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But is the gap between quantum and classical
really as large as it seems at first sight?

Quantum theory is often contrasted with classical theory, 
regarded as the golden standard of a theory that reflects our intuitions about reality:

a theory that describes a world of objects 
that have definite properties,
independent of whether they are measured or not.

QUANTUM VS CLASSICAL 



THE ROLE OF PROBABILITIES

In the common lore, one of the key differences concerns the role of probabilities.

Textbook interpretation  
of quantum theory  
 
Fundamentally probabilistic:
the theory predicts the probabilities 
of measurement outcomes.

The probability of an outcome 
is the likelihood that that outcome
occurs
if the corresponding  
measurement is performed.

Textbook interpretation  
of classical theory 

The probability of  a value 
is the likelihood that the quantity
has that value,  
independently of whether it  
is measured or not.

Fundamentally deterministic: 
probabilities only reflect the  
ignorance of an agent. 



ALTERNATIVE INTERPRETATIONS  
OF CLASSICAL THEORY?

Recently, several works explored  
alternative interpretations of classical theory. 

In particular, Gisin and Del Santo propose  
a variant of classical theory   
where the values of classical quantities are not fully determined. 
 
They argued for this interpretation on the ground that continuous quantities,  
such as the position of a particle, may only be defined with a finite amount of precision.

N. Gisin, Erkenntnis 86, 1469 (2019).
F. Del Santo and N. Gisin, Phys. Rev. A 100, 062107 (2019).
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definition of FIQs can thus be written as:5
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(2)
In this way, at a given time 𝑁, the first 𝑀 bits are determined
(i.e. the propensities are all either 0 or 1), making this FIQ
indistinguishable from a standard real number up to this level
of precision. However, the following bits are not yet actual-
ized, i.e., they are still indeterminate. Among those, accord-
ing to this simple model, a finite amount thereof (i.e., until the
𝑂-th bit) have a biased tendency to actualize their value to
either 0 or 1, i.e., the propensities associated to each bits are
𝑃𝑂 → (0,1)↑Q, for every 𝑀 < 𝑄 ↓ 𝑂 . Finally, after the 𝑂-th
bit, all the associated propensities are completely random, i.e.,
𝑃𝑁+1,𝑃𝑁+2, . . . all equal to 1/2, ensuring that the condition of
finite information is met (the information content I(1/2)=0).
We stress that in this interpretation the pure state (i.e., the one
containing maximal information) of a system is a list of poten-
tial properties. Hence, two systems in the same pure state will
undergo, in general, different future evolutions depending on
the actualization of the propensities as (creative) time passes
[20].

III. THE MEASUREMENT PROBLEM

Generally speaking, the quantum measurement problem
can be formulated as the tension between the determinis-
tic dynamical laws of a theory and the fact that we ob-
serve probabilistic (single) outcomes when we perform mea-
surements. In fact, quantum mechanics is governed by the
Schrödinger equation which uniquely maps states at different
times via unitary transformations. However, the linearity of
the Schrödinger equation allows for superpositions of differ-
ent evolutions, while it is a very corroborated empirical fact
that, in the ideal case, we find a single though probabilistic
outcome corresponding to a single eigenvalue of the measure-
ment operator every time we observe a system, i.e., we per-
form a measurement (whereas in general this corresponds to a
POVM). Therefore, one postulates a “collapse” or state up-
date, but the theory does not prescribe how and when this
happens. Hence, the Schrödinger evolution is somehow ef-
fectively interrupted when the system interacts with a bunch
of atoms which has been labeled “measurement apparatus”.

The same situation one finds in alternative classical me-
chanics, where the state encapsulating the fundamental in-
determinacy (via the collection of propensities in a FIQ) is
evolved via Hamiltonian dynamics and uniquely mapped to
complex branched configurations in phase space (for certain

5 Note that despite its intuitiveness and simplicity, this way of introducing
FIQs is not fully satisfactory since the information content is not invariant
under change of units and basic arithmetic [27]. A complete definition of
FIQs is provided in the language of intutionism [16, 28, 29].

FIG. 2. Time evolution of the position degree of freedom of a clas-
sical indeterminate system. Here, at time 𝑁𝑃𝑄 , the state of the sys-
tem undergoes a bifurcation and it has a nonzero propensity of being
found in either of the branches. At time 𝑁𝑅𝑆𝑀 , a process of actual-
ization takes place, suppressing the possibility of finding the system
in the right branch (i.e., the propensity becomes 1 for the left branch
and 0 for the right one). Identifying the physics of this actualization
corresponds to addressing the measurement problem.

systems, such as chaotic systems), which correspond to arbi-
trarily large spread of the state in position and/or momentum
under the constraint of Liouville’s theorem. Yet, every time
we observe a system we find it localized, so there must be
an actualization of the state that reduces the indeterminacy.
As a simple example, consider a particle of approximate di-
ameter 𝑅 (i.e., of physical size 𝑅 with some ontic indeter-
minacy) moving in one-dimension on a constrained segment
[0,𝑆] (with walls that can be considered perfectly elastic). As-
sume that the initial velocity (say pointing to the left) has some
ontic indeterminacy, i.e. 𝑇0 ↓ 𝑇(𝑁 = 0) = 𝑇0 +ω𝑇0. Accord-
ing to the laws of classical mechanics, the indeterminacy on
the particle’s positions increases linearly as time passes, i.e.
ω𝑈(𝑁) = 𝑁ω𝑇0. This means that there always exists a critical
time 𝑁𝑆 := 𝑆/ω𝑇0, such that ω𝑈(𝑁 = 𝑁𝑆) = 𝑆. This means that,
for any finite (even arbitrarily small) indeterminacy on the ve-
locity, after finite time, the indeterminacy on the particle’s po-
sition saturates the whole space. However, if measured, one
expects the particle to become localized in a region of a size
𝑉 ↔ 𝑅 ↗ 𝑆.

While in quantum mechanics unitarity preserves the norm
of vectors in the Hilbert space, in classical physics, symplec-
tic dynamics preserves the volume in phase space (Liouville’s
theorem). But in both theories, when there is a measurement
or any analog of such a process, these standard dynamics
are interrupted and we say that there is a “collapse” of the
quantum state and, respectively, an actualization of some bits,
hence reducing the indeterminacy of the classical indetermi-
nate state.

Therefore, at a more conceptual level, the measurement
problem can be formulated as the questions: How does a sin-
gle value of a physical variable become actualized out of its
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THIS TALK
In this talk,  
I will show that, in principle, 
the traditional interpretation  
of classical physics can be falsified
if classical systems coexist  
with other types of physical systems.

Technically, I will show a toy theory,  
which includes classical theory  
as a subtheory,  
describing a part of the world. 

Agents who only observe that part 
of the world can still believe that objects have  
properties prior to measurement. 

Agents that observe a larger part of 
the world can falsify this belief.   

Classical island

Larger universe described by the toy theory



THE TOY THEORY

G. Chiribella, L. Giannelli, and C. M. Scandolo, Phys. Rev. Lett. 132, 190201 (2024)



WHAT DO YOU MEAN BY “THEORY”?

An OPT 
 
• describes a set of physical systems, closed under composition 
   (if the theory describes systems A and B individually,  
     it also describes the composite system AB)   
 
• for every system, it specifies its possible states and the possible processes  
   it can undergo 
 
• it specifies a set of experiments that can be performed,  
   and assigns probabilities to the experimental outcomes. 
 
G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 81, 062348 (2010) 
L. Hardy, in Deep Beauty: Understanding the Quantum World Through Mathematical Innovation
409 (2011) 
G. M. D’Ariano, G. Chiribella, and P. Perinotti, Quantum Theory from First Principles  
Cambridge University Press (2016)

Here we will consider the framework of operational-probabilistic theories (OPTs).  



BITS AND ANTI-BITS

In our toy theory, there are two basic types of systems:
bits and anti-bits.

Every other system is a composite system,  
made of some number of bits, and some number of anti-bits.

Anti-bits have the same state space as bits,  
but are in principle distinguishable from them, 
in a similar way as quantum particles are distinguishable from their anti-particles.



Bell Nonlocality in Classical Systems Coexisting with Other System Types

Giulio Chiribella ,1,2,3,* Lorenzo Giannelli ,1,4,† and Carlo Maria Scandolo 5,6,‡
1QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of Hong Kong,

Pok Fu Lam Road, Hong Kong
2Quantum Group, Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, United Kingdom

3Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada
4HKU-Oxford Joint Laboratory for Quantum Information and Computation

5Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada
6Institute for Quantum Science and Technology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada

(Received 25 January 2023; revised 19 February 2024; accepted 29 March 2024; published 7 May 2024)

The realistic interpretation of classical theory assumes that every classical system has well-defined
properties, which may be unknown to the observer but are nevertheless part of reality and can, in principle,
be revealed by measurements. Here we show that this interpretation can, in principle, be falsified if classical
systems coexist with other types of physical systems. To make this point, we construct a toy theory that
(i) includes classical theory as a subtheory and (ii) allows classical systems to be entangled with another
type of system, called anticlassical. We show that our toy theory allows for the violation of Bell inequalities
in two-party scenarios where one of the settings corresponds to a local measurement performed on a
classical system alone. Building on this fact, we show that measurement outcomes in classical theory
cannot, in general, be regarded as predetermined by the state of an underlying reality.

DOI: 10.1103/PhysRevLett.132.190201

Introduction.—Since the early days of Galileo and
Newton, classical theory has been regarded as the golden
standard of a physical theory that describes reality without
any fundamental uncertainty. In this view, every classical
system is assumed to be in a well-defined state, which may
be unknown to the observer, but is nevertheless part of the
physical reality. Statistical mixtures only arise from the
observer’s ignorance about the true state of the system, and
in principle, this ignorance can always be overcome by
performing measurements. In modern terminology, the
view that classical systems are fundamentally in well-
defined (pure) states can be summarized by the statement
that classical pure states are “ontic,” while classical mixed
states are “epistemic” [1–3]. This statement, combined with
the idea that classical measurements reveal some preexist-
ing properties of the measured systems, lies at the core of
the realistic interpretation of classical theory.
In this Letter we show that, contrary to widespread

belief, a realistic interpretation of classical theory is not
always logically possible: while such interpretation is
consistent with all experiments involving only classical
systems, it can become, in principle, falsifiable if classical
systems are considered alongside other types of physical

systems. To make this point, we construct a toy theory that
includes classical theory as a subtheory, meaning that it
coincides with classical theory when restricted to a subset
of the possible physical systems. In addition to all classical
systems, the toy theory includes another type of systems,
called anticlassical, as illustrated in Fig. 1. An observer
who has access only to classical systems cannot see any
difference between classical theory and our toy theory: all
measurements are, in principle, compatible, all pure states
are perfectly distinguishable through measurements, and all
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Classical world

Anticlassical world

FIG. 1. In a universe described by our toy theory, an observer
who has access only to classical systems (represented by red disks
on the left) would see a world described by classical theory. The
same situation applies to an observer with access only to
anticlassical systems (blue disks on the right). In contrast,
observers with access to both types of systems can observe Bell
nonlocality and other nonclassical features.
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A composite system made only of bits follows the rules of classical theory.
A composite system made only of anti-bits also follows the rules of classical theory.
 
Hybrid composite systems, containing both bits and anti-bits,
give rise to non-classical phenomena.  



 (1,1) COMPOSITES

The simplest non-classical composite is made of 1 bit and 1 anti-bit. 

To construct the composite, we use the Hilbert space framework 
without however assuming quantum mechanics. 

• The pure states are of the form 
                                or of the form  
                                where  are complex amplitudes. 
 
• The mixed states are mixtures of these pure states, 
    and can be described by density matrices subject to a superselection rule on the parity. 
 
• The measurements are represented by resolutions of the identity into positive 
   operators that satisfy the parity superselection rule.

|ψeven⟩ = α |0⟩ ⊗ |0⟩+β |1⟩ ⊗ |1⟩
|ψodd⟩ = α′ |0⟩ ⊗ |1⟩+β′ |1⟩ ⊗ |0⟩

α, α′ , β, β′ 

G. Chiribella and C. M. Scandolo, https://arxiv.org/abs/1608.04459 (2016)

https://arxiv.org/abs/1608.04459


LOCAL MEASUREMENTS

The ideal measurement on the bit is described by the resolution . 
The ideal measurement on the anti-bit is described by . 
The other local measurements are noisy versions of the ideal measurements.

{ |0⟩⟨0 | ⊗ I, |1⟩⟨1 | ⊗ I}
{I ⊗ |0⟩⟨0 | , I ⊗ |1⟩⟨1 |}

Measuring the anti-bit will collapse the bit into a mixture of the pure states  and  
and vice-versa:
no superposition states for bits,  no superposition states for anti-bits.

|0⟩ |1⟩



ENTANGLEMENT

The only product states of the bit/anti-bit composite are  
, , , and  

These states represent the situation in which the bit and the anti-bit have definite values.  
 
All the other pure states are entangled, in Schrödinger’s sense:  
“maximal knowledge of a whole does not imply maximal knowledge of the parts.” 

|0⟩ ⊗ |0⟩ |0⟩ ⊗ |1⟩ |1⟩ ⊗ |0⟩ |1⟩ ⊗ |1⟩

…BUT

The composite of a bit and an anti-bit is not the same as the composite of two qubits!
The entanglement in the  composite 
 
• cannot be detected by correlations between local measurements 
   (violation of tomographic locality)

• does not give rise to the violation of Bell inequalities. 

(1,1)



CONSISTENCY OF THE THEORY

The composition rule for systems made of  bits and  anti-bits is a bit more involved. 
I will omit it here. 

Long story short: we can set up appropriate composition rules that define a consistent OPT. 

m n

Theorem (consistency of conditional states)
 
For every pair of (possibly composite) systems A and B,
an for every joint state of the composite system AB, 
a local measurement on system A collapses system B to a valid state.



VIOLATION 
OF 

BELL INEQUALITIES
IN

THE TOY THEORY



ACTIVATION OF NONLOCALITY IN THE TOY THEORY

We have seen that the entanglement between a single bit and a single anti-bit 
cannot give rise to Bell inequality violations.

However, Bell inequality violations become observable if  
two identical copies of an arbitrary entangled pair are available. 4

FIG. 2. Activation of Bell nonlocality with bit/anti-
bit entangled pairs. Alice (left) and Bob (right) perform
local measurements on two copies of an entangled state of a
bit/anti-bit pair. The first copy (top) involves bit B1 and
anti-bit A1, while the second copy (bottom) involves bit B2

and anti-bit A2. Alice’s and Bob’s laboratories (represented
dotted boxes) contain systems B1A2 and A2B1, respectively.
Their measurements have settings x and y, respectively, and
produce outcomes a and b, respectively.

local measurements on a bit and anti-bit are classical,
one can easily construct a local hidden variable model.
However, Bell nonlocality arises when we consider the
two-copy state |�iB1A1 ⌦ |�iB2A2 , where B1B2 are bits,
and A1A2 are anti-bits. Suppose that two parties, Alice
and Bob, play a nonlocal game, such as the CHSH game
[5, 6], in the scenario where Alice has access to system
B1A2, while Bob has access to system B2A1, as illutrated
in Fig. 2.

We now show that the state |�iB1A1 ⌦ |�iB2A2 al-
lows Alice and Bob to reproduce the correlations of ar-
bitrary single-qubit measurements performed locally on
a two-qubit maximally entangled state. More specifi-
cally, we show that a qubit measurement that projects
Alice’s qubit on a given orthonormal basis

�
|v0i, |v1i

 

with |v0i = ↵ |0i+ � |1i can be simulated by a measure-
ment on the bit/anti-bit pair B1A2, described by two
orthogonal projectors {P0,P1} with

P0 =|V (0)
0 ihV (0)

0 |B1A2 + |V (1)
0 ihV (1)

0 |B1A2

|V (0)
0 iB1A1 = ↵ |0iB1 |0iA2 + � |1iB1 |1iA2

|V (1)
0 iB1A2 = ↵ |0iB1 |1iA2 + � |1iB1 |0iA2 , (2)

and P1 = IB1 ⌦ IA2 � P0, acting on the bit/anti-bit
pair B1A2. Similarly, a measurement that projects Bob’s
qubit on the orthonormal basis {|w0i, |w1i} with |w0i =
�|0i + �|1i can be simulated by the projective measure-
ment {Q0,Q1} defined by

Q0 =|W (0)
0 ihW (0)

0 |B2A1 + |W (1)
0 ihW (1)

0 |B2A1

|W (0)
0 i = � |0iB2 |0iA1 + � |1iB2 |1iA1

|W (1)
0 i = � |1iB2 |0iA1 + � |0iB2 |1iA1 , (3)

and Q1 = IB2 ⌦ IA1 � Q0. When these measurements
are performed on the state ⇢ = |�ih�|B1A1 ⌦ |�ih�|B2A2 ,

Alice and Bob obtain outcomes a and b with probability

p(a, b) = Tr
⇥
(Pa ⌦Qb) ⇢

⇤
⌘
��hva|hwb| |�i

��2 , (4)

equal to the outcome probability of the original single-
qubit measurements performed on the two-qubit maxi-
mally entangled state |�i (see the Supplemental Material
for more details). In this way, every pair of local mea-
surements on a maximally entangled two-qubit quantum
state can be simulated by local measurements in our toy
theory. In particular, Alice and Bob can simulate the op-
timal strategy in the CHSH game [5, 6, 47, 48], thereby
achieving a maximal violation of the CHSH inequality.
Let us now examine the implications of the above re-

sult for the interpretation of classical theory. A first,
important consequence is that the value of Alice’s classi-
cal bit cannot, in general, be regarded as pre-determined.
This conclusion follows from the fact that the violation
of the CHSH inequality can be achieved with by setup
in which one of Alice’s measurements is the canonical
measurement on bit B1. Technically, this follows from
the fact that one of Alice’s measurements in the original
quantum scenario is a qubit measurement on the compu-
tational basis {|0i, |1i}. In our simulation, this measure-
ment corresponds to the projectors P0 = |0ih0|B1 ⌦ IA2

and P1 = I⌦I�P0 = |1ih1|B1 ⌦IA2 , as one can see from
Eq. (2). Operationally, this measurement is realized by
discarding the anti-bit A2, and measuring bit B1 on the
basis {|0i, |1i}. Since Alice’s bit value is a measurement
outcome in a setup that violates the CHSH inequality, we
conclude that the bit value cannot be predetermined [49]:
explicitly, in the Supplemental Material we show that, if
the underlying ontic state determines the value of Alice’s
bit up to an error ✏, then the CHSH value cannot exceed
2(1+2✏) and therefore cannot reach the maximum value
2
p
2 when ✏ is small. In the Supplemental Material we

also show that the above argument applies to all pure
entangled states of a dit and an anti-dit [30].
Another implication of Bell nonlocality is that, even if

we replace our toy theory with a more fundamental de-
scription of nature, this description cannot, under reason-
able assumptions, assign individual ontic states to classi-
cal systems. Two di↵erent argument leading to this con-
clusion are provided in the Supplemental Material [30].
In both cases, the conclusion is that classical systems
in our toy theory cannot be reduced to independent and
uncorrelated degrees of freedom of the underlying reality.
Conclusions. In this work we have shown that the

realistic interpretation of classical theory can in princi-
ple be falsified when classical systems coexist with other
types of physical systems. We built a toy theory in which
every classical system can be entangled with a dual, anti-
classical system. The entanglement between classical and
anti-classical systems gives rise to activation of Bell non-
locality and implies that, in general, the outcomes of
measurements on classical systems cannot be interpreted

Alice’s
laboratory

Bob’s
laboratory



ALICE’S BIT CANNOT BE PRE-DETERMINED

We find that the CHSH correlation can reach the maximum value 
and that this violation can be achieved by a setup where 
one of Alice’s setting corresponds to the ideal measurement of the value of the her bit. 

In a world described by our toy theory, 
the assumption that classical bits have pre-determined values
can (in principle) be experimentally falsified!

2 2



LIMITS ON CHSH VIOLATION WHEN ONE OF THE 
OUTCOMES IS PRE-DETERMINED

Consider an ontic model that satisfies a minimal locality condition and assigns a definite 
value to Alice’s bit:

• the ontic model is specified by an ontic state , a probability distribution  ,
    and a response function  .  

λ p(λ)
qAB(a, b |x, y, λ)

• the minimal locality condition is that the response function  
   is no-signaling for every possible ontic state   

qAB(a, b |x, y, λ)
λ

• the condition that Alice’s bit is pre-determined amounts to the condition that  
   there exists a value  such that  for some (small) 
   

a* ∈ {0,1} qA(a* |x = 0,λ) ≥ 1 − ϵ
ϵ > 0

Theorem. For every ontic model satisfying these three conditions the CHSH correlation
is bounded as   .  CHSH ≤ 2(1 + 2ϵ)

                                                                                                                                                         



OUTLOOK



TAKE HOME MESSAGES

• Our toy theory suggests that issues with the interpretation of quantum mechanics  
   may be deeper than the distinction between quantum and classical physics. 
   The solution of these issues may require more radical steps,
   viz. many-world interpretations, QBism,…

• Our toy includes classical theory as a subtheory  
   describing a subset of physical systems.  
   Classical systems can be entangled with other types of systems,  
   giving rise to globally non-classical behaviors.  

• In a world described by our toy theory, the violation of Bell inequalities 
    can be used to falsify the assumption 
    that the properties of classical systems are defined prior to measurement.

• Open problem: include continuous classical systems in the toy theory.


