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Thermodynamics

The role of quantum information in thermodynamics — a topical
review, J. Goold et. al, J. Phys. A, 49 143001 (2016)

» [f physical theories were people, THERMODYNAMICS
would be the village witch!

» Einstein: "... the only theory with universal content, which
I am convinced that within the framework of applicability
of its basic concepts will never be overthrown"
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Thermodynamics

Towards the first law The First Law Ludwig Boltzmann (1844 -1906)
Statistical thermodynamics

Leonardo da Vinci (1452-1519): Julius Robert von Mayer (1814-1878) 1842 Heat and work =kLogW

P l 1818-11 1847
The French academy must refuse :,T:',ﬁ:,, :Zf,ca:f,:::[\z },22‘3,1‘;‘;3; 12:-, are forms of energy Sk log W
all proposals for perpetual motion Germain Henri Hess  (1802-1850) 1840

.
Prohibitio ante legem P
Energy is conserved: dU=dQ+dW

Steam age heat + work

added to system

Industrial revolution:
England becomes world power

Gibbs
1769 James Watt: patent on steam engine The Second Law

improving design of Thomas Newcomen

Josiah Willard Gibbs (1839-1903)
Rudolf Clausius (1822-1888)

1865: Entropy related to Heat: Papers in 1875,1878
Clausius inequality: dS 2dQT

Sidi Camot (1796-1832)

¥ | Thermodynamics according to Clausius:
Q, Miitary engineer in army Napoleon Clausius formulation:
Heat goes from high to low temperature Die Energie der Welt ist konstant;
1824: Reflexions sur la Puissance Motrice du Feu, et die Entropie der Welt strebt einen Maximum 2u.
sur les Machines Propres a Developer cette Puissance: Most common formulation:
The superiorty of England over France Entropy of a closed system cannot decrease The energy of the universe is constant;
is due to its skills to use the pawer of The entropy of the universe approaches a maximum.
heat"
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Thermodynamics

» Equilibrium thermodynamics formulates universally valid
statements based on phenomenological observation.

» Reforumulation of such statements is required when the
system is driven off from equilibrium.

» Stochastic fluctuations begin to impact the laws of
thermodynamics when we move away from equilibrium.

Koenig’s Diagram

\Y E T Vaiid Facts and Theoretical

s H P Solutions to Hard Problems

£.0.Koeria.J Chem Phy=3.29 1996)
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Statical Thermodynamics

» Thermodynamic quantities of interest: work W, heat Q and
entropy S.

» Classical statistical thermodynamics: W, Q, S along
phase-space trajectories can be defined.

» Quantum thermodynamics: Phase-space trajectories?

» Two-time measurements (initial and final) are employed.
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Maxwell's demon
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Quantum Thermodynamics

> New precision experimental techniques allow exploration of
the quantum foundations of thermodynamics

> Testing the limits set by theory, experimental designs to
build tiny engines (powered by a few quantum systems) &
measuring any feeble signal from it is possible.

T. M. Hoang ef al., Phys. Rev. Leit. (2018)

Work 20%
] \ 3

Time
Heat 80%
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Quantum Thermodynamics

On-Chip Maxwell’s Demon as an Information-Powered Refrigerator, J. V. Koski
et. al, Phys. Rev. Lett. 115, 260602 (2015)

e Maxwell’s demon faces the heat!! Jonne Koski and colleagues
designed the laboratory equivalent of the Maxwell Demon (at
Aalto University in Finland). The operation of the demon is di-
rectly observed as a temperature drop in the system; a simulta-
neous temperature rise in the demon too is recorded confirming
the thermodynamic cost.

This test of second law of thermodynamics confirmed that ma-
nipulating energy comes with a price!

APS/Alan Stoncbrker

Figure 1: An electronic version of a self-contained (autonomous) Maxwell demon. The “system” is a
single-electron box connected to an external potential. The demon monitors the charge on the box.
(Left) If an electron (blue) enters the box, the demon immediately traps it by applying a positive charge.
(Right) If the electron leaves the box, the demon repels it by applying a negative charge. This is the
electronic equivalent of the demon opening or shutting the door for fast/slow particles in Maxwell’s
original thought experiment
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Quantum Thermodynamics

Definitions

e For a quantum system in a state p and with a Hamiltonian H,
Internal Energy (i.e, average energy) is defined by (E) = U(p) =
Tr[p H].

e Average Heat: (Q) = [ Tr[p(t) H(t)]dt

Average work done: (W) = [ Tr[p(t) H(t)] dt

e Change in internal energy: (First law)
AU = Trlp(r) H(r)] — Tr[p(0) H(0)]
.
- / S (Txlp(t) H)) dt
= @+
e Entropy: S ="Tr[pn p]
g

Free Energy— relative to a thermal bath at temperature 7" :

F=U-TS
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Stochastic non-equilibrium Thermodynamics &

Fluctuation Relations

What are Fluctuation Relations?

» They describe non-equilibrium transformation of a
thermodynamic system.

» They constitute refinement of second law of
thermodynamics.

» They connect the probabilities for quantities like work,
heat, entropy to their counterparts in the time-reversed
set-up.

» They are derived based on the mathematical framework

describing the thermodynamic properties of microscopic
systems.
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This talk: Heat-exchange fluctuation relation

> Jarzynski-Wajcik heat-exchange fluctuation relation based
on Wigner function approach.

4 5 5 . . Quantum thermodynamics
Macroscopic thermodynamics Classical stochastic thermodynamics

—
Smaller......
-
< ;

g. blomolecular machines, single enzymes,
eg. Engines, refrigerators, Becilanotors
power plants eto.

Single ion machines, quantum dots,
cold quantum gases
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Overview

» Exchange-fluctuation theorems (XFT) involving
thermodynamic quantities like work, heat, entropy have
been proposed during the last two decades.

Nonequilibrium Equality for Free Energy Differences nequilbrium work relaion
P, R .78, 2630  Pblished 7 Apr 1997

<ef/m‘ > - ef;uF

. Jarzynski, PRL 78, 2690 (1997) P+o) |
Pto) _ 1o
59PRL Pe(—0)

. M. Hosagerl, Phys. Rev Lt Q015)

™

Time

Classical stochastic dynamics from time 0 to T
in contact with a heat bath at temperature = (k7)™

A R Usha Devi Quantum heat exchange fluctuation relation



Jarzynski-Wéjcik XFT

: ETTE wesk ending
VOLUME 92, NUMBER 23 PHYSICAL REVIEW LETTERS 11 TUNE 2

Classical and Quantum Fluctuation Theorems for Heat Exchange

Christopher Jarzynski*
Theoretical Division, T-13, MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

Daniel K. Wojeik
Center for Nonlinear Science, School of Physics, Georgia Institute of Technology, 837 Siate Street,
Atlanta, Georgia 30332-0430, USA
and Departmentof Newrphysioog Nencki Instit of Exprimentl Biog 3 Fasur e, 02-093 Warso, Poand
ved 22 October 2003; published 11 June 2004)

‘The statistics of heat ckchang: between two ck
different temperatures are shown to obey a fluct

sical or quantum finite systems initially prepared at
tion theore.
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Jarzynski-Wgjcik Heat Exchange Fluctuation

Theorem

» Jarzynski-Wojcik XFT:

"o = e o

kTs kTg
k : Boltzmann constant; Q : Amount of heat exchanged.
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Jarzynski-Wéjcik XFT

» Jarzynski-Wojcik XFT:

pr(+9Q)
n [pT(—Q)

» Quantifies the ratio of probability p,(+Q) of heat exchange
during interaction of systems A and B for a fixed time
duration 7, to its time-reversed counterpart p,(—Q).

1 1
} = ABQ, Aﬁzm—@
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Thermodynamic arrow of heat flow

» Clausius’ Inequality:

» () s=Heat flow into system A.
> IfTy<Tg= Qa>0.
» Heat is transferred from hot (B) to cold (A) system.

00
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Jarzynski-Wéjcik fluctuation theorem

» The Jarzynski-Wojcik XFT

p(+Q _ spo ag_ L 1
(o) = ¢ AP T T

quantifies the relative likelihood of heat exchange process
and its time-reversed twin, and it shows that heat flow from
a colder to a hotter object is exponentially suppressed.

» Strict directionality of thermodynamic heat flow forms the
foundational features of this XFT relation.
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Classical phase-space description for

Jarzynski-Wéjcik XFT relation

» Jarzynski and Wojcik considered two systems A and B,
phase-space evolution of which is governed by Hamiltonians

Ha(€a) and Hp(€p)

» &4, {p denote phase-space variables (e.g., positions and
momenta) of systems A and B.
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Classical phase-space description for

Jarzynski-Wéjcik XFT relation

» The systems A and B are initially in thermal equilibrium,
at temperatures T4, Ts.

» They are kept in contact with each other for a time
duration 7 via an interaction characterized by Hin(£4,EB).

» The interaction is switched ‘on’ at time ¢t = 0, and turned
‘off7 at t =7.

A R Usha Devi Quantum heat exchange fluctuation relation



Phase-space trajectory for forward/backward in

time

Statistical description of the arrow of time of a process

Y(!)
q
- iy
oy 0%
Y ‘y /1/ yo=y
. vin traje
me reversal

ctories (1) and §(r) = y*(r — 1) related by

> Phase space trajectory is denoted by the variable y

> [t is assumed that the phase-space evolution is
time-reversal symmetric = for every legitimate forward
trajectory y° to y7, there exists a time-reversed trajectory
}_’0 — y’T* where ¥ = yO*
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Classical phase-space description for

Jarzynski-Wéjcik XFT relation

» Net energy change A F4, A Ep during the interaction
represents the amount of heat transferred i.e.,
Q(y) = AEB ~—A EA.

» The probabilities of heat-exchange p,(Q), p,(—Q) obey the
Jarzynski-Wdjcik heat exchange fluctuation theorem in the
classical scenario:

pr(Q) _ as0 ppo L1

p-(—Q) ’ kTy kTg
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Jarzynski-Wézcik (JW) heat XFT in the quantum

realm (double projection measurement approach)

Enter quantum mechanics

» JW considered two discrete level systems ( in thermal
equilibrium at temperatures T4, Tg) and followed the
following steps:

> measure energies E, EP of the systems initially;
» allow them to interact weakly for a time duration 7;
» the interaction is turned off;

P> energies E}“, E}? of both the systems are measured.
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Double projection measurement method

» Energy conservation ( interaction between systems is
weak)= Eft + EP ~ E;‘ + E]]?.
> Heat transfer:

Qi*)f:EiB_EfB%E?_Ef

» JW heat XFT in the quantum scenario:

p(1))-16))
In | Z———5| =AB Qi
n[p(m‘ém)] hat
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Quantum trajectory?

Quantum phase space trajectories?

1
/ / -

([[{
AN

s

Phase space of

Phase Space: Harmonic Oscillator

Constant £
= orbits
ong /
E= kx
\ 2
/

the simple harmonic oscillator.

The “orb:

57 have constant energy.

2m

HoPhaseSpaceal

Classical Harmonic Oscillator

Quantum Harmonic Oscillator

System State Wigner Distribution
// P {\J
Wipa)
q q

Wignerai
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Wigner Function

JUNE 1, 1932 PHYSICAL REVIEW VOLUME 4

On the Quantum Correction For Thermodynamic Equilibrium

By E. Wioxex
Department of Physics, Princcton Unisersity
(Received March 14, 1932)
“The probabilty of a configuration i given in clasical theory by the Boltzmann
formula exp [~ V/KT] where Vis the potential energy
temperatures this of course also holds in quantum ¢

this configuration. For high
y. For lower temperatures,

position

momentum

however, a correction term has to be introduced, whi

n be developed into a power

series of h. The formula s developed for this correction by means ofa probabilty func-
tion and the resut discussed,

Wigner Distribution Function

wavefunction

J

4

Fourier transform

J W I+ % e-ip;'/h dy

Wignerai

A R Usha Devi

Quantum heat exchange fluctuation relation




Wigner Function

Expectation value of any operator A(G,p) — A(q, p):

(A(4,p)) = Trp A = / / dgdpW (g, p) Agp).

Statistical Mixture Coherent Superposition
P P ("Cat” State)

/

Wigner Distribution Quantum Coherence

aaaaaaaaaa
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Wigner Function

A Gallery of Wigner Functions

Vacuum state Displaced coherent state Thermal state

Photon added x=0:-9
coherent state

Squeezed vacuum state

== |
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Wigner Function

> Characteristic function ®(u,v) = Tr (pe’ (‘?uﬂa’“) of
quantum Gaussian state is Gaussian and hence Wigner
function is also a Gaussian ( positive )
(eg., coherent states, thermal states)
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Wigner Function of thermal state

N )
: Ta- _ b 1 2 52
» Hamiltonian: H = 5 + 5 mw*q

» Density operator of thermal state:
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Wigner Function of thermal state

> Wigner function of thermal state:

Wi(q,p) = % tanh <62w> exp [—fi tanh (57;w> H(q,p)]

L A )
27TVT QﬁOJVT

» Here vp = %coth (@) — symplectic eigenvalue.

» Internal energy U = hwvr.
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Our Approach

» Wigner distribution formalism has played an important role
in developing quantum phase-space formalism involving
non-commuting canonical observables g, p.

» It allows one to explore the connection between quantum
and classical formalisms.

» Our interest here is to derive the analogue of JW
heat-exchange fluctuation relation describing heat transfer
processes in the forward and the time-reversed dynamics of
two harmonic oscillators A, B (in thermal equilibrium at
temperatures T4, Tp) using the Wigner distribution
function formalism.
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JW XFT: Wigner function formalism

» The Wigner function W(£9) at time t = 0 of the two-mode
Gaussian thermal state pQ 5 = /’)%A ® [){,13:

WEY) = — 1 o [_ (HA(&%) +HB(§%))]

(2m)2vr,vry hwavr, — hwpvr,

> Here 50 (§A7§B) §A (QAva) 3 fg = (‘L&Pg)T are
classical phase—space columns at ¢ = 0 and

Tar = 9 2kTap)’
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JW XFT: Wigner function formalism

» Unitary evolution
1€ = exp |~ (Halé) + Ha(é5) + H(€) |
leads to
pis — pap = UE) plpUT ().
> Consequent transformation on the Wigner function:

W) — ().
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JW XFT: Wigner function formalism

» One thus obtains

W) =

Ha(h) , He(&R)
@) v, Y [_ <th VT, " hwp VT )]
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JW XFT: Wigner function formalism

» Heat probability distribution p,(Q) in terms of the Wigner
function:

pr(Q) = / AW () 6(Q — Q(€?))
= B0 / AEO W (€9) 5(Q + Q(EY))

— A2, (-Q)
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JW XFT: Wigner function formalism

ASW = SBW' - 5:‘\_.4
1 1

- hwprr,  hwavr,
2 tanh (M) 2 tanh (M>

2Ty 2kTh
hwp Aoy
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JW-like Heat Exchange Fluctuation Relation

JW Heat Exchange-Fluctuation Relation JW -like Heat Exchange-Fluctuation Relation
- 2 time measurement approach - Wigner function approach
n-(+0) P-(Q)
ln¥= ABQ In ) =Ap. Q
r-(=0) A
AB, = Bpo — Baw
- 1 B 1
Aﬁ = Tl;l - TA_I © hwpvr, hwavr,
2 tanh (J'T“f:) 2 tanh (ﬁ%)
- hwp - hwy.
High Low
Temp Temp

SEjeemn,  _acEiece
' Heat
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JW XFT: Wigner function approach

» In the high temperature limit % — 0 we get AB, = ApB.

» The JW XFT like heat exchange fluctuation relation
reduces to its classical analogue in this limit.
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Wigner function approach

PHYSICAL REVIEW E 100, 062119 (2019) Semiclassical work and quantum work identities in Weyl

representation

Computing characteristic functions of quantum work in phase space

DOL: 10.1103/PhysRevE.100.062119

» It is for the first time that we have derived a
Jarzynski-Wozcik like heat exchange fluctuation relation for
a system of two quantum harmonic oscillators.

A R Usha Devi Quantum heat exchange fluctuation relation



Discussions: Quantum phase-space trajectories??

» The phase-space trajectory concept of the Wigner-Weyl
formalism gets hindered by the underlying uncertainty
relation.

> However, it gets validated in the classical limit A — 0.

» This explains the reduction of Jarzynski-Woézcik heat
exchange fluctuation relation to its classical analogue in the
limit A — 0 where it is possible to have a legitimate
interpretation for the phase-space trajectories.

A R Usha Devi Quantum heat exchange fluctuation relation



Discussions: Equipartition theorem

» KEquipartition theorem plays a fundamental role in classical
statistical physics.

» Equipartition theorem of energy holds universally in
classical statistical physics as it neither depends on the
number of particles in the ensemble nor on the nature of
the potential acting on the particles.

A R Usha Devi Quantum heat exchange fluctuation relation



Discussions: Equipartition theorem

> For a system of one dimensional classical harmonic
oscillators, in thermal equilibrium at temperature T,
contribution to the average energy comes from mean kinetic
energy and mean potential energy i.e., (F) =kT.

» In the quantum scenario the average energies depend on
frequencies w4, wp — indicative of the nature of the
potential.

A R Usha Devi Quantum heat exchange fluctuation relation



Discussions: Equipartition theorem

> Recent papers on equipartition theorem in the quantum

realm:

SCIENTIFIC REPg}RTS

OPEN Partition of energy for a dissipative
quantum oscillator

P.Bialas, . Spiechowict2 ) buctka®

Ocoher 018 andE,= (&), where (e nd (&, e mean kinetc andpotential energiesperone degree of readom of
T i

especivay.The

kerel,

Journal of Physics A: Mathematical and Theoretical

LeTTER
Quantum analogue of energy equipartition theorem
P Bialas', J Spiec|

Publis

icz' @ and J tuczka
©201910P Publishing Ltd

ical and Theoretical Volume 52 Number 15
. Phys. A: Math. Theor. 52 15LT01

Journal of Physics A: Ma
Citation P Bialas

DOI 10.1088/1751-8121/ab03f2
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JournalofStatstical Physics (2020) 179:839-845
htpsJ/Gol0rg/10.1007/510855-020.02557:5.

Quantum Counterpart of Classical Equipartition of Energy
Jerzy tuczka'?,

Publshed onine: 16 May 2020
©The Author(s) 2020

Abstract
Itis shown that the recently proposed quantum ana
theorem for two paradigmatic, exactly solved

e and a
are composed

pative ha
of an arbitrary number of non-interacting or i
potentials and coupled to thermostat with arbi

subjected to any confining

pling strength.

Keywords Quantum systems - Equipartition of energy - Quantum analogue



Discussions: Moment generation function for

heat-exchange

» The moment generating function of heat distribution p,(Q)
in the Wigner-Weyl formalism and the Rényi divergence of
order-s:

<e—sA6wQ> = GT(A,BW;S):/deT(Q)e—sABwQ
- / A0 W (£0) e 45 AE")
- / dg® [W(g")]) ™ W)

= exp [(1 — 5) Ry (WTHWO)] ’
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Rényi divergence

> Note:

R () = 2w { fag e e

denotes the order-s Rényi divergence between the Wigner
functions W(£9) and W (£7).
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Moment generation function for heat-exchange

(double projective measurements)

» It has been shown (Wei B B 2018 Relations between heat
exchange and Rényi divergences Phys. Rev. E 97, 042107)
that heat exchange moment generating function and the
order-s Rényi divergences

Rs (P,[L)XBHleB) = 1i In {Tr[(PAB)l_S (pr)S]}

S

between the initial, final density operators p% By PR are
related:

G- (LB s) = / dQp-(Q) e 2 =exp [(1 — s) Ry (p35ll0As)]
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Moment generation function for heat-exchange

> In Wei’s theoretical derivation the double projection
measurement approach has been employed.
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Moment generation function for heat-exchange

(quantum)

» How different are R, (PB;BHPEB) (derived using double
projective measurement approach) and R (WOHWT) (the
Wigner phase-space formalism).

» Such study would shine light on the deviation of the double
projective measurement method and the Wigner-Weyl
phase-space approach.
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Relative entropy of two gaussian states

» A formula for Petz-Rényi (quantum) relative entropy of two
gaussian states p, o in the boson Fock space I'(C") has
been derived:

K. R. Parthasarathy, A pedagogical note on the computation
of relative entropy of two n-mode gaussian states, Infinite
Dimensional Analysis, Quantum Probability and
Applications ICQPRT 2021, 390, pp 55-72 (2022).

A R Usha Devi Quantum heat exchange fluctuation relation



Experimental measurement of Wigner function of

atoms in optical traps

10P Publishing Jourmalof Physis B: i,

.Ptys. B: AL Mol OpL Ptys 56 2022 104004 (159} P60 o0 10021061 4SS 000 nature physics

Direct measurement of the Wigner function e
; ; Time-of-flight quantum tomography of an

of atoms in an optical trap atominanoptical tweezer

Falk-Richard Winkelmann', Carrie A Weidner?0, Gautam Ramola', n=1) n=1) n=34

M.0.Brown®" 5. R.Muleady®"*’, W.J. Dworschack",
[ | &5 Lo Swan 2.1 Ry 02,0 Romro oarl® £ A R 0

Wolfgang Alt', Dieter Meschede' and Andrea Alberti*

 D-53115 Bonn, Germany

! Insit fir Angewandec Phys

* Quantum Enginering e s Physics Laoratory and Depariment of
Elctricaland Eectroni Enginecing, Univesit o Brstol, Bristol BSS 1FD, Unied Kingdom . U 0 quantumstates withinicshigh-dimensionalstate space. Quantum
d  forexample,
Email: abertiapuni-bonde
I Hereweshe

Abstract L I ! ! et
We present a scheme to directly probe the Wigner function of the motional state of a neutral | hich, -
atom confined in an optical trap. The proposed scheme relies on the well-established fact that M 0 8 states

the Wigner function at a given point (x, p) in phase space is proportional to the expectation |
value of the parity operator relative to that point. In this work, we show that the expectation
value of the parity operator can be directly measured using two auxiliary internal states of the|
atom: parity-even and parity-odd motional states are mapped to the two internal states of the
atom through a Ramsey interferometry scheme. The Wigner function can thus be measured
point-by-pointin phase space with a single, direct measurement of the internal state -
population. Numerical simulations show that the scheme is robust in that it applies not only to
deep, harmonic potentials but also to shallower, anharmonic traps.

quantum behaviour of massive levitated particles.
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Discussions: Correlated objects & JW XFT

PHYSICAL REVIEW E 92, 042113 (2015)

E i for correlated quantum systems

Sania Jevtic

Institut fiir Theoretische Physik, Appelstr. 2. Hannover, D-30167. Germany

Terry Rudolph and David Jennings
Controlled Quantum Dynamics Theory Group, Level 12, EEE. Imperial College London, London SW7 2AZ, United Kingdom

Yuji Hirono. Shojun Nakayama, and Mio Murao
Department of Physics, The University of Tokyo. Hongo 7-3-1 Bunkyo-ku Tokye 113-0033, Japan
(Received 17 May 2012; revised manuscript received 3 July 20153 published 6 October 2015)

We extend th i b thermal quant tems beyond the

of molecular chaos, i exchange d f correlated
The relation quantifies how the tendency for systems to equilibrate is modified in high-correlation environments.
In addition. a more abstract approach leads us to a “correlation fluctuation theorem™. Our results elucidate the
role of measurcment disturbance for such scenarios. We show a simple application by finding a semiclassical
maximum work theorem in the presence of correlations. We also present a toy example of qubit-qudit heat
exchange, and find that non-classical behaviour such as deterministic energy transfer and anomalous heat flow
are reflected in our exchange fluctuation theorem.

“Correlations result in a modification of the XFT relation and
— can enhance the probability of heat flowing in the backward
direction”
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Discussions: Experimental resusts on JW XFT

PHYSICAL REVIEW A 100, 042119 (2019)
PAL, MAHESH, AND AGARWALLA

@
the validity of th heat-exchangy 03 e —m
fluctuation relation in an NMR setup 02"
S
Soham Pl . 5. Mabesh. and Bijy Kamar Agarwalla 3
Pune 411008, India o1
7 2 2 24 Octo ) 1
® (Received 27 Novermber 2018:revised manuscript eceived  August 2019: published 24 October 2019) ERETRRT
We experimentally explore the validiy of the Jarzynski and Wojcik quantum beat-exchange flocuation ©q3 S
rlation by implementing an interferometric technique in liquid-state nuclear magnetc resonance setup and ol
sy _o2
w0 maodels—() the XY-couping model, contining an enrgy conscrvng incracton betwcen the qubs, and S
(i) the XX<oupling model—and aslyze th regmes of vlidity and vioatin of the fuctustion symmety To1
s preparedin ‘pins prpared i ocal
b o
conelaion st We sppor urexerimental indigs by providing cxctaalytcl s, Our 5 T o5 0 os
experimental approach is general and can be systemaically extended to study heat satstics for more complex. % /n sy Q/h (kHz)
outof quiibiom sny-body quatum sy

* o | St ]

1103

FIG. 4. (a-c) PDF of heat exchange for the XY model for dif-
temperatures of Fy: () (Bih) "
655Hz, and (c) (Bih)~" =

“Inclusion of any finite amount of correlation in the m.lﬂal state also leads o a

- ofthe ion symmetry and, reverses the direction.  red dots comespon to theoreical and experimental rsuls, respec-
of the heat flow against thetemperature bias, thereby providing an additional ~ tively. (&) Verification of Jarzynski and Wjcik heat XFT plots for
knob for controlling heat flow” n Il'-(Q)/,r.( Q)] as a function of Q/h for four F; temperatures.

regions indicate the simulated 5% pulse errors in the ex-
pcnm:nl (©) Table listing theorctical and experimentally obtained
Values for the slope A = By — 1/ksT; from (d). All other
parameters are the same as in Fig. 3
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Discussions: Beyond double projective
measurements

“Due o its inherent projective. mature, double projective. measurement

uuuuuuu

> A trajectory based approach employing dynamic Baysean
networks — derivation of a fully quantum fluctuation
theorem for heat exchange in a correlated bipartite thermal
system.
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Other approaches on JW XFT

PHYSICAL REVIEW E 98052106 (2018)

Heat distribution of a quantum harmonic oscillator

Tobias Denzlerand Evic Lutz
nstiaefor Theorrical Physics I, Uniersiyof Sitga, 70550 Sagar, Germany

®) (Reived 13y 2015 ublished 6 Nonember 18)
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dycompute the chantristic function of the et distrbution and show tht it erifies
the Jazynski-Wajik fucustion thorem. We frtber el the beat pobabily
thermlizaton times. both i the low- and the high tempratre re
cakulting it firs two cumulans,

st quation. We

ity in the it of ong
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corresponding to the level interval of the harmonic
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+ Narrowerthanthatof the classical distribution.
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Thermal relaxation of two harmonic oscillators

PHYSICAL REVIEW A 77. 032121 (2008)

Relaxation phenomena in a system of two harmenic oscillators

Antonia Chimonidou™ and E. C. G. Sudarshan
Center for Complex Quantum Systems, The University of Texas at Austin, I University Station C1600, Austin, Texas 78712, USA
(Received 29 May 2007: published 28 March 2008)

created when an interaction Hamiltonian is repeat-
for the

We study the process by which quantum correlations
ors for some ch;
case where the oscillator frequ nitial Maxwell-Boltzn
parts evolve to a new Maxwell-Boltzmann distribution through a series of transient Maxwell-Boltzma
distributions, or quasistationary. nonequilibrium states. Further, we discuss why the equilibriun reached when
the two oscillator frequencies are unequal is not a thermal one. All the calculations are exact and the results are
obtained through thout using perturbation theory.

ristic time interval. We show tha

edly applied o a system of two harmonic osci

the unn distributions of coupled

are equ.

ve process,

DOI: 10.1103/PhysRevA.77.032121 PACS number(s): 03.65.Yz, 67.25.du, 31.70.Hg, 67.30.H— E C G Sudarshan

it i it
21(0) © pf0) —— Te[Upp(0)07] & T [Upya(0) 1] — ... —— TefUpl(n- A0 Te[Upyf(n- )70,

PHYSICAL REVIEW VOLUME 129, NUMBER 4 15 FEBRUARY 1063

Relaxation Phenomena in Spin and Harmonic Oscillator Systems
Javistemna Ravet
Department of Physics, Brandeis University, Waltham, Massachusells
(Recived 2 August 1962

A i f i don by introducing interval r asd o stiring
bypothesis ion to spi i s discussed i some the e
suls azc obtained by cxact calculatons without applying perturbation theory as the systems considered
i lubl. Equations similr to jcal Bloch equati ived in
h obtained by feation of the theory
portional interaction, but also i ich plays an impartant
Toeinthe theay. It i shown that n the caseof a b i i it
tion relaxs to 8 inal equiibrivm st it
buti

A R Usha Devi Quantum heat exchange fluctuation relation



Quantum control of heat current

Chakraborty et. al, Quantum control of heat current, Phys. Rev. A 110, 042216 (2024) = TCG Crest
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unitary evolution

II—H

The unreasonable efficiency of |

mathematics in science is a gift we

0 . " T
- M unitary evolution V' M,
neither understand nor deserve. . I i i
] ’ Po Pr
p.(+0) _
o) T 4Pe

=06, Q As Science has become more abstract and remote from everyday
experience, the role of metaphor in our descriptions of the

world has become more central. The language that nature
/ / speaks, as Galileo long pointed out, is mathematics. The
language that ordinary human beings speak ....... is metaphor.

,, | o\

Lightman ends his discussion with another metaphor: “We are
blind men, imagining what we don’t see.”

- Freeman Dyson, The Scientist as Rebel

Thanks for your kind attention
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