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Sketch

▶ A bird's eye view of Thermodynamics

▶ Fluctuation Theorems

▶ Jarzynski-Wójcik heat-exchange relation

▶ Wigner function approach

▶ Discussion
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Thermodynamics

The role of quantum information in thermodynamics � a topical
review, J. Goold et. al, J. Phys. A, 49 143001 (2016)

▶ If physical theories were people, THERMODYNAMICS
would be the village witch!

▶ Einstein: "... the only theory with universal content, which
I am convinced that within the framework of applicability
of its basic concepts will never be overthrown"
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Thermodynamics
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Thermodynamics

▶ Equilibrium thermodynamics formulates universally valid
statements based on phenomenological observation.

▶ Reforumulation of such statements is required when the
system is driven o� from equilibrium.

▶ Stochastic �uctuations begin to impact the laws of
thermodynamics when we move away from equilibrium.
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Statical Thermodynamics

▶ Thermodynamic quantities of interest: work W, heat Q and
entropy S.

▶ Classical statistical thermodynamics: W, Q, S along
phase-space trajectories can be de�ned.

▶ Quantum thermodynamics: Phase-space trajectories?

▶ Two-time measurements (initial and �nal) are employed.
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Quantum Thermodynamics

▶ New precision experimental techniques allow exploration of
the quantum foundations of thermodynamics

▶ Testing the limits set by theory, experimental designs to
build tiny engines (powered by a few quantum systems) &
measuring any feeble signal from it is possible.
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Quantum Thermodynamics

On-Chip Maxwell's Demon as an Information-Powered Refrigerator, J. V. Koski
et. al, Phys. Rev. Lett. 115, 260602 (2015)
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Quantum Thermodynamics
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Stochastic non-equilibrium Thermodynamics &
Fluctuation Relations

What are Fluctuation Relations?

▶ They describe non-equilibrium transformation of a
thermodynamic system.

▶ They constitute re�nement of second law of
thermodynamics.

▶ They connect the probabilities for quantities like work,
heat, entropy to their counterparts in the time-reversed
set-up.

▶ They are derived based on the mathematical framework
describing the thermodynamic properties of microscopic
systems.
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This talk: Heat-exchange �uctuation relation

▶ Jarzynski-Wójcik heat-exchange �uctuation relation based
on Wigner function approach.
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Overview

▶ Exchange-�uctuation theorems (XFT) involving
thermodynamic quantities like work, heat, entropy have
been proposed during the last two decades.
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Jarzynski-Wójcik XFT
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Jarzynski-Wójcik Heat Exchange Fluctuation
Theorem

▶ Jarzynski-Wójcik XFT:

ln

[
pτ (+Q)

pτ (−Q)

]
= △βQ, △β =

1

k TA
− 1

k TB

k : Boltzmann constant; Q : Amount of heat exchanged.
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Jarzynski-Wójcik XFT

▶ Jarzynski-Wójcik XFT:

ln

[
pτ (+Q)

pτ (−Q)

]
= △βQ, △β =

1

k TA
− 1

k TB

▶ Quanti�es the ratio of probability pτ (+Q) of heat exchange
during interaction of systems A and B for a �xed time
duration τ , to its time-reversed counterpart pτ (−Q).

A R Usha Devi Quantum heat exchange �uctuation relation



Thermodynamic arrow of heat �ow

▶ Clausius' Inequality:

QA

(
1

TA
− 1

TB

)
≥ 0

▶ QA=Heat �ow into system A.

▶ If TA < TB ⇒ QA > 0.

▶ Heat is transferred from hot (B) to cold (A) system.
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Jarzynski-Wójcik �uctuation theorem

▶ The Jarzynski-Wójcik XFT

pτ (+Q)

pτ (−Q)
= e△βQ, △β =

1

k TA
− 1

k TB

quanti�es the relative likelihood of heat exchange process
and its time-reversed twin, and it shows that heat �ow from

a colder to a hotter object is exponentially suppressed.

▶ Strict directionality of thermodynamic heat �ow forms the
foundational features of this XFT relation.
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Classical phase-space description for
Jarzynski-Wójcik XFT relation

▶ Jarzynski and Wójcik considered two systems A and B,
phase-space evolution of which is governed by Hamiltonians
HA(ξA) and HB(ξB)

▶ ξA, ξB denote phase-space variables (e.g., positions and
momenta) of systems A and B.

A R Usha Devi Quantum heat exchange �uctuation relation



Classical phase-space description for
Jarzynski-Wójcik XFT relation

▶ The systems A and B are initially in thermal equilibrium,
at temperatures TA, TB.

▶ They are kept in contact with each other for a time
duration τ via an interaction characterized by Hint(ξA, ξB).

▶ The interaction is switched `on' at time t = 0, and turned
`o�' at t = τ .
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Phase-space trajectory for forward/backward in
time

Statistical description of the arrow of time of a process

▶ Phase space trajectory is denoted by the variable y

▶ It is assumed that the phase-space evolution is
time-reversal symmetric ⇒ for every legitimate forward
trajectory y0 to yτ , there exists a time-reversed trajectory
ȳ0 = yτ∗ where ȳτ = y0∗.
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Classical phase-space description for
Jarzynski-Wójcik XFT relation

▶ Net energy change ∆EA, ∆EB during the interaction
represents the amount of heat transferred i.e.,
Q(y) = ∆EB ≈ −∆EA.

▶ The probabilities of heat-exchange pτ (Q), pτ (−Q) obey the
Jarzynski-Wójcik heat exchange �uctuation theorem in the
classical scenario:

pτ (Q)

pτ (−Q)
= e∆βQ, △β =

1

k TA
− 1

k TB
.
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Jarzynski-Wózcik (JW) heat XFT in the quantum
realm (double projection measurement approach)

Enter quantum mechanics

▶ JW considered two discrete level systems ( in thermal
equilibrium at temperatures TA, TB) and followed the
following steps:
▶ measure energies EA

i , E
B
i of the systems initially;

▶ allow them to interact weakly for a time duration τ ;
▶ the interaction is turned o�;
▶ energies EA

f , EB
f of both the systems are measured.
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Double projection measurement method

▶ Energy conservation ( interaction between systems is
weak)⇒ EA

i + EB
i ≈ EA

f + EB
f .

▶ Heat transfer:

Qi→f = EB
i − EB

f ≈ EA
f − EA

i

▶ JW heat XFT in the quantum scenario:

ln

[
p
(
|i⟩ τ−→|f⟩

)
p
(
|f⟩ −τ−→|i⟩

)
]
= △βQi→f.
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Quantum trajectory?
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Wigner Function
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Wigner Function

Expectation value of any operator Â(q̂, p̂) −→ A(q, p):

⟨Â(q̂, p̂)⟩ = Trρ̂ A =

∫ ∫
dq dpW (q, p)A(q, p).
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Wigner Function
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Wigner Function

▶ Characteristic function Φ(u, v) = Tr
(
ρ̂ ei (q̂ u+p̂ v

)
of

quantum Gaussian state is Gaussian and hence Wigner
function is also a Gaussian ( positive )
(eg., coherent states, thermal states)
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Wigner Function of thermal state

▶ Hamiltonian: Ĥ = p̂2

2m + 1
2 mω2 q̂2

▶ Density operator of thermal state:

ρ̂ =
e−β Ĥ

Z(β)
, β = (kB T )−1

Z(β) = Tr
(
e−β Ĥ

)
= e−βℏω/2(1− e−βℏω)−1.
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Wigner Function of thermal state

▶ Wigner function of thermal state:

W (q, p) =
1

πℏ
tanh

(
βℏω
2

)
exp

[
− 2

ℏω
tanh

(
βℏω
2

)
H(q, p)

]
=

1

2π νT
exp

[
−H(q, p)

2 ℏω νT

]
▶ Here νT = 1

2 coth
(
βℏω
2

)
−→ symplectic eigenvalue.

▶ Internal energy U = ℏω νT .
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Our Approach

▶ Wigner distribution formalism has played an important role
in developing quantum phase-space formalism involving
non-commuting canonical observables q̂, p̂.

▶ It allows one to explore the connection between quantum
and classical formalisms.

▶ Our interest here is to derive the analogue of JW
heat-exchange �uctuation relation describing heat transfer
processes in the forward and the time-reversed dynamics of
two harmonic oscillators A, B (in thermal equilibrium at
temperatures TA, TB) using the Wigner distribution
function formalism.
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JW XFT: Wigner function formalism

▶ The Wigner function W (ξ 0) at time t = 0 of the two-mode
Gaussian thermal state ρ̂ 0

AB = ρ̂ 0
TA

⊗ ρ̂ 0
TB
:

W (ξ 0) =
1

(2π)2 νTA
νTB

exp

[
−
(
HA(ξ

0
A)

ℏωAνTA

+
HB(ξ

0
B)

ℏωBνTB

)]
▶ Here ξ 0 = (ξ 0

A, ξ
0
B)

T , ξ 0
A = (q 0

A, p
0
A)

T , ξ 0
B = (q 0

B, p
0
B)

T are
classical phase-space columns at t = 0 and

νTA,B
=

1

2
coth

(
ℏωA,B

2 k TA,B

)
.
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JW XFT: Wigner function formalism

▶ Unitary evolution

Û(ξ̂τ ) = exp

[
− i τ

ℏ

(
ĤA(ξ̂

τ
A) + ĤB(ξ̂

τ
B) + Ĥint(ξ̂

τ )
)]

leads to

ρ 0
AB −→ ρ τ

AB = Û(ξ̂τ ) ρ 0
AB Û †(ξ̂τ ).

▶ Consequent transformation on the Wigner function:

W (ξ0) −→ W (ξτ ).
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JW XFT: Wigner function formalism

▶ One thus obtains

W (ξτ ) =
1

(2π)2 νTA
νTB

exp

[
−
(
HA(ξ

τ
A)

ℏωA νTA

+
HB(ξ

τ
B)

ℏωB νTB

)]
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JW XFT: Wigner function formalism

▶ Heat probability distribution pτ (Q) in terms of the Wigner
function:

pτ (Q) =

∫
dξ0W (ξ 0) δ(Q−Q(ξ 0))

= e△βω Q
∫

dξ̄ 0W (ξ̄ 0) δ(Q+Q(ξ̄ 0))

= e△βω Q pτ (−Q).
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JW XFT: Wigner function formalism
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JW-like Heat Exchange Fluctuation Relation
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JW XFT: Wigner function approach

▶ In the high temperature limit ℏω
kT → 0 we get △βω → △β.

▶ The JW XFT like heat exchange �uctuation relation
reduces to its classical analogue in this limit.
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Wigner function approach

▶ It is for the �rst time that we have derived a
Jarzynski-Wózcik like heat exchange �uctuation relation for
a system of two quantum harmonic oscillators.
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Discussions: Quantum phase-space trajectories??

▶ The phase-space trajectory concept of the Wigner-Weyl
formalism gets hindered by the underlying uncertainty
relation.

▶ However, it gets validated in the classical limit ℏ → 0.

▶ This explains the reduction of Jarzynski-Wózcik heat
exchange �uctuation relation to its classical analogue in the
limit ℏ → 0 where it is possible to have a legitimate

interpretation for the phase-space trajectories.
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Discussions: Equipartition theorem

▶ Equipartition theorem plays a fundamental role in classical
statistical physics.

▶ Equipartition theorem of energy holds universally in
classical statistical physics as it neither depends on the
number of particles in the ensemble nor on the nature of
the potential acting on the particles.
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Discussions: Equipartition theorem

▶ For a system of one dimensional classical harmonic
oscillators, in thermal equilibrium at temperature T ,
contribution to the average energy comes from mean kinetic
energy and mean potential energy i.e., ⟨E⟩ = k T .

▶ In the quantum scenario the average energies depend on
frequencies ωA, ωB � indicative of the nature of the
potential.
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Discussions: Equipartition theorem

▶ Recent papers on equipartition theorem in the quantum
realm:
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Discussions: Moment generation function for
heat-exchange

▶ The moment generating function of heat distribution pτ (Q)
in the Wigner-Weyl formalism and the Rényi divergence of
order-s:〈
e−s△βω Q

〉
= Gτ (△βω; s) =

∫
dQ pτ (Q) e−s△βω Q

=

∫
dξ0W (ξ 0)

{∫
dQ e−s△βω Qδ(Q−Q(ξ 0))

}
=

∫
dξ0W (ξ 0) e−s△βω Q(ξ 0)

=

∫
dξ0

[
W (ξ 0)

]1−s
[W (ξ τ )]s

= exp
[
(1− s)Rs

(
W τ ||W 0

)]
,
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Rényi divergence

▶ Note:

Rs

(
W 0||W τ

)
=

1

1− s
ln

{∫
dξ0

[
W (ξ 0)

]1−s
[W (ξ τ )]s

}
denotes the order-s Rényi divergence between the Wigner
functions W (ξ 0) and W (ξ τ ).
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Moment generation function for heat-exchange
(double projective measurements)

▶ It has been shown (Wei B B 2018 Relations between heat
exchange and Rényi divergences Phys. Rev. E 97, 042107)
that heat exchange moment generating function and the
order-s Rényi divergences

Rs

(
ρ 0
AB||ρ τ

AB

)
=

1

1− s
ln

{
Tr[(ρ τ

AB)
1−s (

ρ 0
AB

)s
]
}

between the initial, �nal density operators ρ0AB, ρ
τ
AB are

related:

Gτ (△β; s) =

∫
dQ pτ (Q) e−s△βQ = exp

[
(1− s)Rs

(
ρ 0
AB||ρ τ

AB

)]
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Moment generation function for heat-exchange

▶ In Wei's theoretical derivation the double projection
measurement approach has been employed.
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Moment generation function for heat-exchange
(quantum)

▶ How di�erent are Rs

(
ρ 0
AB||ρ τ

AB

)
(derived using double

projective measurement approach) and Rs

(
W 0||W τ

)
(the

Wigner phase-space formalism).

▶ Such study would shine light on the deviation of the double
projective measurement method and the Wigner-Weyl
phase-space approach.
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Relative entropy of two gaussian states

▶ A formula for Petz-Rényi (quantum) relative entropy of two
gaussian states ρ, σ in the boson Fock space Γ(Cn) has
been derived:
K. R. Parthasarathy, A pedagogical note on the computation

of relative entropy of two n-mode gaussian states, In�nite
Dimensional Analysis, Quantum Probability and
Applications ICQPRT 2021, 390, pp 55-72 (2022).
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Experimental measurement of Wigner function of
atoms in optical traps
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Discussions: Correlated objects & JW XFT
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Discussions: Experimental resusts on JW XFT
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Discussions: Beyond double projective
measurements

▶ A trajectory based approach employing dynamic Baysean
networks → derivation of a fully quantum �uctuation
theorem for heat exchange in a correlated bipartite thermal
system.
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Other approaches on JW XFT
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Thermal relaxation of two harmonic oscillators
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Quantum control of heat current
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