Conditional entropy and information of quantum processes

<u>Siddhartha Das</u>^{*}, Kaumudibikash Goswami, Vivek Pandey

*International Institute of Information Technology, Hyderabad, India

arXiv:2410.01740

31 March 2025

International Symposium on Quantum Information and Communication (QIC) 2025, CQuERE, TCG CREST, India

イロト イヨト イヨト イヨ

Motivation

- Long quest to understand quantum processes.
- Information theory is powerful tool in analyzing potential of quantum systems.
- Could possibly unravel novel information processing features of quantum processes.

イロト イヨト イヨト

Queries

- How novel would the conditional entropy of quantum processes be when compared with the conditional entropy of states?
- Can the conditional entropy of bipartite quantum processes be strictly lower than the least possible values of entropy of quantum processes?
- If yes, what would that signature property for quantum processes be?

Queries

- How novel would the conditional entropy of quantum processes be when compared with the conditional entropy of states?
- Can the conditional entropy of bipartite quantum processes be strictly lower than the least possible values of entropy of quantum processes?
- If yes, what would that signature property for quantum processes be?

イロト 不得下 イヨト イヨト

Queries

- How novel would the conditional entropy of quantum processes be when compared with the conditional entropy of states?
- Can the conditional entropy of bipartite quantum processes be strictly lower than the least possible values of entropy of quantum processes?
- If yes, what would that signature property for quantum processes be?

イロト 不得下 イヨト イヨト

Quantum states and processes

Quantum states

State of a quantum system contains the description of the system. It is given by a density operator (positive semidefinite operator with unit trace) defined on the Hilbert space associated with the system.

Quantum channels

The physical transformation of quantum states are given by a quantum channel. It is completely positive, trace-preserving map. For any quantum channel $\mathcal{N}_{A \to B}$, there exists a unitary operator $U_{AE' \to BE}$ such that

 $\mathcal{N}_{A \to B}(\cdot) = \operatorname{tr}_{E}[U_{AE' \to BE}(\cdot \otimes |0\rangle\langle 0|_{E'})(U_{AE' \to BE})^{\dagger}].$

The physical transformation of a quantum channel is given by quantum superchannel, e.g., $\Theta(\mathcal{N}_{A\to B}) = Q_{RB\to D} \circ \mathcal{N}_{A\to B} \circ \mathcal{P}_{C\to RA} = \mathcal{N}'_{C\to D}.$

Quantum states and processes

Quantum states

State of a quantum system contains the description of the system. It is given by a density operator (positive semidefinite operator with unit trace) defined on the Hilbert space associated with the system.

Quantum channels

The physical transformation of quantum states are given by a quantum channel. It is completely positive, trace-preserving map. For any quantum channel $\mathcal{N}_{A\to B}$, there exists a unitary operator $U_{AE'\to BE}$ such that

$$\mathcal{N}_{A \to B}(\cdot) = \operatorname{tr}_{E}[U_{AE' \to BE}(\cdot \otimes |0\rangle \langle 0|_{E'})(U_{AE' \to BE})^{\dagger}].$$

The physical transformation of a quantum channel is given by quantum superchannel, e.g., $\Theta(\mathcal{N}_{A\to B}) = Q_{RB\to D} \circ \mathcal{N}_{A\to B} \circ \mathcal{P}_{C\to RA} = \mathcal{N}'_{C\to D}.$

	Entropy	Conditional entropy
random variables	$0 \leq H(X) \leq \log X $	$0 \leq H(X Y) \leq \log X $
quantum states	$0 \leq S(\mathcal{A})_ ho \leq \log \mathcal{A} $	$-\log A \leq S(A B)_ ho \leq \log A $
quantum channels	$-\log A \le S[A]_{\mathcal{N}} \le \log A $ [GW21]	$ -\log A' B' B \leq S[A B]_\mathcal{N} \leq \log A $

э

*ロト * 同ト * 国ト * 国ト

Conditional entropy: quantum states Vs quantum channels

 $S(A)_{\rho}$ achieves minimal value 0 iff the state ρ_A is pure [vN32]. $S[A]_{\mathcal{N}}$ achieves minimal value $-\log \min\{|A'|, |A|\}$ iff the channel $\mathcal{N}_{A' \to A}$ is isometric [GW21]. $S(A|B)_{\rho} < 0 \implies$ state ρ_{AB} is entangled [CA97]. $S[A|B]_{\mathcal{N}} < -\log|A| \implies$ channel $\mathcal{N}_{A'B'\to AB}$ is signaling from $A' \to B$. S(A|B) < 0 for all pure entangled states ρ_{AB} [CA97, HOW05]. $S[A|B]_{\mathcal{N}} < -\log|A|$ for all unitary channels $\mathcal{N}_{A'B'\to AB}$ signaling from $A' \to B$. $S(A|BC)_{\rho} \leq S(A|B)_{\rho}$ for states ρ_{AB} [LR73]. $S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}}$ for channels $\mathcal{N}_{A'B'\to AB}$.

Conditional entropy: quantum states Vs quantum channels

$$\begin{split} S(A)_{\rho} \text{ achieves minimal value 0 iff the state } \rho_{A} \text{ is pure [vN32].} \\ S[A]_{\mathcal{N}} \text{ achieves minimal value } -\log \min\{|A'|, |A|\} \text{ iff the channel } \mathcal{N}_{A' \to A} \text{ is isometric [GW21].} \\ S(A|B)_{\rho} < 0 \implies \text{state } \rho_{AB} \text{ is entangled [CA97].} \\ S[A|B]_{\mathcal{N}} < -\log|A| \implies \text{ channel } \mathcal{N}_{A'B' \to AB} \text{ is signaling from } A' \to B. \\ S(A|B) < 0 \text{ for all pure entangled states } \rho_{AB} [CA97, HOW05]. \\ S[A|B]_{\mathcal{N}} < -\log|A| \text{ for all unitary channels } \mathcal{N}_{A'B' \to AB} \text{ signaling from } A' \to B. \\ S(A|BC)_{\rho} \leq S(A|B)_{\rho} \text{ for states } \rho_{AB} [LR73]. \\ S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}} \text{ for channels } \mathcal{N}_{A'B' \to AB}. \end{split}$$

Conditional entropy: quantum states Vs quantum channels

$$\begin{split} S(A)_{\rho} \text{ achieves minimal value 0 iff the state } \rho_{A} \text{ is pure [vN32].} \\ \underline{S[A]_{\mathcal{N}}} \text{ achieves minimal value } -\log\min\{|A'|, |A|\} \text{ iff the channel } \mathcal{N}_{A' \to A} \text{ is isometric [GW21].} \\ S(A|B)_{\rho} < 0 \implies \text{state } \rho_{AB} \text{ is entangled [CA97].} \\ \underline{S[A|B]_{\mathcal{N}}} < -\log|A| \implies \text{ channel } \mathcal{N}_{A'B' \to AB} \text{ is signaling from } A' \to B. \\ S(A|B) < 0 \text{ for all pure entangled states } \rho_{AB} \text{ [CA97, HOW05].} \\ \underline{S[A|B]_{\mathcal{N}}} < -\log|A| \text{ for all unitary channels } \mathcal{N}_{A'B' \to AB} \text{ signaling from } A' \to B. \\ S(A|BC)_{\rho} \leq S(A|B)_{\rho} \text{ for states } \rho_{AB} \text{ [LR73].} \\ \underline{S[A|BC]_{\mathcal{N}}} \leq S[A|B]_{\mathcal{N}} \text{ for channels } \mathcal{N}_{A'B' \to AB}. \end{split}$$

Conditional entropy: quantum states Vs quantum channels

 $S(A)_{\rho}$ achieves minimal value 0 iff the state ρ_A is pure [vN32]. $S[A]_{\mathcal{N}}$ achieves minimal value $-\log \min\{|A'|, |A|\}$ iff the channel $\mathcal{N}_{A' \to A}$ is isometric [GW21].

 $S(A|B)_{\rho} < 0 \implies$ state ρ_{AB} is entangled [CA97].

 $S[A|B]_{\mathcal{N}} < -\log|A| \implies ext{channel } \mathcal{N}_{A'B'
ightarrow AB}$ is signaling from A'
ightarrow B.

S(A|B) < 0 for all pure entangled states ρ_{AB} [CA97, HOW05].

 $S[A|B]_{\mathcal{N}} < -\log|A|$ for all unitary channels $\mathcal{N}_{A'B' o AB}$ signaling from A' o B.

 $S(A|BC)_{\rho} \leq S(A|B)_{\rho}$ for states ρ_{AB} [LR73]. $S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}}$ for channels $\mathcal{N}_{A'B' \to AB}$.

Conditional entropy: quantum states Vs quantum channels

 $S(A)_{\rho}$ achieves minimal value 0 iff the state ρ_A is pure [vN32]. $S[A]_{\mathcal{N}}$ achieves minimal value $-\log \min\{|A'|, |A|\}$ iff the channel $\mathcal{N}_{A' \to A}$ is isometric [GW21]. $S(A|B)_{\rho} < 0 \implies$ state ρ_{AB} is entangled [CA97]. $S[A|B]_{\mathcal{N}} < -\log|A| \implies$ channel $\mathcal{N}_{A'B' \to AB}$ is signaling from $A' \to B$.

S(A|B) < 0 for all pure entangled states ho_{AB} [CA97, HOW05].

 $S[A|B]_{\mathcal{N}} < -\log|A|$ for all unitary channels $\mathcal{N}_{A'B' o AB}$ signaling from A' o B.

 $S(A|BC)_{\rho} \leq S(A|B)_{\rho}$ for states ρ_{AB} [LR73]. $S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}}$ for channels $\mathcal{N}_{A'B' \to AB}$.

Conditional entropy: quantum states Vs quantum channels

 $S(A)_{\rho}$ achieves minimal value 0 iff the state ρ_A is pure [vN32]. $S[A]_{\mathcal{N}}$ achieves minimal value $-\log \min\{|A'|, |A|\}$ iff the channel $\mathcal{N}_{A' \to A}$ is isometric [GW21]. $S(A|B)_{\rho} < 0 \implies$ state ρ_{AB} is entangled [CA97]. $S[A|B]_{\mathcal{N}} < -\log |A| \implies$ channel $\mathcal{N}_{A'B'\to AB}$ is signaling from $A' \to B$. S(A|B) < 0 for all pure entangled states ρ_{AB} [CA97, HOW05]. $S[A|B]_{\mathcal{N}} < -\log |A|$ for all unitary channels $\mathcal{N}_{A'B'\to AB}$ signaling from $A' \to B$. $S(A|BC)_{\rho} \leq S(A|B)_{\rho}$ for states ρ_{AB} [LR73]. $S[A|BC]_{\rho} \leq S[A|B]_{\rho}$ for states ρ_{AB} [LR73].

 $S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}}$ for channels $\mathcal{N}_{A'B' \to AB}$.

Conditional entropy: quantum states Vs quantum channels

$$\begin{split} S(A)_{\rho} \text{ achieves minimal value 0 iff the state } \rho_{A} \text{ is pure [vN32].} \\ \underline{S[A]_{\mathcal{N}}} \text{ achieves minimal value } -\log\min\{|A'|, |A|\} \text{ iff the channel } \mathcal{N}_{A' \to A} \text{ is isometric [GW21].} \\ S(A|B)_{\rho} < 0 \implies \text{state } \rho_{AB} \text{ is entangled [CA97].} \\ \underline{S[A|B]_{\mathcal{N}}} < -\log|A| \implies \text{ channel } \mathcal{N}_{A'B' \to AB} \text{ is signaling from } A' \to B. \\ S(A|B) < 0 \text{ for all pure entangled states } \rho_{AB} \text{ [CA97, HOW05].} \\ \underline{S[A|B]_{\mathcal{N}}} < -\log|A| \text{ for all unitary channels } \mathcal{N}_{A'B' \to AB} \text{ signaling from } A' \to B. \\ S(A|B)_{\rho} \leq S(A|B)_{\rho} \text{ for states } \rho_{AB} \text{ [LR73].} \\ \underline{S[A|BC]_{\mathcal{N}}} \leq S[A|B]_{\mathcal{N}} \text{ for channels } \mathcal{N}_{A'B' \to AB}. \end{split}$$

Conditional entropy: quantum states Vs quantum channels

 $S(A)_{\rho}$ achieves minimal value 0 iff the state ρ_A is pure [vN32]. $S[A]_{\mathcal{N}}$ achieves minimal value $-\log \min\{|A'|, |A|\}$ iff the channel $\mathcal{N}_{A' \to A}$ is isometric [GW21]. $S(A|B)_{\rho} < 0 \implies$ state ρ_{AB} is entangled [CA97].

 $\underline{S[A|B]_{\mathcal{N}} < -\log|A| \implies \text{ channel } \mathcal{N}_{A'B' \rightarrow AB} \text{ is signaling from } A' \rightarrow B.$

S(A|B) < 0 for all pure entangled states ho_{AB} [CA97, HOW05].

 $S[A|B]_{\mathcal{N}} < -\log |A|$ for all unitary channels $\mathcal{N}_{A'B' \to AB}$ signaling from $A' \to B$.

 $S(A|BC)_{\rho} \leq S(A|B)_{\rho}$ for states ρ_{AB} [LR73]. $S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}}$ for channels $\mathcal{N}_{A'B' \to AB}$.

Conditional entropy: quantum states Vs quantum channels

 $S(A)_{\rho}$ achieves minimal value 0 iff the state ρ_A is pure [vN32]. $S[A]_{\mathcal{N}}$ achieves minimal value $-\log \min\{|A'|, |A|\}$ iff the channel $\mathcal{N}_{A' \to A}$ is isometric [GW21]. $S(A|B)_{\rho} < 0 \implies$ state ρ_{AB} is entangled [CA97]. $S[A|B]_{\mathcal{N}} < -\log|A| \implies$ channel $\mathcal{N}_{A'B'\to AB}$ is signaling from $A' \to B$. S(A|B) < 0 for all pure entangled states ρ_{AB} [CA97, HOW05]. $S[A|B]_{\mathcal{N}} < -\log|A|$ for all unitary channels $\mathcal{N}_{A'B'\to AB}$ signaling from $A' \to B$. $S(A|BC)_{\rho} \leq S(A|B)_{\rho}$ for states ρ_{AB} [LR73]. $S[A|BC]_{\mathcal{N}} \leq S[A|B]_{\mathcal{N}}$ for channels $\mathcal{N}_{A'B'\to AB}$.

Axioms

For any conditional entropy function $f[A|B]_N$ of a bipartite channel $\mathcal{N}_{A'B'\to AB}$, desired properties are

- Monotonicity: Nondecreasing under the action of local pre-processing and post-processing with random unitary channels on A', A systems and any pre-processing and post-processing on B', B systems.
- Conditioning shouldn't increase entropy, $f[A|B]_{\mathcal{N}} \leq f[A]_{\mathcal{N}}$.
- Normalization: For a replacer channel $\mathcal{N}(\rho_{A'B'}) = \sigma_{AB}$ for all states $\rho_{A'B'}$, $f[A|B]_{\mathcal{N}} = f(A|B)_{\sigma}$.
- For $\mathcal{N}_{A'B' \to AB} = \mathcal{N}^1_{A' \to A} \otimes \mathcal{N}^2_{B' \to B}$, $f[A|B]_{\mathcal{N}} = f[A]_{\mathcal{N}^1}$.

イロト 人間ト イヨト イヨト

Axioms

For any conditional entropy function $f[A|B]_N$ of a bipartite channel $\mathcal{N}_{A'B'\to AB}$, desired properties are

- Monotonicity: Nondecreasing under the action of local pre-processing and post-processing with random unitary channels on A', A systems and any pre-processing and post-processing on B', B systems.
- Conditioning shouldn't increase entropy, $f[A|B]_{\mathcal{N}} \leq f[A]_{\mathcal{N}}$.
- Normalization: For a replacer channel $\mathcal{N}(\rho_{A'B'}) = \sigma_{AB}$ for all states $\rho_{A'B'}$, $f[A|B]_{\mathcal{N}} = f(A|B)_{\sigma}$.
- For $\mathcal{N}_{A'B'\to AB} = \mathcal{N}^1_{A'\to A} \otimes \mathcal{N}^2_{B'\to B}$, $f[A|B]_{\mathcal{N}} = f[A]_{\mathcal{N}^1}$.

Axioms

For any conditional entropy function $f[A|B]_N$ of a bipartite channel $\mathcal{N}_{A'B'\to AB}$, desired properties are

- Monotonicity: Nondecreasing under the action of local pre-processing and post-processing with random unitary channels on A', A systems and any pre-processing and post-processing on B', B systems.
- Conditioning shouldn't increase entropy, $f[A|B]_{\mathcal{N}} \leq f[A]_{\mathcal{N}}$.
- Normalization: For a replacer channel $\mathcal{N}(\rho_{A'B'}) = \sigma_{AB}$ for all states $\rho_{A'B'}$, $f[A|B]_{\mathcal{N}} = f(A|B)_{\sigma}$.
- For $\mathcal{N}_{A'B'\to AB} = \mathcal{N}^1_{A'\to A} \otimes \mathcal{N}^2_{B'\to B}$, $f[A|B]_{\mathcal{N}} = f[A]_{\mathcal{N}^1}$.

Axioms

For any conditional entropy function $f[A|B]_N$ of a bipartite channel $\mathcal{N}_{A'B'\to AB}$, desired properties are

- Monotonicity: Nondecreasing under the action of local pre-processing and post-processing with random unitary channels on A', A systems and any pre-processing and post-processing on B', B systems.
- Conditioning shouldn't increase entropy, $f[A|B]_{\mathcal{N}} \leq f[A]_{\mathcal{N}}$.
- Normalization: For a replacer channel $\mathcal{N}(\rho_{A'B'}) = \sigma_{AB}$ for all states $\rho_{A'B'}$, $f[A|B]_{\mathcal{N}} = f(A|B)_{\sigma}$.

• For $\mathcal{N}_{A'B'\to AB} = \mathcal{N}^1_{A'\to A} \otimes \mathcal{N}^2_{B'\to B}$, $f[A|B]_{\mathcal{N}} = f[A]_{\mathcal{N}^1}$.

Axioms

For any conditional entropy function $f[A|B]_N$ of a bipartite channel $\mathcal{N}_{A'B'\to AB}$, desired properties are

- Monotonicity: Nondecreasing under the action of local pre-processing and post-processing with random unitary channels on A', A systems and any pre-processing and post-processing on B', B systems.
- Conditioning shouldn't increase entropy, $f[A|B]_{\mathcal{N}} \leq f[A]_{\mathcal{N}}$.
- Normalization: For a replacer channel $\mathcal{N}(\rho_{A'B'}) = \sigma_{AB}$ for all states $\rho_{A'B'}$, $f[A|B]_{\mathcal{N}} = f(A|B)_{\sigma}$.

• For
$$\mathcal{N}_{A'B' \to AB} = \mathcal{N}^1_{A' \to A} \otimes \mathcal{N}^2_{B' \to B}$$
, $f[A|B]_{\mathcal{N}} = f[A]_{\mathcal{N}^1}$.

Methods

Quantum relative entropy: A parent information-theoretic quantity

The quantum relative entropy $\textit{D}(\cdot \| \cdot)$ between

• a state ρ_A and a positive semidefinite operator σ_A is defined as

$$D(
ho_{\mathcal{A}} \| \sigma_{\mathcal{A}}) = -\operatorname{tr} [
ho_{\mathcal{A}} \log(
ho_{\mathcal{A}} - \sigma_{\mathcal{A}})]$$

if $supp(\rho) \subseteq supp(\sigma)$, else $+\infty$.

• a channel $\mathcal{N}_{A \to B}$ and a completely positive map $\mathcal{M}_{A \to B}$,

 $D[\mathcal{N}||\mathcal{M}] := \sup_{\rho_{RA} \in \mathrm{St}(RA)} D(\mathrm{id}_R \otimes \mathcal{N}(\rho_{RA})|| \mathrm{id}_R \otimes \mathcal{N}(\rho_{RA})),$

suffices to consider optimization over pure input states.

The quantum relative entropy between

- states: monotone under the action of quantum channel.
- channels: monotone under the action of quantum superchannel.

Siddhartha Das (das.seed@iiit.ac.in)

- 日本 - 4 日本 - 4 日本 - 日本

(1)

Methods

Quantum relative entropy: A parent information-theoretic quantity

The quantum relative entropy $\textit{D}(\cdot \| \cdot)$ between

• a state ρ_A and a positive semidefinite operator σ_A is defined as

$$D(\rho_A \| \sigma_A) = -\operatorname{tr}[\rho_A \log(\rho_A - \sigma_A)] \tag{1}$$

 $\mathsf{if supp}(\rho) \subseteq \mathsf{supp}(\sigma), \, \mathsf{else} \, +\infty.$

• a channel $\mathcal{N}_{A \rightarrow B}$ and a completely positive map $\mathcal{M}_{A \rightarrow B}$,

 $D[\mathcal{N} \| \mathcal{M}] := \sup_{\rho_{RA} \in \operatorname{St}(RA)} D(\operatorname{id}_R \otimes \mathcal{N}(\rho_{RA}) \| \operatorname{id}_R \otimes \mathcal{N}(\rho_{RA})),$

suffices to consider optimization over pure input states.

The quantum relative entropy between

- states: monotone under the action of quantum channel.
- channels: monotone under the action of quantum superchannel.

Siddhartha Das (das.seed@iiit.ac.in)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Methods

Quantum relative entropy: A parent information-theoretic quantity

The quantum relative entropy $\textit{D}(\cdot \| \cdot)$ between

• a state ρ_A and a positive semidefinite operator σ_A is defined as

$$D(\rho_A \| \sigma_A) = -\operatorname{tr}[\rho_A \log(\rho_A - \sigma_A)] \tag{1}$$

 $\mathsf{if supp}(\rho) \subseteq \mathsf{supp}(\sigma), \, \mathsf{else} + \infty.$

• a channel $\mathcal{N}_{A \rightarrow B}$ and a completely positive map $\mathcal{M}_{A \rightarrow B}$,

$$D[\mathcal{N} \| \mathcal{M}] := \sup_{\rho_{RA} \in \operatorname{St}(RA)} D(\operatorname{id}_R \otimes \mathcal{N}(\rho_{RA}) \| \operatorname{id}_R \otimes \mathcal{N}(\rho_{RA})),$$

suffices to consider optimization over pure input states.

The quantum relative entropy between

- states: monotone under the action of quantum channel.
- channels: monotone under the action of quantum superchannel.

Entropy of state

For quantum states,

.

• the von Neumann entropy

$$S(A)_{
ho} := S(
ho_A) := -D(
ho_A \| \mathbb{1}_A) = -\operatorname{tr}[
ho_A \log
ho_A]$$

• the von Neumann conditional entropy

$$S(A|B)_{\rho} := -\inf_{\sigma \in \operatorname{St}(B)} D(\rho_{AB} \| \mathbb{1}_A \otimes \sigma_B)$$
$$= -D(\rho_{AB} \| \mathbb{1}_A \otimes \rho_B).$$

イロト イヨト イヨト

Entropy of state

For quantum states,

.

• the von Neumann entropy

$$\mathcal{S}(\mathcal{A})_{
ho}:=\mathcal{S}(
ho_{\mathcal{A}}):=-D(
ho_{\mathcal{A}}\|\mathbb{1}_{\mathcal{A}})=-\operatorname{tr}[
ho_{\mathcal{A}}\log
ho_{\mathcal{A}}]$$

• the von Neumann conditional entropy

$$S(A|B)_{\rho} := -\inf_{\sigma \in \operatorname{St}(B)} D(\rho_{AB} \| \mathbb{1}_A \otimes \sigma_B)$$
$$= -D(\rho_{AB} \| \mathbb{1}_A \otimes \rho_B).$$

イロト イヨト イヨト

Entropy of channel

The replacer map $\mathcal{R}_{A'\to A}$ is a completely positive map such that $\mathcal{R}_{A'\to A}(X_{A'}) = \operatorname{tr}[X_{A'}]\mathbb{1}_A$. Its Choi operator $\Gamma_{RA}^{\mathcal{R}} := \operatorname{id}_R \otimes \mathcal{R}(\Gamma_{RA'}) = \mathbb{1}_R \otimes \mathbb{1}_A$, where $\Gamma_{RA'} = \sum_{i,j} |ii\rangle \langle jj|_{RA'}$.

The completely depolarizing channel $\widetilde{\mathcal{R}}_{A'\to A} = \frac{1}{|A|} \mathcal{R}_{A'\to A}$ always outputs maximally mixed state $\pi_A = \frac{1}{|A|} \mathbb{1}_A$ for all input states.

Entropy of a channel

For quantum channel $\mathcal{N}_{A' \to A}$, its von Neumann entropy is [GW21] (see also [SPSD24])

$$S[A]_{\mathcal{N}} := S[\mathcal{N}_{\mathcal{A}' o \mathcal{A}}] := -D[\mathcal{N} \| \mathcal{R}] = \log |\mathcal{A}| - D[\mathcal{N} \| \widetilde{\mathcal{R}}] = \inf_{\psi \in \operatorname{St}(\mathcal{R}\mathcal{A}')} S(\mathcal{A} | \mathcal{R})_{\mathcal{N}(\psi)}.$$

ヘロン 人間 とくほ とくほ とう

Entropy of channel

The replacer map $\mathcal{R}_{A'\to A}$ is a completely positive map such that $\mathcal{R}_{A'\to A}(X_{A'}) = \operatorname{tr}[X_{A'}]\mathbb{1}_A$. Its Choi operator $\Gamma_{RA}^{\mathcal{R}} := \operatorname{id}_R \otimes \mathcal{R}(\Gamma_{RA'}) = \mathbb{1}_R \otimes \mathbb{1}_A$, where $\Gamma_{RA'} = \sum_{i,j} |ii\rangle \langle jj|_{RA'}$.

The completely depolarizing channel $\widetilde{\mathcal{R}}_{A'\to A} = \frac{1}{|A|} \mathcal{R}_{A'\to A}$ always outputs maximally mixed state $\pi_A = \frac{1}{|A|} \mathbb{1}_A$ for all input states.

Entropy of a channel

For quantum channel $\mathcal{N}_{A' \to A}$, its von Neumann entropy is [GW21] (see also [SPSD24])

$$S[A]_{\mathcal{N}} := S[\mathcal{N}_{A' \to A}] := -D[\mathcal{N} ||\mathcal{R}] = \log |A| - D[\mathcal{N} ||\widetilde{\mathcal{R}}] = \inf_{\psi \in \operatorname{St}(RA')} S(A|R)_{\mathcal{N}(\psi)}$$

ヘロン 人間 とくほ とくほ とう

Entropy of channel

The replacer map $\mathcal{R}_{A'\to A}$ is a completely positive map such that $\mathcal{R}_{A'\to A}(X_{A'}) = \operatorname{tr}[X_{A'}]\mathbb{1}_A$. Its Choi operator $\Gamma_{RA}^{\mathcal{R}} := \operatorname{id}_R \otimes \mathcal{R}(\Gamma_{RA'}) = \mathbb{1}_R \otimes \mathbb{1}_A$, where $\Gamma_{RA'} = \sum_{i,j} |ii\rangle \langle jj|_{RA'}$.

The completely depolarizing channel $\widetilde{\mathcal{R}}_{A'\to A} = \frac{1}{|A|} \mathcal{R}_{A'\to A}$ always outputs maximally mixed state $\pi_A = \frac{1}{|A|} \mathbb{1}_A$ for all input states.

Entropy of a channel

For quantum channel $\mathcal{N}_{A'\to A}$, its von Neumann entropy is [GW21] (see also [SPSD24])

$$S[A]_\mathcal{N} := S[\mathcal{N}_{A' o A}] := -D[\mathcal{N} \| \mathcal{R}] = \log |A| - D[\mathcal{N} \| \widetilde{\mathcal{R}}] = \inf_{\psi \in \operatorname{St}(\mathcal{R}A')} S(A|R)_{\mathcal{N}(\psi)}.$$

<ロト < 四ト < 回ト < 回ト < 回ト = 回

Conditional entropy of a channel: Formulation

For a bipartite channel $\mathcal{N}_{A'B' \rightarrow AB}$, following definitions satisfy axioms^{*}.

von Neumann conditional entropy

 $S[A|B]_{\mathcal{N}} := -\inf_{\mathcal{M} \in \mathrm{CPTP}} D[\mathcal{N}_{A'B' \to AB} \| \mathcal{R}_{A' \to A} \otimes \mathcal{M}_{B' \to B}].$

von Neumann NS conditional entropy

$$S^{\not\rightarrow}[A|B]_{\mathcal{N}} := -D[\mathcal{N}_{A'B'\to AB} \| \mathcal{R}_{A\to A} \circ \mathcal{N}_{A'B'\to AB}].$$

*The reduced channel $\mathcal{N}_{A'B'\to A}$ of a bipartite channel $\mathcal{N}_{A'B'\to AB}$ to be defined as $\mathcal{N}_{A'B'\to A} := \operatorname{tr}_B \circ \mathcal{N}_{A'B'\to AB}$.

Then, we have, $S[A]_{\mathcal{N}} := S[\mathcal{N}_{A'B' \to A}] = -D[\mathcal{N}_{A'B' \to A} \| \mathcal{R}_{A'B' \to A}]$ and $S[A|B]_{\mathcal{N}} \leq S[A]_{\mathcal{N}}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ○ ○ ○

Idea for channelization

The idea is to "channelize" $S(A|B)_{\rho} = -\inf_{\sigma \in St(B)} D(\rho_{AB} \| \mathbb{1}_A \otimes \sigma_B) = -D(\rho_{AB} \| \mathbb{1}_A \otimes \rho_B),$

$$\rho_{AB} \to \mathcal{N}_{A'B' \to AB}$$
$$\mathbb{1}_{A} \otimes \sigma_{B} \to \mathcal{R}_{A \to A} \otimes \mathcal{M}_{B' \to B}$$
$$\mathbb{1}_{A} \otimes \rho_{B} = \mathcal{R}_{A \to A}(\rho_{AB}) \to \mathcal{R}_{A \to A} \circ \mathcal{N}_{A'B' \to AB}$$

 $D(\cdot \| \cdot)$ between positive operators $\rightarrow D[\cdot \| \cdot]$ between completely positive maps. Notice that $S^{\not\rightarrow}[A|B]_{\mathcal{N}} = \inf_{\psi \in St(RA'B')} S(A|RB)_{\mathcal{N}(\psi)}$.

- For an arbitrary bipartite quantum channel $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} \leq S^{\not\to}[A|B]_{\mathcal{N}}$.
- $S[A|B]_{\mathcal{N}} < S^{\neq}[A|B]_{\mathcal{N}}$ iff channel $\mathcal{N}_{A'B' \to AB}$ is signaling from $A' \to B$, i.e., $\operatorname{tr}_{A} \circ \mathcal{N}_{A'B' \to AB} = \operatorname{tr}_{A'} \otimes \mathcal{M}_{B' \to B}$ for some $\mathcal{M} \in \operatorname{CPTP}$.
- For no-signaling $\mathcal{N}_{A'B'\to AB}$, $S[A|B]_{\mathcal{N}} = S^{\not\to}[A|B]_{\mathcal{N}}$.
- For tele-covariant channel $\mathcal{N}_{A'B'\to AB}$, $S[A|B]_{\mathcal{N}} = S(R_A A | R_B B)_{\Phi^{\mathcal{N}}} \log |A'|$, where $\Phi^{\mathcal{N}}_{R_A A R_B B} := \mathcal{N}(\Phi_{R_A A'} \otimes \Phi_{R_B B'})$.

- For an arbitrary bipartite quantum channel $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} \leq S^{\not\to}[A|B]_{\mathcal{N}}$.
- $S[A|B]_{\mathcal{N}} < S^{\not\rightarrow}[A|B]_{\mathcal{N}}$ iff channel $\mathcal{N}_{A'B'\to AB}$ is signaling from $A' \to B$, i.e., $\operatorname{tr}_{A} \circ \mathcal{N}_{A'B'\to AB} = \operatorname{tr}_{A'} \otimes \mathcal{M}_{B'\to B}$ for some $\mathcal{M} \in \operatorname{CPTP}$.
- For no-signaling $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} = S^{\not\to}[A|B]_{\mathcal{N}}$.
- For tele-covariant channel $\mathcal{N}_{A'B'\to AB}$, $S[A|B]_{\mathcal{N}} = S(R_A A | R_B B)_{\Phi^{\mathcal{N}}} \log |A'|$, where $\Phi^{\mathcal{N}}_{R_A A R_B B} := \mathcal{N}(\Phi_{R_A A'} \otimes \Phi_{R_B B'})$.

- For an arbitrary bipartite quantum channel $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} \leq S^{\not\to}[A|B]_{\mathcal{N}}$.
- $S[A|B]_{\mathcal{N}} < S^{\not\rightarrow}[A|B]_{\mathcal{N}}$ iff channel $\mathcal{N}_{A'B'\to AB}$ is signaling from $A' \to B$, i.e., $\operatorname{tr}_{A} \circ \mathcal{N}_{A'B'\to AB} = \operatorname{tr}_{A'} \otimes \mathcal{M}_{B'\to B}$ for some $\mathcal{M} \in \operatorname{CPTP}$.
- For no-signaling $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} = S^{\not \to}[A|B]_{\mathcal{N}}$.
- For tele-covariant channel $\mathcal{N}_{A'B'\to AB}$, $S[A|B]_{\mathcal{N}} = S(R_A A | R_B B)_{\Phi^{\mathcal{N}}} \log |A'|$, where $\Phi^{\mathcal{N}}_{R_A A R_B B} := \mathcal{N}(\Phi_{R_A A'} \otimes \Phi_{R_B B'})$.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

- For an arbitrary bipartite quantum channel $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} \leq S^{\not\to}[A|B]_{\mathcal{N}}$.
- $S[A|B]_{\mathcal{N}} < S^{\neq}[A|B]_{\mathcal{N}}$ iff channel $\mathcal{N}_{A'B' \to AB}$ is signaling from $A' \to B$, i.e., $\operatorname{tr}_{A} \circ \mathcal{N}_{A'B' \to AB} = \operatorname{tr}_{A'} \otimes \mathcal{M}_{B' \to B}$ for some $\mathcal{M} \in \operatorname{CPTP}$.
- For no-signaling $\mathcal{N}_{A'B' \to AB}$, $S[A|B]_{\mathcal{N}} = S^{\neq}[A|B]_{\mathcal{N}}$.
- For tele-covariant channel $\mathcal{N}_{A'B'\to AB}$, $S[A|B]_{\mathcal{N}} = S(R_A A | R_B B)_{\Phi^{\mathcal{N}}} \log |A'|$, where $\Phi^{\mathcal{N}}_{R_A A R_B B} := \mathcal{N}(\Phi_{R_A A'} \otimes \Phi_{R_B B'})$.

Nicolas J. Cerf and Cristoph Adami.

Negative entropy and information in quantum mechanics. *Physical Review Letters*, 79:5194–5197, December 1997.

Gilad Gour and Mark M. Wilde. Entropy of a quantum channel.

Physical Review Research, 3:023096, May 2021.

Michał Horodecki, Jonathan Oppenheim, and Andreas Winter. Partial quantum information. Nature, 436(7051):673–676, August 2005.

 Elliott H. Lieb and Mary Beth Ruskai.
 A fundamental property of quantum-mechanical entropy. Physical Review Letters, 30:434–436, March 1973.

Sohail, Vivek Pandey, Uttam Singh, and Siddhartha Das. Fundamental limitations on the recoverability of quantum processes, 2024. arXiv:2403.12947.

Siddhartha Das (das.seed@iiit.ac.in)

Mathematische grundlagen der quantenmechanik.

Verlag von Julius Springer Berlin, 1932.