Bell Nonlocality in Networks

Nicolas Brunner

ISQIC 1st April 2025

Sadra Boreiri

Marc-Olivier Renou (Paris)

Jean-Daniel Bancal (Paris)

Bora Ulu

Ivan Supic (Paris)

Armin Tavakoli (Lund)

Nicolas Gisin

Salman Beigi (Teheran)

Elisa Bäumer (IBM)

Pavel Sekatski

Antoine Girardin

Yu Cai (Singapore)

Bell 1964

Multiparty nonlocality (à la Mermin, GHZ, Svetlichny,...)

One common source

Independent sources

One common source

Convex sets Linear Bell inequalities

- → Adapted methods
- \rightarrow Good understanding

Independent sources

One common source

Convex sets Linear Bell inequalities

→ Adapted methods
→ Good understanding

Independent sources

Non-convex sets Non-linear Bell inequalities

This talk

- 1. Local (classical) correlations in networks \rightarrow N-locality
- 2. Genuine network quantum nonlocality
- 3. Topologically robust nonlocality

No inputs

No inputs \rightarrow Joint output distribution P(a,b,c)

No inputs

No inputs \rightarrow Joint output distribution P(a,b,c)

One common source \rightarrow any P(a,b,c) is possible classically

Triangle network

Triangle network

Definition: trilocal (i.e. classical) correlations

$$p(a, b, c) = \sum_{\alpha, \beta, \gamma} p(\alpha) p(\beta) p(\gamma) p(a|\beta, \gamma) p(b|\alpha, \gamma) p(c|\alpha, \beta)$$

Branciard, Gisin, Pironio 2010; Fritz 2012

Triangle network

There exist Q distributions P(a,b,c) that are non-trilocal !!

→ Q nonlocality without inputs

IDEA: embed CHSH test in triangle network

Fritz NJP 2012

A and B make CHSH test

A and B make CHSH test

A and B make CHSH test

If $p(\alpha,\beta|x,y)$ violates CHSH, then p(a,b,c) is non trilocal

Genuine network nonlocality

Very different from Fritz

All sources entangled / Symmetry / Entangled measurements

Renou, Boreiri, Bäumer, Brunner, Gisin, Beigi, PRL 2019

Genuine network nonlocality

Genuine network nonlocality

Token Counting

TC strategy

Each source distributes one token Each party outputs # of received tokens

TC distribution

P(a,b,c) s.t. P(a+b+c=3)=1

Token Counting

TC rigidity or "classical self-testing"

TC strategy

TC distribution

Renou & Beigi, PRL 2022

Sketch of proof

Local measurement

$$\begin{aligned} |\bar{0}\rangle &= |00\rangle \\ |\bar{2}\rangle &= |11\rangle \end{aligned} \begin{cases} |\bar{1}_0\rangle &= u \,|01\rangle + v \,|10\rangle \\ |\bar{1}_1\rangle &= v \,|01\rangle - u \,|10\rangle \end{aligned}$$

1. Coarse-grained distribution is TC

Sketch of proof

Local measurement

$$\begin{aligned} |\bar{0}\rangle &= |00\rangle \\ |\bar{2}\rangle &= |11\rangle \end{aligned} \begin{cases} |\bar{1}_0\rangle &= u \,|01\rangle + v \,|10\rangle \\ |\bar{1}_1\rangle &= v \,|01\rangle - u \,|10\rangle \end{aligned}$$

1. Coarse-grained distribution is TC

Local model must be TC

2. Original (fine-grained) Q distribution cannot be achieved

P(a,b,c) is incompatible with any trilocal model

Partial self-testing of RGB4

Sekatski, Boreiri, NB, PRL 2023

Topologically robust nonlocality

Certify nonlocality without knowing full network structure?

Topologically robust nonlocality

Certify nonlocality without knowing full network structure?

Boreiri, Krivachy, Girardin, Sekatski, Brunner PRL 2025

Large networks

Q Token Counting model on a ring

Large networks

Certify randomness in a_2 (independent of $a_4,...,a_N$)

Knowledge of small part of network is enough to certify NL

Summary

- 1. Local (classical) correlations in networks \rightarrow N-locality
- 2. Genuine network quantum nonlocality
- 3. Topologically robust nonlocality

Outlook 1: Beyond Bell

Network entanglement

Network steering

Kraft, Designolle, Ritz, Brunner, Gühne, Huber, PRA 2021 Navascues, Pozas, Rosset, Wolfe, PRL 2021

Jones, Uola, Supic, Brunner, Skrzypczyk PRL 2020

Thank you!