makes at most T (n) moves to accept w. It is said to be
poly-time bounded if it is p(n)- time bounded for some polynomial p(.).

The Class P, NP:
The language L is in the class P (resp. NP) if L is accepted by a poly-time bounded
deterministic (resp non-deterministic) TMM.

Theorem 8. Every context-free language L is in P.

Proof. Let L be a context-free language. Without loss of generality, assume λ /∈ L.
Fix a grammar G in CNF that generates L Given a string w we shall construct a
polynomial-time algorithm for w. Let w = w1w2 . . . wn.

For i ≤ j ≤ n, we shall construct by induction on the length of the substring
wi . . . wj a set of variables Xij as follows.

1. For each i ≤ n, if A→ wi then put A in Xii.
2. For i ≤ j if A → BC is a production and for some k, i ≤ k < j,B ∈ Xik, C ∈

Xk+1,j then place A in Xij.

We claim that for every substring wi . . . wj of length l, A ∈ Xij iff A
∗⇒ wi . . . wj.

The result is trivially true for l = 1. So assume i < j and the induction hypothesis.
Now A ∈ Xij iff A→ BC is a production of G, where B ∈ Xik, C ∈ Xk+1,j for some

k, i ≤ k < j. So A ∈ Xij iff A⇒ BC
∗⇒ wi . . . wkwk+1 . . . wj, by induction hypothesis.

iHence A ∈ Xij iff A
∗⇒ w. Thus the claim holds.

If S ∈ X1n then w ∈ L, else w ̸∈ L.
It is not hard to check that the above algorithm is an O(n3)-algorithm. This completes
the proof. □

Definition 6. A language L is said to be NP-complete if

1. L ∈ NP.
2. For every L′ in NP ,L′ ≤p L.

If only condition (2) holds then it is said to be NP-hard.

Theorem 9. If L ∈ P and L̂ ≤p L then L̂ is also in P.

Proof. Since L̂ ≤p L, there is p(n)-time computable function f such that

w ∈ L̂ ↔ f(w) ∈ L.

LetM1 be a p(n)-time bounded TM computing f and letM2 be a q(n)-time bounded
TM accepting L. We shall construct a poly-time bounded TM L̂ that accepts L̂ as
follows.

On input w of length n,M̂ first runs M on w to obtain f(w) in at most p(n)
steps. M̂ then runs M2 on fw) and accepts w iff M2 accepts f(w). Clearly, M̂

10

accepts M̂. Now observe that |f(w)| is at most p(n) and henceM2 on f(w) takes at
most q(p(n)) steps on accetance. Thus the total time taken by M̂ in accepting w is

at most p(n) + q(p(n))
def
= r(n). Hence, M̂ is a poly-time bounded TM accepting L̂

and so L̂ ∈ P . □

Theorem 10. If L is NP-complete and L ∈ P, then P = NP.

Proof. Suffices to show that NP ⊆ P . So fix L′ ∈ NP . Since L is NP-complete,
L′ ≤p L. Since L is in P , by Theorem 8 L′ is also in P . This completes the proof. □

Theorem 11. Suppose L ∈ NP and L̂ is an NP-complete language such that L̂ ≤p

L. Then L is also NP-complete.

Proof. It is enough to prove that L is NP-hard. So fix L′ ∈ NP . Since L̂ is NP-
complete we have L′ ≤p L̂. By our assumption, L̂ ≤p L. Hence by reflexivity, we have
L′ ≤p L. □

Remark 4. This gives us a technique of proving that a given language L is NP-
complete.

The first NP-complete problem:

Definition 7. Let ϕ be a Boolean formula in Conjunctive Normal Form (CNF). ϕ is
said to be satisfiable if there is a truth assignment to the atoms in ϕ that makes ϕ
TRUE. Let SAT be the set of all satisfiable formulas in CNF.

Encode ϕ over some alphabet. (Any reasonable encoding is good enough.) Denote
it by < ϕ >.
The language associated with SAT is the language

LSAT = {< ϕ >: ϕ is in CNF and ϕ is satisfiable}.

In what follows, for simplicity, we shall work work with SAT rather that LSAT .
Cook-Levin Theorem:

Theorem 12. SAT is NP-complete.
Consequently, P = NP iff SAT ∈ P.

Proof. We first show that SAT ∈ NP . So fix a Boolean formula ϕ in CNF. Consider
the following algorithm that can be easily simulated by a non-deterministic TM.

1. Non-deterministically choose an assignment of truth values to the atoms in ϕ.
2. Check in polynomial time if ϕ is TRUE under this assignment.

Note that if ϕ ∈ SAT , then for some choice in step 1, ϕ will be TRUE. Thus SAT is
in NP .

11

We now show that SAT is NP-hard. So fix a language L ∈ NP . LetM be a p(n)-
bounded non-deterministic TM that accepts L. Without loss of generality assume that
the polynomial p(n) ≥ n for all n. Our aim is to find a polynomial-time computable
function that transform a given string u into a CNF formula δu such that

u is accepted byM iff δu is satisfiable.

For a given string u, let t = p(|u|).
Observe that ifM accepts the input u then it does so in at most t steps. Thus to

determine ifM accepts u we need to run it on u for at most t steps and then check
if the configuration is an accepting configuration. Since in one move, M moves the
tape head one cell to the left or right of the current cell scanned by it, in t moves, the
tape head is at most t cell to the left or t cells to the right of the current position.
Since t ≥ |u| it suffices to consider 2t + 1 cells of the tape for the computation by
M. Since we are considering t steps of the computation, the information of the entire
computation ofM can be revealed in the following t× (2t+ 1) array.

12

←− 2t+ 1 −→

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tape at step 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

↑
t

...
↓

− −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

tape at step t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Without loss of generality we assume that ifM accepts u in < t steps then the last
configuration is repeated so thatM accepts u in exactly t steps. Thus the first row
of the array corresponds to the initial configuration and is of the form

st0us
t+1−|u|
0 ,

where s0 = B withM in state q1 is scanning the first letter of u. The last row of the
array corresponds to an accepting configuration.

Let the set of states of M be Q = {q1, q2, . . . , qn}, where q1 is the initial state
and qn is the only accepting state. The tape alphabet is Γ = {s0, s1, . . . , sr}, where
s0 = B. We will define a CNF formula δu which is satisfiable iff M accepts u. Our
set of atoms is

A = {ρh,j,k, σi,j,k : 1 ≤ h ≤ n, 0 ≤ i ≤ r, 1 ≤ j ≤ 2t+ 1, 1 ≤ k ≤ t}.

We first assume thatM accepts u, so that there is an accepting computation ofM on
u. We assume that the above t× (2t+1) array has been constructed accordingly. We
shall construct a CNF formula δu that is satisfiable under the following assignment ν.

ν(ρh,j,k) =

{
1 if M in state qh is scanning the jth position at step k of the computation
0 otherwise

(2)

ν(σi,j,k) =

{
1 if the tape symbol si is in jth position of the kth row of the array
0 otherwise

(3)
To describe δu we need the following

∇{xe : 1 ≤ e ≤ l} def
=

∧
1≤e<f≤l

(¬xe ∨ ¬xf) ∧ (
∨

1≤e≤l

xe),

13

where {xe : 1 ≤ e ≤ l} is a set of atoms/formulas. It is not hard to check that
∇{xe : 1 ≤ e ≤ l} is TRUE under an asignment of truth values iff exactly one of
x1, x2, . . . , xl is TRUE under that assignment. Also the length of the formula is O(l2).

The formula δu is the conjunction of the following 5 CNF formulas that describes
the computation of M on u and is TRUE under the above assignment. Let u =
su1suz where z = |u|.

1. ” The first row of the array corresponds to the initial configuration with M in
state q1 scanning the first letter of u.”
This is expressed by∧

1≤j≤t

σ0,j,1 ∧
∧

1≤j≤z

σuj ,t+j,1 ∧
∧

1≤j≤t+1−z

σ0,t+z+j,1 ∧ ρ1,t+1,1.

Clearly, this is of length O(t).
2. ”Each entry of the array contains exactly one tape symbol.”

This is expressed by ∧
1≤j≤2t+1

∧
1≤k≤t

∇{σi,j,k : 0 ≤ i ≤ r}.

The length of the formula is O(t2).
3. ”At each step of the computationM is in a unique state scanning a unique cell.”

This is expressed by∧
1≤k≤t

∇{ρh,j,k : 1 ≤ h ≤ n, 1 ≤ j ≤ 2t+ 1}.

This expression is of length O(t3).
4. ”Each configuration of the computation, after the first, is either identical to the

previous configutration or follows from it by the application of one of the transition
rules ofM.”
Let the transition rules ofM be as follows.

{δ(qia , sja) = (qka , sla , R) : 1 ≤ a ≤ ā}, (4)

{δ(qib , sjb) = (qkb , slb , L) : 1 ≤ b ≤ b̄}. (5)

The expression will be of the form∧
1≤j≤2t+1

∧
1≤k≤t

(NOHEAD(j, k) ∨ IDENT (j, k) ∨ A(j, k) ∨B(j, k)), (6)

where each of the disjunct will be explained below. Each disjunct will be of con-
stant length so that the expression will be of length O(t2).

14

We define

NOHEAD(j, k) :=
∨

0≤i≤r

(σi,j,k ∧ σi,j,k+1) ∧
∧

1≤h≤n

¬ρh,j,k.

Thus ν(NOHEAD(j, k)) = 1 iffM is not scanning the jth cell at step k of the
computaion.
Next we define

IDENT (j, k) :=
∨

1≤h≤n

∨
0≤i≤r

(ρh,j,k ∧ σi,j,k ∧ ρh,j,k+1 ∧ σi,j,k+1),

so that ν(IDENT (j, k)) = 1 iff M is scanning the jth cell at both the kth and
k + 1st step of the computation, both the state and the symbol are the same in
both the configurations.
Next we define for j ̸= 2t+ 1

A(j, k) :=
∨

1≤a≤ā

(ρia,j,k ∧ σja,j,k ∧ ρka,j+1,k+1 ∧ σla,j,k+1),

so that ν(A(j, k)) = 1 iff the k + 1st step is obtained from the kth step by
application of one of the rules of (4).
Similarly, we define for j ̸= 1

B(j, k) :=
∨

1≤b≤b̄

(ρib,j,k ∧ σjb,j,k ∧ ρkb,j−1,k+1 ∧ σlb,j,k+1),

so that ν(B(j, k)) = 1 iff the k + 1st step is obtained from the previous step by
the application of one of the rules of (5).
Finally, the expression within (,) in (6) is converted into CNF.

5. ”The configuration at step t is an accepting configuration.”
This is expressed by ∨

1≤j≤2t+1

ρn,j,t.

This is of length O(t).

δu is the conjunction of the CNF formulas (1)-(5) above. Thus if M accepts u, the
CNF formula δu is TRUE under the assignment ν described in (2) and (3).

Conversely, suppose δu is TRUE under a certain assignment ν. We now intrepret
ν as in equations (2),(3). Then we can construct a t× (2t+ 1) array as follows. The
CNF fomula (2) says that each cell of the array is occupied by a unique tape symbol.
Formula (1) says that the first row of the array corresponds to the initial configuration
withM in state q1 scanning the first letter of u. Formula (3) says that at each step
of the computation, M is in a unique state scanning a unique cell. Formula (4) is
satisfiable under the assignment means that each configuration after the first, is either

15

identical to the previous configuration or follows from it by the application of one of
the rules of M. Formula (5) says that the configuration at step t is an accepting
computation. Thus the t × (2t + 1) array reconstructs an accepting computation of
M on u. SoM accepts u.

This completes the proof. □

1.5 Other NP-complete problems.

Definition 8. A Boolean formula is said to be 3CNF if it is a CNF formula in which
each clause contains at most 3 literals. Define

3SAT = {ϕ : ϕ is a satisfiable 3CNF formula}.

The corresponding laguage is

L3SAT = {< ϕ >: ϕ ∈ 3SAT}.

We next prove

Theorem 13. 3SAT is NP-complete.

Proof. Since SAT is in NP it easily followws that 3SAT is in NP . To show 3SAT
is NP -hard we shall reduce SAT to 3SAT. Our aim is to find a polynomial-time
computable function that transform a CNF formula ϕ to a 3CNF formula ϕ̂ such that

ϕ is satisfiable iff ϕ̂ is satisfiable.

So fix a CNF formula ϕ. Let
C := /α1α2 . . . αk

be a clause where k ≥ 4. It suffices to transform C to a 3CNF formula Ĉ such that
C is satisfiable iff Ĉ is satisfiable. Let β1, β2 . . . βk−3 be atoms not in ϕ. We define

Ĉ := /α1α2β1/α3β̄1β2/α4β̄2β3/ . . . /αk−2β̄k−4βk−3/αk−1αkβ̄k−3.

Claim: C is satisfiable iff Ĉ is satisfiable.
So assume ν(C) = 1 under some assignment ν to the variables in C. We shall

extend ν to the variables β1, . . . , βk−3 as follows.
Clearly ν(αl) = 1 for some l, 1 ≤ l ≤ k. Set

ν(βi) =

{
1 if 1 ≤ i ≤ l − 2
0 if l − 1 ≤ i ≤ k − 3

.

16

Note that the clauses C1, C2, . . . Cl−2 contains β1, β2, . . . , βl−2 respectively and
hence each of these clauses receives truth value 1. The l − 1st clause contains αl

and hence is TRUE under the assignment ν. For l ≤ i ≤ k− 2, Ci contains the literal
β̄i−1 and hence takes the truth value 1. Thus it follows that

ν(Ĉ) = 1.

Conversely suppose ν(Ĉ) = 1 under some assignment ν.
We claim that ν(αi) = 1 for some i, 1 ≤ i ≤ k. If not, then ν(αi) = 0,∀i.

Since the ν(C1) = 1, we must have ν(β1) = 1. By induction one can show that
ν(βi) = 1,∀i, 1 ≤ i ≤ k−3. This forces the last clause to be FALSE. This contradiction
shows that ν(αi) = 1 for some i. Thus ν(C) = 1. This completes the proof. □
COMPLETE SUBGRAPH
We next consider the COMPLETE SUBGRAPH(CS) problem: Given a graph G
and an integer k, does G have a complete subgraph of size k? We now show that CS
is NP-complete.

Note that a graph G can be encoded by its adjacency matrix or incidence matrix.
Its code is denoted by < G >. So the corresponding language is

LCS = {< G > #0k : G has a complete subgraph of size k}.

However, for simplicity we work with a graph G instead of its code.

Theorem 14. COMPLETE SUBGRAPH is NP-complete.

Proof. It is easy to check that CS is in NP . To show that CS is NP-hard, we shall
reduce SAT to CS. So fix a CNF formula ϕ. We shall construct a polynomial time
computable function that transforms ϕ into a graph Gϕ and an integer k such that

ϕ is satisfiable iff Gϕ has a complete subgraph of size k.

Let ϕ := /C1/ . . . /Ck where C1, . . . , Ck are clauses. We construct Gϕ = (V,E) as
follows.

V = {(α, i) : α is a literal in Ci}.

E = {{(α, i), (β, j)} : i ̸= j and α ̸= ¬β}.

Claim: ϕ is satisfiable iff Gϕ has a complete subgraph of size k.
First assume ϕ is satisfiable. Thus ν(ϕ) = 1 under some assignment ν. For each
i, 1 ≤ i ≤ k, fix a literal αi in clause Ci such that ν(αi) = 1. It is easy to check
that (α1, 1), . . . , (αk, k) forms a complete subgraph of size k in Gϕ. Conversely, let
(α1, i1), . . . , (αk, ik) be the vertices of a complete subgraph of Gϕ of size k. Clearly, by
definition, i1, . . . , ik must be distinct integers and hence is a permutation of 1, . . . , k.
Moreoever, αt is a literal in Cit , 1 ≤ t ≤ k. Define an assignment ν such that ν(αt) =
1,∀t. Clearly ν is a valid assignment and ν(ϕ) = 1. Thus the claim holds. Further,
Gϕ can be obtained from ϕ by a polynomial time computable function. □

17

VERTEX COVER
Given a graph G = (V,E), let Ḡ = (V, Ē) denote its complement. For the Vertex
Cover problem we first need the following definition.

Definition 9. Let G = (V,E) be a graph. A subset S ⊆ V is said to be a vertex
cover of G if for every edge {u, v} ∈ E either u ∈ S or v ∈ S.

The Vertex Cover problem is : given a graph G and an integer k, is there a vertex
cover of size k? To show that the Vertex Cover problem is NP-complete we need the
following

Theorem 15. Let G = (V,E). Let Ḡ = (V, Ē) denote its complement i.e. {u, v} ∈ Ē
iff {u, v} ̸∈ E. Then S ⊆ V is a set of vertices of a complete sungraph of G iff V −S
is a vetex cover of Ḡ

Proof. First suppose S forms a complete subgraph of G. Fix an edge {u, v} ∈ Ē.
Then {u, v} is not an edge of G. Hence either u ̸∈ S or v ̸∈ S i,e, one of u, v is in
V − S. Hence V − S is a vertex cover of Ḡ.

Conversely suppose V − S forms a vertez cover of Ḡ.
Claim: The vertices of S form a complete subgraph of G. So fix two vertices u, v in
S. Since neither u nor v is in V − S, {u, v} can not be an edge of Ḡ. Hence {u, v} is
an edge of G. This completes the proof. □

Theorem 16. VERTEX COVER is NP-complete.

Proof. Given a graph G = (V,E), non-deterministically choose k vertices v1, . . . , vk
and check in timeO(k2) if these vertices form a vertex cover ofG. Thus V ERTEXCOV ER
is in NP .

We now show that VERTEX COVER isNP-hard by reducing COMPLETE SUB-
GRAPH to VERTEX COVER. Given a graph G with n vertices and an integer k,
construct its complement Ḡ. Then by Theorem 13, G has a complete subgraph of size
k iff Ḡ has a vertex cover of size n − k. This is clearly a polynomial-time reduction.
Thus VERTEX COVER is NP-hard. □
SET COVER
The SET COVER problem: Given a family of sets ∆ = {S1, S2, . . . , Sn} and an in-
teger k, determine whether there is a subfamily Γ of size k, Γ = {Si1 , Si2 , . . . , Sik}
such that ⋃

1≤i≤n

Si =
⋃

1≤t≤k

Sit . (7)

Theorem 17. SET COVER is NP-complete.

Proof. Given the family ∆ non-deterministically choose sets Si1 , . . . , Sik from ∆ and
check in polynomial time whether (7) holds.

We now reduce VERTEX COVER to SET COVER as follows.

18

Given a graph G = (V,E) and an integer k, let V = {v1, . . . , vn}. For each
i, 1 ≤ i ≤ n, construct

Si = {(vi, vj), (vj, vi) : {vi, vj} ∈ E}.

It is not hard to check that {vi1 , . . . , vik} is a vertex cover for G iff Γ = {Si1 , . . . , Sik}
is a set cover for ∆ = {S1, . . . , Sn}. □
INDEPENDENT SET

Definition 10. Let G = (V,E) be a graph. A subset I ⊆ V is said to be an indepen-
dent set if for every pair of vertives u, v ∈ I, {u, v} is not an edge of G.

The INDEPENDENT SET problem is the following.
Given a graph G = (V,E) and an integer k, determine whether G has an inde-

pendent set of size k.

The following is easy to prove.

Theorem 18. Let G = (V,E) be a graph. Then I ⊆ V is an independent set iff V −I
is a vertex cover for G.

Using this one can show

Theorem 19. INDEPENDENT SET is NP-complete.

GRAPH COLOURING:

Definition 11. A graph G is said to be k-colourable if the vertices of G can be
coloured with k colours such that if {u, v} is an edge of G, then u and v receive
different colours. Such a colouring is called a valid or an admissible colouring.

GRAPH COLOURING problem: Given a graph G and an integer k, decide if G
is k-colourable.

We now show that GRAPH COLOURING is NP-complete.

Theorem 20. The GRAPH COLOURING problem is NP-complete.

Proof. Given a graph G and an integer k, non-deterministically colour the vertices
with colours 1, 2, . . . , k and check in polynomial time whether it is a valid colouring.
Thus GRAPH COLOURING is in NP . To complete the proof we shall reduce 3SAT
to GRAPH COLOURING. So fix a 3CNF formula ϕ. Suppose

ϕ := /C1/ . . . /Ck,

where each Ci is a clause containing at most 3 literals.
Our aim is to construct a polynomial-time computable function that tranforms a

given 3CNF formula ϕ into a graph Gϕ and an integer k such that

ϕ is satisfiable↔ Gϕ is k colourable.

19

Let x1, x2, . . . , xn be the atoms present in ϕ. Without loss of generality assume n ≥ 4.
Construct a graph Gϕ as follows. The set of vertices is

V = {vi : 1 ≤ i ≤ n}
⋃
{xi, x̄i : 1 ≤ i ≤ n}

⋃
{ci : 1 ≤ i ≤ k}.

The set of edges is

E = {{vi, vj} : 1 ≤ i ̸= j ≤ n}
⋃
{{xi, x̄i} : 1 ≤ i ≤ n}

⋃
{{vi, xj}, {vi, x̄j} : 1 ≤ i ̸= j ≤ n}⋃

{{α, cj} : α is a literal and α ̸∈ Cj, 1 ≤ j ≤ k}.

We shall show that ϕ is satisfiable iff Gϕ is n+ 1-colourable.
So first assume that ϕ is TRUE under an assignment ν. Each vertex vi, 1 ≤ i ≤ n,

is coloured with colour i. Note that one of xi, x̄i, 1 ≤ i ≤ n, can be coloured with
colour i. To colour the other literal we need a new colour n + 1. The literal that is
TRUE under ν is given the colour i and the other literal is coloured with colour n+1.
Now we show how to colour the vertices cj’s . Since n ≥ 4, for each clause Cj there
is a pair of literals {xi, x̄i} both not in Cj. Hence Cj can not be coloured with colour
n + 1. But Cj contains a TRUE literal α which receives some colour i ̸= n + 1. We
colour Cj with that colour i. Clearly this is a valid n+ 1-colouring.

Conversely, assume that Gϕ is n+1-colourable. Without loss of generality, assume
that vi, 1 ≤ i ≤ n receives colour i. Now for each i, 1 ≤ i ≤ n, one of the literals xi, x̄i

receives the colour i and the other the ”false”colour n + 1. Assign the truth value
TRUE to the literal that receives colour i and FALSE to the other literal. Thus we
have an assignment of truth values to the literals.
Claim: Under this assignment of truth values, ϕ is TRUE.

So fix a clause Cj, 1 ≤ j ≤ k. As above, Cj cannot be coloured with colour n+ 1.
So Cj receives some colour i ̸= n + 1. Clearly, one of the literals xi, x̄i that receives
the colour i must be in Cj. Hence one of the literals that is TRUE is in Cj. Hence Cj

is TRUE under the above assignment. Thus ϕ is TRUE. Clearly, the function

ϕ→< Gϕ, n+ 1 >

is polynomial-time computable. This completes the proof. □

20

HAMILTONIAN PATH (HAMPATH):

Definition 12. Let G be a directed graph. A directed path in G is called Hamiltonian
if it goes through each vertex of G exactly once.

HAMPATH Problem: Given a directed graph G and a pair of vertices (s, t), decide
if there is a Hamiltonian path from s to t.

Remark 5. Analogously, one can define the HAMPATH problem for undirected graphs
also.

Exercise 6. Show that HAMPATH isNP-complete by reducing 3SAT to HAMPATH.

21

