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A. Nonlocality in a nutshell

In a typical “Bell experiment,” two systems which may
have previously interacted—for instance they may have been
produced by a common source—are now spatially separated
and are each measured by one of two distant observers, Alice
and Bob (see Fig. 1). Alice may choose one out of several
possible measurements to perform on her system and we let x
denote her measurement choice. For instance, x may refer to
the position of a knob on her measurement apparatus.
Similarly, we let y denote Bob's measurement choice. Once
the measurements are performed, they yield outcomes a and b
on the two systems. The actual values assigned to the
measurement choices x, y and outcomes a, b are purely
conventional; they are mere macroscopic labels distinguishing
the different possibilities.
From one run of the experiment to the other, the outcomes a

and b that are obtained may vary, even when the same choices
of measurements x and y are made. These outcomes are thus
in general governed by a probability distribution pðabjxyÞ,
which can of course depend on the particular experiment
being performed. By repeating the experiment a sufficient
number of times and collecting the observed data, one gets a
fair estimate of such probabilities.
When such an experiment is actually performed—say, by

generating pairs of spin-1=2 particles and measuring the spin
of each particle in different directions—it will in general be
found that

pðabjxyÞ ≠ pðajxÞpðbjyÞ; (1)

implying that the outcomes on both sides are not statistically
independent from each other. Even though the two systems
may be separated by a large distance, and may even be
spacelike separated, the existence of such correlations is
nothing mysterious. In particular, it does not necessarily
imply some kind of direct influence of one system on the
other, for these correlations may simply reveal some depend-
ence relation between the two systems which was established
when they interacted in the past. This is at least what one
would expect in a local theory.
We formalized the idea of a local theory more precisely.

The assumption of locality implies that we should be able to
identify a set of past factors, described by some variables λ,
having a joint causal influence on both outcomes, and which

fully account for the dependence between a and b. Once all
such factors have been taken into account, the residual
indeterminacies about the outcomes must now be decoupled;
that is, the probabilities for a and b should factorize

pðabjxy; λÞ ¼ pðajx; λÞpðbjy; λÞ: (2)

This factorability condition simply expresses the fact that we
have found an explanation according to which the probability
for a depends only on the past variables λ and on the local
measurement x, but not on the distant measurement and
outcome, and analogously for the probability to obtain b. The
variable λ will not necessarily be constant for all runs of the
experiment, even if the procedure which prepares the particles
to be measured is held fixed, because λ may involve physical
quantities that are not fully controllable. The different values
of λ across the runs should thus be characterized by a
probability distribution qðλÞ. Combined with the above
factorability condition, we can thus write

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (3)

where we also implicitly assumed that the measurements x and
y can be freely chosen in a way that is independent of λ, i.e.,
that qðλjx; yÞ ¼ qðλÞ. This decomposition now represents a
precise condition for locality in the context of Bell experi-
ments.2 Note that no assumptions of determinism or of a
“classical behavior” are being involved in Eq. (3): we assumed
that a (and similarly b) is only probabilistically determined by
the measurement x and the variable λ, with no restrictions on
the physical laws governing this causal relation. Locality is the
crucial assumption behind Eq. (3). In relativistic terms, it is the
requirement that events in one region of space-time should not
influence events in spacelike separated regions.
It is now a straightforward mathematical theorem3 that the

predictions of quantum theory for certain experiments involv-
ing entangled particles do not admit a decomposition of the
form (3). To establish this result, we consider for simplicity an
experiment where there are only two measurement choices per
observer x; y ∈ f0; 1g and where the possible outcomes take
also two values labeled a; b ∈ f−1;þ1g. Let haxbyi ¼P

a;babpðabjxyÞ be the expectation value of the product
ab for given measurement choices ðx; yÞ and consider the
expression S ¼ ha0b0iþ ha0b1iþ ha1b0i − ha1b1i, which is

a b

x y

S

FIG. 1 (color online). Sketch of a Bell experiment. A source (S)
distributes two physical systems to distant observers, Alice and
Bob. Upon receiving their systems, each observer performs a
measurement on it. The measurement chosen by Alice is labeled x
and its outcome a. Similarly, Bob chooses measurement y and
gets outcome b. The experiment is characterized by the joint
probability distribution pðabjxyÞ of obtaining outcomes a and b
when Alice and Bob choose measurements x and y.

2Bell also used the term local causality instead of locality. Local
hidden-variable or local realistic models are also frequently used to
refer to the existence of a decomposition of Eq. (3); see Goldstein
et al. (2011) and Norsen (2009) for a critical discussion of these
terminologies.

3It is relatively frequent to see a paper claiming to “disprove”
Bell's theorem or that a mistake in the derivation of Bell inequalities
has been found. However, once one accepts the definition (3), it is a
quite trivial mathematical theorem that this definition is incompatible
with certain quantum predictions. Such papers are thus either using
(possibly unaware) a different definition of locality or they are
erroneous. Quantum Randi challenges have been proposed to
confront Bell deniers in a pedagogical way (Gill, 2012; Vongehr,
2012).

Brunner et al.: Bell nonlocality 421

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014

Bell 1964

A. Nonlocality in a nutshell

In a typical “Bell experiment,” two systems which may
have previously interacted—for instance they may have been
produced by a common source—are now spatially separated
and are each measured by one of two distant observers, Alice
and Bob (see Fig. 1). Alice may choose one out of several
possible measurements to perform on her system and we let x
denote her measurement choice. For instance, x may refer to
the position of a knob on her measurement apparatus.
Similarly, we let y denote Bob's measurement choice. Once
the measurements are performed, they yield outcomes a and b
on the two systems. The actual values assigned to the
measurement choices x, y and outcomes a, b are purely
conventional; they are mere macroscopic labels distinguishing
the different possibilities.
From one run of the experiment to the other, the outcomes a

and b that are obtained may vary, even when the same choices
of measurements x and y are made. These outcomes are thus
in general governed by a probability distribution pðabjxyÞ,
which can of course depend on the particular experiment
being performed. By repeating the experiment a sufficient
number of times and collecting the observed data, one gets a
fair estimate of such probabilities.
When such an experiment is actually performed—say, by

generating pairs of spin-1=2 particles and measuring the spin
of each particle in different directions—it will in general be
found that

pðabjxyÞ ≠ pðajxÞpðbjyÞ; (1)

implying that the outcomes on both sides are not statistically
independent from each other. Even though the two systems
may be separated by a large distance, and may even be
spacelike separated, the existence of such correlations is
nothing mysterious. In particular, it does not necessarily
imply some kind of direct influence of one system on the
other, for these correlations may simply reveal some depend-
ence relation between the two systems which was established
when they interacted in the past. This is at least what one
would expect in a local theory.
We formalized the idea of a local theory more precisely.

The assumption of locality implies that we should be able to
identify a set of past factors, described by some variables λ,
having a joint causal influence on both outcomes, and which

fully account for the dependence between a and b. Once all
such factors have been taken into account, the residual
indeterminacies about the outcomes must now be decoupled;
that is, the probabilities for a and b should factorize

pðabjxy; λÞ ¼ pðajx; λÞpðbjy; λÞ: (2)

This factorability condition simply expresses the fact that we
have found an explanation according to which the probability
for a depends only on the past variables λ and on the local
measurement x, but not on the distant measurement and
outcome, and analogously for the probability to obtain b. The
variable λ will not necessarily be constant for all runs of the
experiment, even if the procedure which prepares the particles
to be measured is held fixed, because λ may involve physical
quantities that are not fully controllable. The different values
of λ across the runs should thus be characterized by a
probability distribution qðλÞ. Combined with the above
factorability condition, we can thus write

pðabjxyÞ ¼
Z

Λ
dλqðλÞpðajx; λÞpðbjy; λÞ; (3)

where we also implicitly assumed that the measurements x and
y can be freely chosen in a way that is independent of λ, i.e.,
that qðλjx; yÞ ¼ qðλÞ. This decomposition now represents a
precise condition for locality in the context of Bell experi-
ments.2 Note that no assumptions of determinism or of a
“classical behavior” are being involved in Eq. (3): we assumed
that a (and similarly b) is only probabilistically determined by
the measurement x and the variable λ, with no restrictions on
the physical laws governing this causal relation. Locality is the
crucial assumption behind Eq. (3). In relativistic terms, it is the
requirement that events in one region of space-time should not
influence events in spacelike separated regions.
It is now a straightforward mathematical theorem3 that the

predictions of quantum theory for certain experiments involv-
ing entangled particles do not admit a decomposition of the
form (3). To establish this result, we consider for simplicity an
experiment where there are only two measurement choices per
observer x; y ∈ f0; 1g and where the possible outcomes take
also two values labeled a; b ∈ f−1;þ1g. Let haxbyi ¼P

a;babpðabjxyÞ be the expectation value of the product
ab for given measurement choices ðx; yÞ and consider the
expression S ¼ ha0b0iþ ha0b1iþ ha1b0i − ha1b1i, which is

a b

x y

S

FIG. 1 (color online). Sketch of a Bell experiment. A source (S)
distributes two physical systems to distant observers, Alice and
Bob. Upon receiving their systems, each observer performs a
measurement on it. The measurement chosen by Alice is labeled x
and its outcome a. Similarly, Bob chooses measurement y and
gets outcome b. The experiment is characterized by the joint
probability distribution pðabjxyÞ of obtaining outcomes a and b
when Alice and Bob choose measurements x and y.

2Bell also used the term local causality instead of locality. Local
hidden-variable or local realistic models are also frequently used to
refer to the existence of a decomposition of Eq. (3); see Goldstein
et al. (2011) and Norsen (2009) for a critical discussion of these
terminologies.

3It is relatively frequent to see a paper claiming to “disprove”
Bell's theorem or that a mistake in the derivation of Bell inequalities
has been found. However, once one accepts the definition (3), it is a
quite trivial mathematical theorem that this definition is incompatible
with certain quantum predictions. Such papers are thus either using
(possibly unaware) a different definition of locality or they are
erroneous. Quantum Randi challenges have been proposed to
confront Bell deniers in a pedagogical way (Gill, 2012; Vongehr,
2012).

Brunner et al.: Bell nonlocality 421

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014

?





Multiparty nonlocality
(à la Mermin, GHZ, Svetlichny,…)



Nonlocality in networks



Nonlocality in networks

Interesting forms of Q correlations

Main hope

Combine entangled states 
& entangled measurements



Nonlocality in networks

One common source Independent sources



Nonlocality in networks

Convex sets
Linear Bell inequalities

à Adapted methods
à Good understanding 

One common source Independent sources



Nonlocality in networks

Convex sets
Linear Bell inequalities

à Adapted methods
à Good understanding 

Non-convex sets
Non-linear Bell inequalities

???

One common source Independent sources



This talk

1. Local (classical) correlations in networks à N-locality

2. Genuine network quantum nonlocality

3. Topologically robust nonlocality



No inputs

No inputs  à Joint output distribution P(a,b,c)

2

FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =

2

FIG. 1. All inequivalent three-party networks.
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network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
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constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
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simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.
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mon source distributing a quantum state to all three
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via B. Hence, if one traces out B, the marginal statis-
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sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint
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A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:
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P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-
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P (abc) 
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As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)
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2

FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
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Figure 1: (Left) The triangle network without inputs, featuring three parties connected by three bipartite sources. Here the three
sources are assumed to be fully independent from each other. Previous works have demonstrated quantum nonlocality in this
setting [7, 9, 11]. (Right) In this work, we consider a more general network where the three sources can become correlated, via
an additional central source. Our main result is that quantum nonlocality can still be observed, even when assuming only an
arbitrarily small level of independence of the three sources.

II. SETTING

Most of our analysis focuses on the so-called triangle net-
work without inputs. We consider a quantum experiment in
such a network, involving three parties (Alice, Bob and Char-
lie) and three separate sources. Each source produces a bipar-
tite quantum state, which is distributed to every pair of par-
ties: Alice and Bob share the state %ABBA , Alice and Charlie
%ACCA and Bob and Charlie %BCCB . Next each party performs
a local (possibly joint) measurement on their two local sub-
systems: Alice performs the measurement MABAC

a giving out-
come a, while Bob and Charlie apply measurements MBABC

b
and MCBCA

c , with outputs b and c respectively. The resulting
statistics is given by

pQ(a, b, c) = Tr
⇥�
MABAC

a ⌦MBABC
b ⌦MCACB

c

�
⇥

⇥
�
%ABBA ⌦ %ACCA ⌦ %BCCB

�⇤
. (1)

Note that when calculating the above expression, one should
be careful about the order of the various subsystems.

It turns out that there exist such quantum distributions
which exhibit nonlocality, despite the fact that each party uses
a fixed measurement [7, 9, 11]. More formally, this means that
pQ does not admit a decomposition of the following form:

p(a, b, c) =
X

↵,�,�

p(↵)p(�)p(�)p(a|�, �)p(b|↵, �)p(c|↵,�),

(2)
where ↵, �, � denote the classical variables distributed by the
sources. This form makes the assumption of N -locality appar-
ent, namely that all three sources are fully independent from
each other, i.e. p(↵,�, �) = p(↵)p(�)p(�). A distribution of
the form of (2) is said to be trilocal. Note that determining
whether a given distribution is trilocal remains a challenging
problem, despite recent progress [12, 19–21].

In this work, we investigate a more general class of local
models where the three sources can be correlated to some
degree. To do so, we introduce an additional central source
(denoted by ⇤), distributing a classical variable � to all three

sources (denoted by ⇤A, ⇤B and ⇤C) (see Fig. 1). This
new variable may influence the choice of variables ↵, � and
�, thus introducing correlations between them. Clearly, this
causal influence cannot be unrestricted, otherwise any pos-
sible distribution p(a, b, c) can be reproduced simply by set-
ting � = (a, b, c), sampled from the distribution p(a, b, c), and
having ↵ = � = � = �. In order to quantitatively limit the
causal influence, we introduce the condition

p(↵,�, �|�) � "1p(↵)p(�)p(�), 8↵,�, �,� (3)

where "1 2 (0, 1] is a constant. This implies that the following
condition holds

p(↵,�, �|�)  "2(↵,�, �,�)p(↵)p(�)p(�), 8↵,�, �,�
(4)

where "2(↵,�, �,�) 2 [1, 1/[p(↵)p(�)p(�)]). Condition (3)
implies that there is no value �, for which p(↵,�, �) = 0,
which further implies that ⇤ never deterministically causes the
values of ⇤A,⇤B and ⇤C , as expressed in (4). We say that a
distribution p(a, b, c) is "1-trilocal if it admits a decomposition
of the form

p(a, b, c) =
X

�,↵,�,�

p(�)p(↵,�, �|�)p(a|�, �)p(b|↵, �)p(c|↵,�),

(5)
where p(↵,�, �|�) satisfies both constraints (3) and (4). The
values assigned to the parameter "1 quantify the degree of in-
dependence. Setting "1 = 1, we recover the usual definition
of trilocality of Eq. (2), i.e. the scenario with fully indepen-
dent sources. In the opposite limit, imposing only "1 > 0 rep-
resents the regime with an arbitrarily small level of indepen-
dence. Note that condition (3) implies that even when know-
ing the triple (�, �,�) there is still some uncertainty about the
value of ↵, i.e. all values ↵ are still possible. If this was not
the case, and the triple (�, �,�) would imply a certain value
↵, for all other values ↵0 it would hold that p(↵0,�, �|�) = 0,
which contradicts condition (3). A similar argument holds for
impossibility to perfectly predict � or � given the value of
other three hidden variables.

a

b

g
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of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint
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P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:
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P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.
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As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)
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puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =
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theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
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butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =
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of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =
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of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =
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FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =

A and B make CHSH test
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of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =

X=0,1 y=
0,
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FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =

X=0,1 y=
0,

1

A and B make CHSH test

Measurement 
outcomes

a = x , a b = y , b

c = x,y

y+



Fritz 2012 2

FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
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of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).
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tems, leading to outputs denoted a, b and c. Here for
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later consider larger output sets.
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observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint
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tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
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known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
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entangled joint measurements via the notion of genuine
quantum network nonlocality. In the last part of the pa-
per, we discuss these questions in more general networks,
and show that nonlocality can be certified from knowl-
edge of only a small part of the network structure. We
conclude with a number of open questions.

I. PROBLEM AND ILLUSTRATIVE EXAMPLE

To start our analysis, let us consider a network in-
volving four distinct parties, denoted Aj (with j 2
{1, 2, 3, 4}). The parties share physical resources, dis-
tributed by a number of independent sources, and dif-
ferent topologies can be considered, as illustrated in
Fig. 1. Upon receiving theses resources and process-
ing them jointly, each party then provides a classical
output denoted aj . The correlation between these out-
puts is captured by the joint probability distribution
p(a1, a2, a3, a4).

In general, the strength of these correlations will de-
pend on two important features. First, the nature of
the physical systems distributed by the sources—notably
quantum systems can lead to stronger correlations than
classically possible (for a given network structure), the
effect of quantum nonlocality. Second, the structure of
the network itself, i.e. how the sources and parties are
connected. This second aspect is the focus of the present
work. In particular, we want to investigate the robustness
of quantum nonlocality with respect to different topolo-
gies of the network.

To formalize the problem let us first discuss correla-
tions for classical models. Here each sources distributes
a (classical) random variable (denoted �k for source k) to
all the parties connected to it. Importantly each source
is assumed to be independent from the others, such that
the variables �k are statistically independent. Correla-
tions obtained from such a model take the form: FOR-
MULA Any distribution admitting a distribution of the
form above is termed local; if no such decomposition ex-
ists, the distribution is termed nonlocal.

For networks where each source connects only to a
strict subset of the parties (as in the networks shown
in Fig. 1), then local correlations are limited, and non-
locality is possible 1 While characterizing these sets of
correlations is a challenging problem (due to the indepen-
dence condition of the sources these sets are not convex),
we can still observe a hierarchy between sets of correla-
tions corresponding to different networks. In particular,
for the networks depicted in Fig. 1, we observe that the
correlations obtained in (c) or (d) are strictly stronger
than correlations obtained in (b), which are themselves

1 Note that when a source connects to all four parties, the problem
is trivial in the sense that any distribution p(a1, a2, a3, a4) is
local.

strictly stronger than those obtained in (a). Indeed, cor-
relations in (a) must satisfy the independence conditionP

a1,a3
pa1(a2, a3, a4) = p(a2)p(a4), and similarly in (b)

we have XXX. For networks (c) and (d), no specific in-
dependence condition must be satisfied. Note that there
is no specific relation between the correlations in net-
work (c) and (d). More generally, note that other net-
work structures can be considered as well, and we discuss
their relative strength in terms of correlations, leading to
a notion of partial order (see Appendix B).

We can now present a first example of a quantum dis-
tribution that exhibits nonlocality that is robust to mod-
ifications of the network topology. Let us start by con-
sidering the square network (Fig. 1a), which we just
argued leads to the weakest correlations among all the
networks in Fig. 1. We consider that each source dis-
tributes a two-qubit Bell state |�+i = |10i+|01ip

2
. Hence,

each party receives two qubits, coming from two inde-
pendent sources. In turn, they perform a measurement
in the following basis:

|0̄i = |00i , |1̄0i = u |01i+ v |10i ,

|1̄1i = v |01i � u |10i , |2̄i = |11i ,
(1)

such that u
2 + v

2 = 1 (u, v 2 R). Hence each party j ob-
tains a four-valued outcome aj . The resulting quantum
distribution is denoted by P

⇤
Q
(a1, a2, a3, a4). This distri-

bution can exhibit topologically robust network nonlo-
cality, as formalized in the following result.

Result 1. The quantum distribution
P

⇤
Q
(a1, a2, a3, a4), for the parameter range umax < u < 1

with umax ⇡ 0.841, is provably nonlocal with respect to
the networks in Fig. 1, for configurations (a), (b) and
(c). For the network (d), numerical results indicate that
the quantum distribution is also nonlocal.

Sketch of proof. We start with the proof of nonlo-
cality with respect to the square network (a). The key
point is that the quantum distribution P

⇤
Q

satisfies the to-
ken counting (TC) property. Consider the coarse-grained
distribution, with ternary outputs ãj 2 {0̄, 1̄, 2̄} where
1̄ = {1̄0, 1̄1}. This distribution satisfies the TC condi-
tion, i.e. the outputs are such that

P
j
ãj = 4. While

such a distribution can be achieved via a local model
on the square network, the latter turns out to be essen-
tially unique (up to irrelevant relabellings). This is the
property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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entangled joint measurements via the notion of genuine
quantum network nonlocality. In the last part of the pa-
per, we discuss these questions in more general networks,
and show that nonlocality can be certified from knowl-
edge of only a small part of the network structure. We
conclude with a number of open questions.

I. PROBLEM AND ILLUSTRATIVE EXAMPLE

To start our analysis, let us consider a network in-
volving four distinct parties, denoted Aj (with j 2
{1, 2, 3, 4}). The parties share physical resources, dis-
tributed by a number of independent sources, and dif-
ferent topologies can be considered, as illustrated in
Fig. 1. Upon receiving theses resources and process-
ing them jointly, each party then provides a classical
output denoted aj . The correlation between these out-
puts is captured by the joint probability distribution
p(a1, a2, a3, a4).

In general, the strength of these correlations will de-
pend on two important features. First, the nature of
the physical systems distributed by the sources—notably
quantum systems can lead to stronger correlations than
classically possible (for a given network structure), the
effect of quantum nonlocality. Second, the structure of
the network itself, i.e. how the sources and parties are
connected. This second aspect is the focus of the present
work. In particular, we want to investigate the robustness
of quantum nonlocality with respect to different topolo-
gies of the network.

To formalize the problem let us first discuss correla-
tions for classical models. Here each sources distributes
a (classical) random variable (denoted �k for source k) to
all the parties connected to it. Importantly each source
is assumed to be independent from the others, such that
the variables �k are statistically independent. Correla-
tions obtained from such a model take the form: FOR-
MULA Any distribution admitting a distribution of the
form above is termed local; if no such decomposition ex-
ists, the distribution is termed nonlocal.

For networks where each source connects only to a
strict subset of the parties (as in the networks shown
in Fig. 1), then local correlations are limited, and non-
locality is possible 1 While characterizing these sets of
correlations is a challenging problem (due to the indepen-
dence condition of the sources these sets are not convex),
we can still observe a hierarchy between sets of correla-
tions corresponding to different networks. In particular,
for the networks depicted in Fig. 1, we observe that the
correlations obtained in (c) or (d) are strictly stronger
than correlations obtained in (b), which are themselves

1 Note that when a source connects to all four parties, the problem
is trivial in the sense that any distribution p(a1, a2, a3, a4) is
local.

strictly stronger than those obtained in (a). Indeed, cor-
relations in (a) must satisfy the independence conditionP

a1,a3
pa1(a2, a3, a4) = p(a2)p(a4), and similarly in (b)

we have XXX. For networks (c) and (d), no specific in-
dependence condition must be satisfied. Note that there
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work structures can be considered as well, and we discuss
their relative strength in terms of correlations, leading to
a notion of partial order (see Appendix B).

We can now present a first example of a quantum dis-
tribution that exhibits nonlocality that is robust to mod-
ifications of the network topology. Let us start by con-
sidering the square network (Fig. 1a), which we just
argued leads to the weakest correlations among all the
networks in Fig. 1. We consider that each source dis-
tributes a two-qubit Bell state |�+i = |10i+|01ip

2
. Hence,

each party receives two qubits, coming from two inde-
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(1)

such that u
2 + v

2 = 1 (u, v 2 R). Hence each party j ob-
tains a four-valued outcome aj . The resulting quantum
distribution is denoted by P

⇤
Q
(a1, a2, a3, a4). This distri-

bution can exhibit topologically robust network nonlo-
cality, as formalized in the following result.

Result 1. The quantum distribution
P

⇤
Q
(a1, a2, a3, a4), for the parameter range umax < u < 1

with umax ⇡ 0.841, is provably nonlocal with respect to
the networks in Fig. 1, for configurations (a), (b) and
(c). For the network (d), numerical results indicate that
the quantum distribution is also nonlocal.

Sketch of proof. We start with the proof of nonlo-
cality with respect to the square network (a). The key
point is that the quantum distribution P

⇤
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satisfies the to-
ken counting (TC) property. Consider the coarse-grained
distribution, with ternary outputs ãj 2 {0̄, 1̄, 2̄} where
1̄ = {1̄0, 1̄1}. This distribution satisfies the TC condi-
tion, i.e. the outputs are such that
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ãj = 4. While

such a distribution can be achieved via a local model
on the square network, the latter turns out to be essen-
tially unique (up to irrelevant relabellings). This is the
property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =
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argue is fundamentally di↵erent from previously known
forms of quantum nonlocality. In particular, our con-
struction crucially relies on the combination of shared
entangled states and joint entangled measurements per-
formed by the observers. We present several generaliza-
tions of our main result, in particular to any cycle net-
work featuring an odd number of parties. We conclude
with a discussion and comment on the main open ques-
tions.

II. SCENARIO AND MAIN RESULT

We consider the so-called triangle quantum network
sketched in Fig. 1. It features three observers (Alice,
Bob and Charlie). Every pair of observers is connected by
a (bipartite) source, providing a shared physical system
(represented e.g. by a classical variable or by a quantum
state). Importantly, the three sources are assumed to be
independent of each other. Hence, the three observers
share no common (i.e. tripartite) piece of information.
Based on the received physical resources, each observer
provides an output (a, b and c, respectively). Note that
the observers receive no input in this setting, contrary
to standard Bell nonlocality tests. The statistics of the
experiment are thus given by the joint probability distri-
bution P (a, b, c).

Characterizing the set of distributions P (a, b, c) that
can be obtained from physical resources (in particular
classical or quantum) is a highly non-trivial problem.
The main di�culty stems from the assumption that the
sources are independent. This makes the set of pos-
sible distributions P (a, b, c) non-convex, and standard
methods used in Bell nonlocality are thus completely un-
adapted to this problem. Strong bounds on the limits of
classical correlations are thus still missing, which in turn
renders the discussion of quantum nonlocality in the tri-
angle network challenging.

Here we follow a di↵erent approach in order to present
instances of quantum nonlocality in the triangle network.
Specifically, we first construct explicitly a family of quan-
tum distributions PQ(a, b, c), using both entangled quan-
tum states (distributed by each of the three sources),
and entangled joint measurements performed by each ob-
server. Then we show that these quantum distributions
cannot be reproduced by any “trilocal” model, i.e. a lo-
cal model “a la Bell” where all three sources are assumed
to be independent from each other. Formally, we prove
that

PQ(a, b, c) 6= (1)
Z

d↵

Z
d�

Z
d�PA(a|�, �)PB(b|�,↵)PC(c|↵,�)

where ↵ 2 X, � 2 Y and � 2 Z represent the
three local variables distributed by each source and
PA(a|�, �), PB(b|�,↵), PC(c|↵,�) represent arbitrary de-
terministic response functions for Alice, Bob and Charlie.

Our proof does not rely on the violation of some Bell-type
inequality, but is based on a logical contradiction. More
precisely, we first identify a certain number of necessary
properties that any trilocal model should have in order
to reproduce PQ(a, b, c), and then show that these prop-
erties cannot all be satisfied at the same time.
Let us now construct explicitly our quantum distribu-

tions PQ(a, b, c). Each source produces the same pure
maximally entangled state of two qubits,

| �iA�B�
= | ↵iB↵C↵

= | �iC�A�
=

1p
2
(|00i+ |11i) .

Note that each party receives two independent qubit sub-
systems; for instance Alice receives subsystems A� and
A� . Next, each party performs a projective quantum
measurement in the same basis. In the following, we use
the basis (a set depending on one real parameter u) given
by

|"i = |01i |�0i = u |00i+ v |11i
|#i = |10i |�1i = v |00i � u |11i (2)

with u
2 + v

2 = 1 and 0 < v < u < 1. For Alice, we label
it {|�aiA�A�

} for �a 2 {", #,�0,�1} and adopt similar
notations for Bob and Charlie. Remark that only two
out of the four states in that basis are entangled. The
statistics of the experiment are given by

PQ(a, b, c) = | h�a| h�b| h�c| | �i | ↵i | �i |2,

where we did not specify the Hilbert spaces supporting
the states. Note that when evaluating PQ(a, b, c), one
should be attentive to which Hilbert space support each
state and measurements.
We now state the main result of this letter:

Theorem 1. The quantum distribution PQ(a, b, c) can-

not be reproduced by any classical trilocal model (in the

sense of Eq. (1)) when u
2
max < u

2
< 1, where u

2
max =

�3+(9+6
p
2)2/3

2(9+6
p
3)1/3

⇡ 0.785

We now sketch the proof; all details are given in Ap-
pendix A. The main idea is that the quantum distribu-
tion PQ(a, b, c) features a certain number of specific con-
straints. Indeed, one has that

PQ(a =", b =") = PQ(a =#, b =#) = 0 (3)

Symmetric relations are obtained by permuting the par-
ties. Also, the number of parties that have an output in
� = {�0,�1} must be odd. Moreover, introducing the
notation u0 = �v1 = u and v0 = u1 = v (such that
|�ti = ut |00i+ vt |11i) we have that

PQ(�i, ", #) =
1

8
u
2
i , PQ(�i, #, ") =

1

8
v
2
i , (4)

PQ(�i,�j ,�k) =
1

8
(uiujuk + vivjvk)

2 (5)
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independent of each other. Hence, the three observers
share no common (i.e. tripartite) piece of information.
Based on the received physical resources, each observer
provides an output (a, b and c, respectively). Note that
the observers receive no input in this setting, contrary
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terministic response functions for Alice, Bob and Charlie.
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properties that any trilocal model should have in order
to reproduce PQ(a, b, c), and then show that these prop-
erties cannot all be satisfied at the same time.
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tions PQ(a, b, c). Each source produces the same pure
maximally entangled state of two qubits,
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Note that each party receives two independent qubit sub-
systems; for instance Alice receives subsystems A� and
A� . Next, each party performs a projective quantum
measurement in the same basis. In the following, we use
the basis (a set depending on one real parameter u) given
by
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should be attentive to which Hilbert space support each
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P(a,b,c) is not trilocal for 
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entangled joint measurements via the notion of genuine
quantum network nonlocality. In the last part of the pa-
per, we discuss these questions in more general networks,
and show that nonlocality can be certified from knowl-
edge of only a small part of the network structure. We
conclude with a number of open questions.

I. PROBLEM AND ILLUSTRATIVE EXAMPLE

To start our analysis, let us consider a network in-
volving four distinct parties, denoted Aj (with j 2
{1, 2, 3, 4}). The parties share physical resources, dis-
tributed by a number of independent sources, and dif-
ferent topologies can be considered, as illustrated in
Fig. 1. Upon receiving theses resources and process-
ing them jointly, each party then provides a classical
output denoted aj . The correlation between these out-
puts is captured by the joint probability distribution
p(a1, a2, a3, a4).

In general, the strength of these correlations will de-
pend on two important features. First, the nature of
the physical systems distributed by the sources—notably
quantum systems can lead to stronger correlations than
classically possible (for a given network structure), the
effect of quantum nonlocality. Second, the structure of
the network itself, i.e. how the sources and parties are
connected. This second aspect is the focus of the present
work. In particular, we want to investigate the robustness
of quantum nonlocality with respect to different topolo-
gies of the network.

To formalize the problem let us first discuss correla-
tions for classical models. Here each sources distributes
a (classical) random variable (denoted �k for source k) to
all the parties connected to it. Importantly each source
is assumed to be independent from the others, such that
the variables �k are statistically independent. Correla-
tions obtained from such a model take the form: FOR-
MULA Any distribution admitting a distribution of the
form above is termed local; if no such decomposition ex-
ists, the distribution is termed nonlocal.

For networks where each source connects only to a
strict subset of the parties (as in the networks shown
in Fig. 1), then local correlations are limited, and non-
locality is possible 1 While characterizing these sets of
correlations is a challenging problem (due to the indepen-
dence condition of the sources these sets are not convex),
we can still observe a hierarchy between sets of correla-
tions corresponding to different networks. In particular,
for the networks depicted in Fig. 1, we observe that the
correlations obtained in (c) or (d) are strictly stronger
than correlations obtained in (b), which are themselves

1 Note that when a source connects to all four parties, the problem
is trivial in the sense that any distribution p(a1, a2, a3, a4) is
local.

strictly stronger than those obtained in (a). Indeed, cor-
relations in (a) must satisfy the independence conditionP

a1,a3
pa1(a2, a3, a4) = p(a2)p(a4), and similarly in (b)

we have XXX. For networks (c) and (d), no specific in-
dependence condition must be satisfied. Note that there
is no specific relation between the correlations in net-
work (c) and (d). More generally, note that other net-
work structures can be considered as well, and we discuss
their relative strength in terms of correlations, leading to
a notion of partial order (see Appendix B).

We can now present a first example of a quantum dis-
tribution that exhibits nonlocality that is robust to mod-
ifications of the network topology. Let us start by con-
sidering the square network (Fig. 1a), which we just
argued leads to the weakest correlations among all the
networks in Fig. 1. We consider that each source dis-
tributes a two-qubit Bell state |�+i = |10i+|01ip

2
. Hence,

each party receives two qubits, coming from two inde-
pendent sources. In turn, they perform a measurement
in the following basis:

|0̄i = |00i , |1̄0i = u |01i+ v |10i ,

|1̄1i = v |01i � u |10i , |2̄i = |11i ,
(1)

such that u
2 + v

2 = 1 (u, v 2 R). Hence each party j ob-
tains a four-valued outcome aj . The resulting quantum
distribution is denoted by P

⇤
Q
(a1, a2, a3, a4). This distri-

bution can exhibit topologically robust network nonlo-
cality, as formalized in the following result.

Result 1. The quantum distribution
P

⇤
Q
(a1, a2, a3, a4), for the parameter range umax < u < 1

with umax ⇡ 0.841, is provably nonlocal with respect to
the networks in Fig. 1, for configurations (a), (b) and
(c). For the network (d), numerical results indicate that
the quantum distribution is also nonlocal.

Sketch of proof. We start with the proof of nonlo-
cality with respect to the square network (a). The key
point is that the quantum distribution P

⇤
Q

satisfies the to-
ken counting (TC) property. Consider the coarse-grained
distribution, with ternary outputs ãj 2 {0̄, 1̄, 2̄} where
1̄ = {1̄0, 1̄1}. This distribution satisfies the TC condi-
tion, i.e. the outputs are such that

P
j
ãj = 4. While

such a distribution can be achieved via a local model
on the square network, the latter turns out to be essen-
tially unique (up to irrelevant relabellings). This is the
property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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I. PROBLEM AND ILLUSTRATIVE EXAMPLE

To start our analysis, let us consider a network in-
volving four distinct parties, denoted Aj (with j 2
{1, 2, 3, 4}). The parties share physical resources, dis-
tributed by a number of independent sources, and dif-
ferent topologies can be considered, as illustrated in
Fig. 1. Upon receiving theses resources and process-
ing them jointly, each party then provides a classical
output denoted aj . The correlation between these out-
puts is captured by the joint probability distribution
p(a1, a2, a3, a4).

In general, the strength of these correlations will de-
pend on two important features. First, the nature of
the physical systems distributed by the sources—notably
quantum systems can lead to stronger correlations than
classically possible (for a given network structure), the
effect of quantum nonlocality. Second, the structure of
the network itself, i.e. how the sources and parties are
connected. This second aspect is the focus of the present
work. In particular, we want to investigate the robustness
of quantum nonlocality with respect to different topolo-
gies of the network.

To formalize the problem let us first discuss correla-
tions for classical models. Here each sources distributes
a (classical) random variable (denoted �k for source k) to
all the parties connected to it. Importantly each source
is assumed to be independent from the others, such that
the variables �k are statistically independent. Correla-
tions obtained from such a model take the form: FOR-
MULA Any distribution admitting a distribution of the
form above is termed local; if no such decomposition ex-
ists, the distribution is termed nonlocal.

For networks where each source connects only to a
strict subset of the parties (as in the networks shown
in Fig. 1), then local correlations are limited, and non-
locality is possible 1 While characterizing these sets of
correlations is a challenging problem (due to the indepen-
dence condition of the sources these sets are not convex),
we can still observe a hierarchy between sets of correla-
tions corresponding to different networks. In particular,
for the networks depicted in Fig. 1, we observe that the
correlations obtained in (c) or (d) are strictly stronger
than correlations obtained in (b), which are themselves

1 Note that when a source connects to all four parties, the problem
is trivial in the sense that any distribution p(a1, a2, a3, a4) is
local.

strictly stronger than those obtained in (a). Indeed, cor-
relations in (a) must satisfy the independence conditionP

a1,a3
pa1(a2, a3, a4) = p(a2)p(a4), and similarly in (b)

we have XXX. For networks (c) and (d), no specific in-
dependence condition must be satisfied. Note that there
is no specific relation between the correlations in net-
work (c) and (d). More generally, note that other net-
work structures can be considered as well, and we discuss
their relative strength in terms of correlations, leading to
a notion of partial order (see Appendix B).

We can now present a first example of a quantum dis-
tribution that exhibits nonlocality that is robust to mod-
ifications of the network topology. Let us start by con-
sidering the square network (Fig. 1a), which we just
argued leads to the weakest correlations among all the
networks in Fig. 1. We consider that each source dis-
tributes a two-qubit Bell state |�+i = |10i+|01ip

2
. Hence,

each party receives two qubits, coming from two inde-
pendent sources. In turn, they perform a measurement
in the following basis:

|0̄i = |00i , |1̄0i = u |01i+ v |10i ,

|1̄1i = v |01i � u |10i , |2̄i = |11i ,
(1)

such that u
2 + v

2 = 1 (u, v 2 R). Hence each party j ob-
tains a four-valued outcome aj . The resulting quantum
distribution is denoted by P

⇤
Q
(a1, a2, a3, a4). This distri-

bution can exhibit topologically robust network nonlo-
cality, as formalized in the following result.

Result 1. The quantum distribution
P

⇤
Q
(a1, a2, a3, a4), for the parameter range umax < u < 1

with umax ⇡ 0.841, is provably nonlocal with respect to
the networks in Fig. 1, for configurations (a), (b) and
(c). For the network (d), numerical results indicate that
the quantum distribution is also nonlocal.

Sketch of proof. We start with the proof of nonlo-
cality with respect to the square network (a). The key
point is that the quantum distribution P

⇤
Q

satisfies the to-
ken counting (TC) property. Consider the coarse-grained
distribution, with ternary outputs ãj 2 {0̄, 1̄, 2̄} where
1̄ = {1̄0, 1̄1}. This distribution satisfies the TC condi-
tion, i.e. the outputs are such that

P
j
ãj = 4. While

such a distribution can be achieved via a local model
on the square network, the latter turns out to be essen-
tially unique (up to irrelevant relabellings). This is the
property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
ity that necessarily holds in quantum theory.

Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =

Token Counting

TC strategy
Each source distributes one token
Each party outputs # of received tokens

TC distribution
P(a,b,c)  s.t. P(a+b+c=3)=1

Renou & Beigi, PRL 2022
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X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)
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characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
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tribute the output to A and B (resp. B and C) and
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the normalization constraint, there is no other equality
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see Appendix B.
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Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
sources emit classical variables: in this case Theorem 1
can be derived by applying two Cauchy-Schwarz inequal-
ities on E[fAgBhC ] where fA, gB and hC are the charac-
teristic functions of the sets {a}, {b} and {c} respectively.
Back to quantum sources, Theorem 1 can be proven by
essentially the same ideas, but as we will later prove a
generalization of this theorem, we skip the proof here.
In the classical case, the set of all possible strategies

can be understood intuitively in geometrical terms, as a
3-dimensional cube. In this case, the inequality (2) fol-
lows from the Loomis-Whitney inequality, capturing the
fact that the volume of a 3-dimensional object is upper
bounded by the product of the areas of the object’s pro-
jections in three orthogonal directions (see Appendix B).
The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
angle network. Consider for instance the family of distri-
butions

Pp,q = p�000 + q�111 + (1� p� q)Pdi↵ (3)

where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =

Sketch of proof

1. Coarse-grained distribution is TC

Local measurement

y+ = |01>+|10>

y+ y+

Local model must be TC 
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entangled joint measurements via the notion of genuine
quantum network nonlocality. In the last part of the pa-
per, we discuss these questions in more general networks,
and show that nonlocality can be certified from knowl-
edge of only a small part of the network structure. We
conclude with a number of open questions.

I. PROBLEM AND ILLUSTRATIVE EXAMPLE

To start our analysis, let us consider a network in-
volving four distinct parties, denoted Aj (with j 2
{1, 2, 3, 4}). The parties share physical resources, dis-
tributed by a number of independent sources, and dif-
ferent topologies can be considered, as illustrated in
Fig. 1. Upon receiving theses resources and process-
ing them jointly, each party then provides a classical
output denoted aj . The correlation between these out-
puts is captured by the joint probability distribution
p(a1, a2, a3, a4).

In general, the strength of these correlations will de-
pend on two important features. First, the nature of
the physical systems distributed by the sources—notably
quantum systems can lead to stronger correlations than
classically possible (for a given network structure), the
effect of quantum nonlocality. Second, the structure of
the network itself, i.e. how the sources and parties are
connected. This second aspect is the focus of the present
work. In particular, we want to investigate the robustness
of quantum nonlocality with respect to different topolo-
gies of the network.

To formalize the problem let us first discuss correla-
tions for classical models. Here each sources distributes
a (classical) random variable (denoted �k for source k) to
all the parties connected to it. Importantly each source
is assumed to be independent from the others, such that
the variables �k are statistically independent. Correla-
tions obtained from such a model take the form: FOR-
MULA Any distribution admitting a distribution of the
form above is termed local; if no such decomposition ex-
ists, the distribution is termed nonlocal.

For networks where each source connects only to a
strict subset of the parties (as in the networks shown
in Fig. 1), then local correlations are limited, and non-
locality is possible 1 While characterizing these sets of
correlations is a challenging problem (due to the indepen-
dence condition of the sources these sets are not convex),
we can still observe a hierarchy between sets of correla-
tions corresponding to different networks. In particular,
for the networks depicted in Fig. 1, we observe that the
correlations obtained in (c) or (d) are strictly stronger
than correlations obtained in (b), which are themselves

1 Note that when a source connects to all four parties, the problem
is trivial in the sense that any distribution p(a1, a2, a3, a4) is
local.

strictly stronger than those obtained in (a). Indeed, cor-
relations in (a) must satisfy the independence conditionP

a1,a3
pa1(a2, a3, a4) = p(a2)p(a4), and similarly in (b)

we have XXX. For networks (c) and (d), no specific in-
dependence condition must be satisfied. Note that there
is no specific relation between the correlations in net-
work (c) and (d). More generally, note that other net-
work structures can be considered as well, and we discuss
their relative strength in terms of correlations, leading to
a notion of partial order (see Appendix B).

We can now present a first example of a quantum dis-
tribution that exhibits nonlocality that is robust to mod-
ifications of the network topology. Let us start by con-
sidering the square network (Fig. 1a), which we just
argued leads to the weakest correlations among all the
networks in Fig. 1. We consider that each source dis-
tributes a two-qubit Bell state |�+i = |10i+|01ip

2
. Hence,

each party receives two qubits, coming from two inde-
pendent sources. In turn, they perform a measurement
in the following basis:

|0̄i = |00i , |1̄0i = u |01i+ v |10i ,

|1̄1i = v |01i � u |10i , |2̄i = |11i ,
(1)

such that u
2 + v

2 = 1 (u, v 2 R). Hence each party j ob-
tains a four-valued outcome aj . The resulting quantum
distribution is denoted by P

⇤
Q
(a1, a2, a3, a4). This distri-

bution can exhibit topologically robust network nonlo-
cality, as formalized in the following result.

Result 1. The quantum distribution
P

⇤
Q
(a1, a2, a3, a4), for the parameter range umax < u < 1

with umax ⇡ 0.841, is provably nonlocal with respect to
the networks in Fig. 1, for configurations (a), (b) and
(c). For the network (d), numerical results indicate that
the quantum distribution is also nonlocal.

Sketch of proof. We start with the proof of nonlo-
cality with respect to the square network (a). The key
point is that the quantum distribution P

⇤
Q

satisfies the to-
ken counting (TC) property. Consider the coarse-grained
distribution, with ternary outputs ãj 2 {0̄, 1̄, 2̄} where
1̄ = {1̄0, 1̄1}. This distribution satisfies the TC condi-
tion, i.e. the outputs are such that

P
j
ãj = 4. While

such a distribution can be achieved via a local model
on the square network, the latter turns out to be essen-
tially unique (up to irrelevant relabellings). This is the
property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
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FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
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again, and add a source connecting A and C. Due to
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3-dimensional cube. In this case, the inequality (2) fol-
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Sketch of proof

1. Coarse-grained distribution is TC

Local measurement

y+ = |01>+|10>

y+ y+

Local model must be TC 

2. Original (fine-grained) Q distribution cannot be achieved

P(a,b,c) is incompatible with any trilocal model
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entangled joint measurements via the notion of genuine
quantum network nonlocality. In the last part of the pa-
per, we discuss these questions in more general networks,
and show that nonlocality can be certified from knowl-
edge of only a small part of the network structure. We
conclude with a number of open questions.

I. PROBLEM AND ILLUSTRATIVE EXAMPLE

To start our analysis, let us consider a network in-
volving four distinct parties, denoted Aj (with j 2
{1, 2, 3, 4}). The parties share physical resources, dis-
tributed by a number of independent sources, and dif-
ferent topologies can be considered, as illustrated in
Fig. 1. Upon receiving theses resources and process-
ing them jointly, each party then provides a classical
output denoted aj . The correlation between these out-
puts is captured by the joint probability distribution
p(a1, a2, a3, a4).

In general, the strength of these correlations will de-
pend on two important features. First, the nature of
the physical systems distributed by the sources—notably
quantum systems can lead to stronger correlations than
classically possible (for a given network structure), the
effect of quantum nonlocality. Second, the structure of
the network itself, i.e. how the sources and parties are
connected. This second aspect is the focus of the present
work. In particular, we want to investigate the robustness
of quantum nonlocality with respect to different topolo-
gies of the network.

To formalize the problem let us first discuss correla-
tions for classical models. Here each sources distributes
a (classical) random variable (denoted �k for source k) to
all the parties connected to it. Importantly each source
is assumed to be independent from the others, such that
the variables �k are statistically independent. Correla-
tions obtained from such a model take the form: FOR-
MULA Any distribution admitting a distribution of the
form above is termed local; if no such decomposition ex-
ists, the distribution is termed nonlocal.

For networks where each source connects only to a
strict subset of the parties (as in the networks shown
in Fig. 1), then local correlations are limited, and non-
locality is possible 1 While characterizing these sets of
correlations is a challenging problem (due to the indepen-
dence condition of the sources these sets are not convex),
we can still observe a hierarchy between sets of correla-
tions corresponding to different networks. In particular,
for the networks depicted in Fig. 1, we observe that the
correlations obtained in (c) or (d) are strictly stronger
than correlations obtained in (b), which are themselves

1 Note that when a source connects to all four parties, the problem
is trivial in the sense that any distribution p(a1, a2, a3, a4) is
local.

strictly stronger than those obtained in (a). Indeed, cor-
relations in (a) must satisfy the independence conditionP

a1,a3
pa1(a2, a3, a4) = p(a2)p(a4), and similarly in (b)

we have XXX. For networks (c) and (d), no specific in-
dependence condition must be satisfied. Note that there
is no specific relation between the correlations in net-
work (c) and (d). More generally, note that other net-
work structures can be considered as well, and we discuss
their relative strength in terms of correlations, leading to
a notion of partial order (see Appendix B).

We can now present a first example of a quantum dis-
tribution that exhibits nonlocality that is robust to mod-
ifications of the network topology. Let us start by con-
sidering the square network (Fig. 1a), which we just
argued leads to the weakest correlations among all the
networks in Fig. 1. We consider that each source dis-
tributes a two-qubit Bell state |�+i = |10i+|01ip

2
. Hence,

each party receives two qubits, coming from two inde-
pendent sources. In turn, they perform a measurement
in the following basis:

|0̄i = |00i , |1̄0i = u |01i+ v |10i ,

|1̄1i = v |01i � u |10i , |2̄i = |11i ,
(1)

such that u
2 + v

2 = 1 (u, v 2 R). Hence each party j ob-
tains a four-valued outcome aj . The resulting quantum
distribution is denoted by P

⇤
Q
(a1, a2, a3, a4). This distri-

bution can exhibit topologically robust network nonlo-
cality, as formalized in the following result.

Result 1. The quantum distribution
P

⇤
Q
(a1, a2, a3, a4), for the parameter range umax < u < 1

with umax ⇡ 0.841, is provably nonlocal with respect to
the networks in Fig. 1, for configurations (a), (b) and
(c). For the network (d), numerical results indicate that
the quantum distribution is also nonlocal.

Sketch of proof. We start with the proof of nonlo-
cality with respect to the square network (a). The key
point is that the quantum distribution P

⇤
Q

satisfies the to-
ken counting (TC) property. Consider the coarse-grained
distribution, with ternary outputs ãj 2 {0̄, 1̄, 2̄} where
1̄ = {1̄0, 1̄1}. This distribution satisfies the TC condi-
tion, i.e. the outputs are such that

P
j
ãj = 4. While

such a distribution can be achieved via a local model
on the square network, the latter turns out to be essen-
tially unique (up to irrelevant relabellings). This is the
property of classical rigidity, which holds for any TC dis-
tribution [1]. From this key observation, one can then
prove the nonlocality of the original quantum distribu-
tion following the proof technique of Ref. [1, 2]. For
convenience, we provide the full proof in Appendix A.

In turn, we can prove the nonlocality of the quantum
distribution P

⇤
Q

with the other two network structures
in Fig. 1, configurations (b) and (c), following a similar
technique. The key idea is that the rigidity property of
TC distributions extends to any network with the prop-
erty that no pairs of parties are connected by more than
one source (see Appendix A for details).
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FIG. 1. All inequivalent three-party networks.

of correlations in networks for any possible no-signaling
theory. It thus represents a general limit of achievable
correlations in networks, independently of the underly-
ing physical model, given the latter does not allow for
instantaneous communication (in other words, is com-
patible with special relativity).

II. THREE-OBSERVER NETWORKS

Consider a quantum network with three observers A,
B and C, featuring one (or more) sources, distributing
quantum states to subset of the parties. Each party then
performs a measurement on the received quantum sys-
tems, leading to outputs denoted a, b and c. Here for
simplicity we assume that a, b, c 2 {0, 1} are binary, but
later consider larger output sets.

One can consider three inequivalent networks here.
The first, depicted in Fig. 1(a), features a single com-
mon source distributing a quantum state to all three
observers. This corresponds to the situation considered
in the standard Bell scenario (see e.g. [2]), except that
parties receive no inputs in our case. It is straightfor-
ward to see that any possible distribution P (abc) can
be achieved. In fact, it is enough to restrict to classical
sources here. The source samples from the distribution
P (abc), and then distributes the obtained outputs to each
observer. Geometrically, the set of possible attainable
distributions P (abc) is nothing but the whole probability
simplex, which is a 7-dimensional simplex in R8 due to
the normalization constraint

P
a,b,c

P (abc) = 1.
A more interesting scenario is when the network fea-

tures two independent sources, as in Fig. 1(b). The first
source distributes a common state to A and B, and the
second independent source to B and C. This scenario is
known as bilocality [3], and corresponds to the setup of
entanglement swapping. In this case, the parties A and
C are initially independent, and can only be correlated
via B. Hence, if one traces out B, the marginal statis-
tics of A and C must factorize. We have the causality
condition:

X

b

P (abc) = PAC(ac) = PA(a)PC(c) . (1)

Hence, contrary to the first network discussed above, not
all correlations are possible in the bilocality network. It
turns out however that the constraint (1) is enough to

characterize achievable correlations: any P (abc) satisfy-
ing (1) can be achieved. It is again enough to consider
only classical variables. Specifically, let the first (resp.
second) source sample from PA(a) (resp. PC(c)) and dis-
tribute the output to A and B (resp. B and C) and
B use local randomness to sample P (b|ac). Geometri-
cally, the set of achievable distributions P (abc) forms a
6-dimensional curved manifold in R8.
Next we move to the third—and arguably the most in-

teresting and challenging—configuration, i.e. the triangle
network (see Fig. 1(c)). Consider the bilocality network
again, and add a source connecting A and C. Due to
this additional source, the independence condition (1)
does no longer hold. In fact, one can show that, besides
the normalization constraint, there is no other equality
constraint for this network (which would reduce the di-
mension of the set). This follows from the fact that the
maximally mixed (uniform) distribution Pu(abc) = 1/8
8a, b, c is surrounded by a ball of achievable distributions;
see Appendix B.
It turns out, however, that not all distributions P (abc)

are achievable in the triangle scenario, as shown in Ap-
pendix B and Ref. [14] via specific examples. Thus, the
set of possible distributions forms a strict subset of the
probability simplex, yet its characterization is a challeng-
ing problem. Here we derive a relevant nonlinear inequal-
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Theorem 1. In the triangle network (Fig. 1(c)), quan-

tum correlations necessarily satisfy

P (abc) 
p
PA(a)PB(b)PC(c) . (2)

As quantum correlations are stronger than classical
ones, inequality (2) also holds for the case where the
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can be understood intuitively in geometrical terms, as a
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The inequality (2) allows us to prove that a large range

of distributions cannot be achieved in the quantum tri-
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where �abc represents the distribution that always out-
puts a, b and c deterministically, and Pdi↵ is the uni-
form distribution over {0, 1}3 \ {000, 111}, i.e., Pdi↵ =
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Quantum nonlocality can be demonstrated without inputs (i.e. each party using a fixed measure-
ment setting) in a network with independent sources. Here we consider this e↵ect on ring networks,
and show that the underlying quantum strategy can be partially characterized, or self-tested, from
observed correlations. Applying these results to the triangle network allows us to show that the
nonlocal distribution of Renou et al. [Phys. Rev. Lett. 123, 140401 (2019)] requires that (i) all
sources produce a minimal amount of entanglement, (ii) all local measurements are entangled, and
(iii) each local outcome features a minimal entropy. Hence we show that the triangle network allows
for genuine network quantum nonlocality and certifiable randomness.

Introduction – Discovered by Bell in the 1960s [1], the
phenomenon of quantum nonlocality has been tradition-
ally investigated in a setting where two (or more) sepa-
rated observers perform local measurements on a shared
entangled state [2]. One can then prove, e.g. via Bell
inequality violation, that the observed correlations are
Bell nonlocal, in the sense that they are incompatible
with any physical theory satisfying a natural notion of
locality, such as in classical physics. Beyond fundamen-
tal aspects, quantum nonlocality is also a strong resource
for black-box quantum information processing.

Networks o↵er an intriguing new platform for exploring
quantum nonlocality; see [3] for a review. The key nov-
elty is that the network structure features several sources,
each distributing entanglement to various subsets of the
parties. At each party, quantum joint measurements can
be performed, which enable the distribution of strong
correlations across the entire network. The main idea
behind network nonlocality is to investigate the resulting
correlations under the assumption that all sources in the
network are independent [4, 5]. This assumption leads to
a formal definition of classical (or network-local) correla-
tions, which can be viewed as a natural generalization of
the notion of Bell locality. Characterizing classical and
quantum correlations in such networks is a highly chal-
lenging task, see e.g. [6–11].

A central question in this research area is to uncover
novel forms of quantum nonlocal correlations inherent to
the network structure. In turn, one would like to char-
acterize such new forms of nonlocality and explore their
potential for applications in quantum information pro-
cessing. Our work brings progress towards this second
direction.

In 2012, Fritz [12] and Branciard et al. [5] discovered
that quantum nonlocality can be demonstrated in net-
works without the need for measurement inputs, i.e. each
party performing a single fixed measurement. The ex-
ample of Fritz considers a simple triangle network, where
each pair of parties is connected via a bipartite source, see
Fig. 1. While the construction of Fritz can be viewed as
a clever embedding of a standard Bell test in the triangle
network (see also [13]), Renou et al. [14] presented a strik-

FIG. 1. The triangle network features three parties connected
pairwise via three independent sources. The figure illustrates
the labels we use for sources and subsystems.

ingly di↵erent instance of quantum nonlocality (referred
to as RGB4), which they argued is genuine to the triangle
network; see also [15–19]. In order to formalize this in-
tuition, the concepts of genuine network nonlocality [20]
(GNNL) and full network nonlocality [21] (FNNL) where
proposed. The first demonstrates the presence of non-
classical joint measurements, while the second witnesses
the distribution of entanglement by all sources. However,
the initial question of whether the RGB4 distribution (or
any other quantum nonlocal distribution without inputs)
has GNNL features remained open so far.

In this work, we precisely address these questions. We
develop methods for the characterization of quantum dis-
tributions in networks without inputs. This allows us to
partially characterize the RGB4 distribution, and prove
the following properties: (i) GNNL, all parties must per-
form a non-classical measurement, (ii) each source should
distribute entanglement, and we obtain a lower bound on
the entanglement of formation EF > 2.5%, and (iii) cer-
tified randomness, via a lower bound on the min-entropy
Hmin > 3.8%. Our main technical results are self-testing
(or quantum rigidity) proofs that apply to quantum (Par-
ity) Token Counting strategies on ring networks. The ex-
position in the main text will be focused on the triangle,
the generalizations are presented at the end.
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tuition, the concepts of genuine network nonlocality [20]
(GNNL) and full network nonlocality [21] (FNNL) where
proposed. The first demonstrates the presence of non-
classical joint measurements, while the second witnesses
the distribution of entanglement by all sources. However,
the initial question of whether the RGB4 distribution (or
any other quantum nonlocal distribution without inputs)
has GNNL features remained open so far.

In this work, we precisely address these questions. We
develop methods for the characterization of quantum dis-
tributions in networks without inputs. This allows us to
partially characterize the RGB4 distribution, and prove
the following properties: (i) GNNL, all parties must per-
form a non-classical measurement, (ii) each source should
distribute entanglement, and we obtain a lower bound on
the entanglement of formation EF > 2.5%, and (iii) cer-
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S(trB↵B0
↵
| kih k|) � hbin(qk) by the entropy hbin(qk) of

the binary probability distribution (qk, 1 � qk). Hence
the entanglement of formation satisfies EF (⇢(↵)) �

min
P

k pkhbin(qk). On top of that it is not di�cult to

see that the inequality (17), implies
P

k pk

p
qk(1� qk) �

2r for any partition of ⇢(↵). It remains to minimizeP
k pkhbin(qk) under the constraint

P
k pk

p
qk(1� qk) �

2r to show that the entanglement of formation is lower
bounded by

EF (⇢
(↵)) � hbin

✓
1

2
(1�

p
1� 16 r2)

◆
. (21)

Hence, all sources must produce entanglement when r 6=
0. All the details of the derivation can be found in ap-
pendix E. For the maximal value r⇤ certified by Eq. (18),
we find that EF (⇢(⇠)) > 2.5%.

Quantifying output randomness – Finally, let us
bound the amount of randomness that is produced by
the measurements. We focus on the entropy of a single
output, say a. It is simpler to further coarse-grain the
values of a to define a bit ā = 0 (for a = 0, 2) and ā = 1
(if a = 10, 11) encoded in the register Ā, since Eq. (13)
guarantees the junk degrees of freedom have no influence
on ā. When tracing out all the systems but ĀE one finds
a simple classical-quantum state

%ĀE =
1

2
|0ih0|Ā ⌦ ⇢E|ā=0 +

1

2
|1ih1|Ā ⌦ ⇢E|ā=1 (22)
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E��

)

where ⇢
xy
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x
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y
E�

with ⇢
x
E⇠

=

trX0
⇠Y

0
⇠

���jx⇠
ED
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���
X⇠Y 0

⇠E⇠

. Eve’s conditional min-

entropy [23] is related by Hmin(Ā|E) =
� log2

�
1
2 (1 +D(⇢E|ā=0, ⇢E|ā=1))

�
to the trace dis-

tance D between her marginal states. Clearly, the
entropy is not zero, as Eve’s perfect knowledge of the
direction of tokens (D = 1) would imply no coherence
(r = 0). Nevertheless, we found that the technical
challenge of deriving a decent upper bound on D from a
lower bound on r is not straightforward. In appendix E
we show that D(⇢E|ā=0, ⇢E|ā=1) �

p
1� 4r, leading to

Hmin(Ā|E) � � log2

✓
1

2
(1 +

p
1� 4r)

◆
. (23)

For the maximal value r⇤ we find Hmin(Ā|E) � 3.8%.
Generalizations – The above partial self-testing re-

sults can be generalized to any ring network. The proofs
of Results 1 and 2 are given in Appendix B and C, re-
spectively, with notations given in Appendix A.

Another generalization concerns Parity Token Count-
ing (PTC) distributions on the triangle [24], for which
the equivalent of Result 2 also holds and is particularly
simple to prove; see Appendix F. In a PTC strategy each

source has a single token, and the parties only output the
parity of the total number of received tokens.

We expect these results to be helpful to characterize
various quantum distributions that become (P)TC upon
coarse-graining, similarly to our analysis of RGB4.

Conclusion and Outlook – We showed that quantum
nonlocal distributions on ring networks without inputs
can be partially self-tested. Applying these methods to
the triangle network, we prove that the nonlocal distribu-
tion of RGB4 (from Ref. [14]) has interesting properties.
First, all measurements must be entangled, hence demon-
strating GNNL. Also, all states must be entangled, with
a lower bound on their entanglement. Finally, we obtain
a lower bound on the min-entropy for a local outcome,
hence quantifying the amount of randomness.

All the above results can in principle be strengthened
quantitatively by obtaining tighter bounds on the param-
eter r. This could be done by better exploiting the trian-
gle structure, or by considering other nonlocal variants
of the distribution [19].

Another interesting question is whether the RGB4 can
be proven to be FNNL. Here we show a first step in this
direction, namely that if the experiment abides by quan-
tum physics then all sources must produce entanglement.
But can one prove that all sources must be nonlocal, even
if stronger-than-quantum non-signaling resources are ac-
cessible? A related question is to show that the RGB4
distribution is genuine network nonlocal when consider-
ing sources that produce non-signaling correlations and
local wirings [20].

Finally, it would be desirable to make our results ro-
bust to noise. A first step could be to obtain approximate
rigidity results for (P)TC.
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(if a = 10, 11) encoded in the register Ā, since Eq. (13)
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given state, we say it is unsteerable (from A to B) [32].
Network Steering.— We will now introduce our main

new notion, that of network steering. Here, we have a col-
lection of independent sources which distribute quantum
states to a subset of parties. In the standard network
nonlocality scenario all parties are assumed to be un-
trusted, and to perform ‘black-box’ measurements. Here,
in contrast, inspired by the steering scenario, we will
consider only a subset of the parties to be untrusted,
and the remainder trusted. We will be interested in the
(sub-normalised) states that are prepared for the trusted
parties by the measurements of the untrusted parties. We
refer to this general set-up as network steering.

We focus primarily on a simple scenario, with n parties
arranged in a line, where the endpoint parties are trusted,
and intermediate parties are untrusted and each perform
a single, fixed measurement. The simplest such scenario
has three parties and two sources (see Fig. 1e), as in
entanglement swapping [33]. Here the first two parties
share a state ⇢AB and the second and third parties share
a state ⇢B

0C , and the central party performs a fixed
measurement MBB0

b . The sub-normalised states prepared
for A and C by this measurement are

�AC
b = TrBB0

⇣h
A ⌦MBB0

b ⌦ C
i
⇢AB ⌦ ⇢B

0C
⌘
, (1)

which occur with probability p(b) = Tr(�AC
b ). We will

refer to {�b}b as a network assemblage.
In order to determine when this network assemblage

demonstrates network steering we need to introduce the
notion of a network local hidden state (NLHS) model,
which takes the form

�AC
b =

X

�,�

p(�)p(�) p(b|�, �) �A
� ⌦ �C

� , (2)

where � and �A
� are the hidden variable and hidden states

of the first source, � and �C
� those of the second source,

and p(b|�, �) the local response function of Bob. If there
is no such model that can explain the network assemblage
�b, then we say it demonstrates network steering. Inter-
estingly, whereas conventional quantum steering requires
multiple measurements to be performed by the untrusted
party, just as with network nonlocality, we shall see here
that even a fixed measurement can suffice to demonstrate
network steering.

We note first in (2) that each �AC
b is in fact separable.

Thus the presence of entanglement in any single �b suffices
to rule out an NLHS model, and therefore demonstrates
network steering.

The above generalises in a natural way to the n-
party line network depicted in Fig. 1f, with outcomes
b2, . . . , bn�1. We explicitly include the straightforward
generalisation of (1) and (2) in Appendix C, and see that
the following observation holds generally:
Observation 1. For any linear network with trusted
endpoints, the entanglement of a single �b2,...,bn�1 is suffi-
cient to rule out an NLHS model, and thus demonstrate
network steering.
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Figure 1: Network steering scenarios. Green circles
represent trusted parties, and red squares represent
untrusted parties. (a) Standard steering scenario. (b)
Steering scenario without inputs. (c) Triangle scenario
with a trusted party. (d) Triangle scenario interpreted as
a line. (e) Entanglement swapping scenario with trusted
endpoints. (f) Generalised line scenario with trusted
endpoints.

For more general networks, we can represent them as
undirected graphs, where each node is either untrusted
or trusted, and the edges represent independent sources.
If all the parties are untrusted, the quantity of interest
is the observed statistics p(a, b, . . . |x, y, . . . ). When at
least one party is trusted this is replaced by some network
assemblage �a,b,...|x,y,.... A key observation that will prove
useful is the following equivalence between networks, a
generalisation from the network nonlocality case [9]:
Observation 2. Any network with an untrusted party
A that has an input x, received with probability p(x), and
outcome a, is equivalent to a network with an additional
untrusted party A0 who shares an additional source with
A, neither of whom now has an input. In this new network,
the outcome of A0 is x, the old input of A. The relation
between the network assemblages in the first and second
scenarios are p(x)�A...

a,...|x,... = �AA0...
a,x,... .

By virtue of the fact that quantum mechanics admits
local tomography, we also note the following:
Observation 3. A trusted party connected to n inde-
pendent sources can without loss of generality be replaced
by n endpoint trusted parties, each connected to a single
source.
This allows us, for example, to interpret linear networks
as rings with a single trusted party – e.g. the four party
linear network with trusted endpoints can also be viewed
as the triangle network where one of the parties is trusted,
as in Figs. 1c and 1d. This observation motivates our
choice to focus our discussion on linear networks, which
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Figure 1. This work discusses the generation of tripartite quantum states in the triangle network. We first consider the
independent triangle network, shown in (a), where all three quantum sources (producing the bipartite states Í–, Í— , and Í“)
are statistically independent. Each party, upon receiving two independent subsystems, can perform a local unitary. We also
consider the correlated triangle network, shown in (b), where all sources and nodes are classically correlated via a shared random
variable ⁄. We derive a number of criteria for characterizing which tripartite quantum states fl can be prepared in each of these
scenarios. Notably, this problem is fundamentally di�erent from the standard classification of multipartite quantum states,
where all nodes share a quantum state distributed from a single common source, as in (c). Comparing the three scenarios one
arrives at (d). The green area contains fully separable (fs) states and biseparable (bs) states. The blue area highlights genuine
multipartite entangled (gme) states. The dashed line corresponds to states contained in �I , e.g., the ring cluster state (RC)
defined in the main text. The orange line corresponds to the boundary of �C

.

|10Í æ |2Í and |11Í æ |3Í, and we will refer to this as the
standard encoding.

In the first part of this paper, we will focus on the
scenario where the three sources are assumed to be stat-
istically independent from each other. This we call the
independent triangle network (ITN), and the set of states
that can be prepared by such a network we denote by
—I . Statistical independence of the sources is a relatively
natural starting point for building an entanglement the-
ory for practical quantum networks, analogous to product
states being the free resource of separate parties with only
local sources of quantum states. Additionally, one may
then generalise to include classically correlated parties
(sources and nodes), which is a scenario that we discuss
later in the paper.

The first question we consider is which quantum states
fl can be prepared in the ITN. Specifically, we say that
fl œ —I if it admits a decomposition of the form:

fl = (UA ¢ UB ¢ UC)(Í– ¢ Í— ¢ Í“)(U†
A ¢ U

†
B ¢ U

†
C). (1)

Note that here we use a compact notation where the order
to the sub-systems is not the same in the unitaries and
in the states.

As intuition suggests, there exist tripartite quantum
states that cannot be prepared in the triangle network.
In fact, —I represents only a zero-measure subset of the
entire set of quantum states in H, as confirmed by count-
ing the free parameters [28]. In the following we discuss
the characterization of —I which is challenging, mainly
due to the fact it is a nonconvex set, as we will see below.

Preparability in the ITN.— We now present three di�er-
ent criteria that give necessary conditions satisfied by any
fl œ —I . They capture limits on classical and quantum
correlations for such states, as well as restriction on ranks.

We first present the criteria, and then apply them to
illustrative examples.

From Fig. 1a it appears clear that the amount of global
classical correlations for any fl œ —I must be limited.
Indeed, the three nodes do not share any common (i.e.,
tripartite) information. This intuition can be made formal
by considering the so-called tripartite mutual information
for quantum systems (TMI) [29]. It is defined as I3(A :
B : C) = I2(A : B) + I2(A : C) ≠ I2(A : BC), where
I2(X : Y ) = S(X) ≠ S(X|Y ) = S(X) + S(Y ) ≠ S(X, Y )
is the bipartite quantum mutual information, and S(·),
S(·|·), and S(·, ·) are the von Neumann usual, conditional,
and joint entropies, respectively. Then the TMI reads

I3(A : B : C) = S(ABC) + S(A) + S(B) + S(C)
≠ S(AB) ≠ S(AC) ≠ S(BC).

(2)

Since the von Neumann entropy is invariant under unitary
transformations and additive on tensor products, it follows
form Eq. (1) that S(fl) = S(Í–) + S(Í—) + S(Í“) for
any fl œ —I . Expanding the bipartite entropies as, e.g.,
S(AB) = S(trC Í—) + S(trC Í–) + S(Í“), we arrive at the
following:

Observation 1. I3(A : B : C) = 0 for any fl œ —I .

Moving beyond classical correlations, we now observe
that quantum correlations are also limited for states in
—I . From Fig. 1a, the intuition is that the entanglement
on the bipartition A|BC should be equal to the sum of
the entanglement in the reduced states, i.e., A|B and
A|C.

This can be shown formally by using an appropriate
entanglement measure. Recall that a quantity E [‡] is
called an entanglement measure, if (i) E [‡] vanishes for
separable states, (ii) it does not change under local choice



Thank you!


