Entangled Qubit Sources for Quantum Secure Communication and Imaging

Bhaskar Kanseri

Experimental Quantum Interferometry and Polarization (EQUIP), Department of Physics and Optics and Photonics Center (OPC), Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India

ISQIC-2025, TCG CREST

Myriad of Applications of Quantum Communication 2

OL 49, 1381 (2024)

ISQIC-2025, TCG CREST

Phy. Scr. 98, 65115 (2023)

Property	Prepare and Measure QKD	Entanglement QKD
Channel	Fibre and Free-space	Fibre and Free-space
Length (between nodes)	100km	Can be more
Source	Weak coherent pulses	True quantum (SPDC)
Key rate at 50km	In 10-100kbps	In 5-50 kbps
Security of QKD	Good	Higher (entanglement distribution)
Type of Nodes	Trusted (Secure) Nodes	Can Lead to Trusted Node-free
Hacking	Need countermeasures	Even hacked source produces secure keys
Protocols	DPS, BB84, COW	E91, BBM92
Future Applications	QKD	<u>QKD, Quantum Teleportation, Sensing,</u> <u>Absolute Metrology, Repeaters, etc.</u>

DPS QKD demonstrations on commercial grade fiber (Innovations in design and optimization of parameters)

2022 Intercity QKD for 100km fiber

Trusted node free QKD for 380km fiber

2023

Fiber optic link distance: 100 km Optical loss: 25-26 dB Tx (Alice): Prayagraj Rx (Bob): Vindhyanchal

QBER: Less than 9% Sifted key rate: Up to 10 kbps

Experiment	Clock rate	QBER	Secure KR	Channel length	Year
Wang et al. ²⁸	2 GHz	3.45%	N.A. ^a	260 km	2012
Diamanti et al. ³¹	1 GHz	3.40%	166 bps	100 km	2006
Takesue et al. ³⁰	10 GHz	> 4%	12.1 bps	200 km	2007
Takesue et al. ³⁰	1 GHz	> 2.3%	17 kbps	105 km	2007
Zhang et al. ⁴²	2 GHz	3%	1.3 Mbps	10 km	2009
Shibata et al. ^{b33}	1 GHz	2.93%	0.03 bps	336 km	2014
This work ^c	2.5 GHz	1.48% (2.36%)	0.11 bps (192.7 bps)	380 km (265 km)	2023

N. Pathak, S. Chaudhury, Sangeeta, **B. Kanseri**,

Scientific Reports 13, 15868 (2023) 5

Spontaneous Parametric Down Conversion

Entangled Photon Sources

NIR wavelength @810nm **Using PPKTP**

All-guided wave @1550nm **Using PPLN**

BTF

Fibre entanglement distribution and QKD in lab

Field test of entanglement-based fiber QKD Underground fiber within IITD campus

Total length: Field: 7.8 km Lab spool : ~10 km Total Loss: -6.5dB + (-4.5dB)

Key rate achieved so far: 2kbps, QBER<3%

Entanglement based QKD is compatible with field deployed telecom grade fiber

Nishant et al, Frontiers in optics (2024)

Need to co-propagate signals through the same fiber

Multiplexing of quantum and classical signals in same fiber: Both signals pass through identical ambient conditions

Compensation of polarization and time delay fluctuations High precision clock synchronization Reduced infrastructure cost and increased bandwidth

Both quantum channels must be in C band for reduced losses and use of same off-the-shelf components

Forward and Backward Raman Scattering in Fiber

Coexistence of C Band Quantum & Classical Signals

S>2 for P_{classical} ≈ -16.82 dBm

SKR ~175bps for powers –20.0 dBm

Up to -12.2 dBm classical power can be propagated simultaneously with entanglement based QKD leading to multiple classical channels with standard internet traffic **21 dB higher than standard classical comm. power requirement**

N. Pathak, A, Dulta, and B. Kanseri, Submitted (2024)

Motivation for using partial coherence

Application of partially coherent (spatially) photons for free-space quantum communication and imaging/sensing

"The detection probability of the two-photon field is higher, and thus less susceptible to turbulence, if the field is produced by a partially coherent pump beam."

Qiu et al, Appl. Phys. B 108, 683 (2012), New Scientist, 9 June 2021

Partially-coherent optical beam

Gaussian Schell Model pump beam (Spatial coherence)

Applications of optical coherence:

Astrophysics, optical communication, data encoding and transmission, imaging (optical coherence tomography), and microscopy, beam propagation in random media, beam shaping, quantum optics and information

Optical Coherence and Quantum Optics, L. Mandel and E. Wolf (1995)

Generation and characterization of GSM pump beam

P. Sharma, S. Rao and B. Kanseri, Physica Scripta 98, 65115 (2023)

Tunable polarization and partial coherence source

Use of van-Cittert Zernike theorem for DOC tunability

B. Kanseri, H. Kumar, Optik 206, 163747 (2020)

Experimental Results: Biphoton Profiles

B. Kanseri and P. Sharma, JOSA B 45, 4815 (2020)
P. Sharma, S. Rao and B. Kanseri, Physica Scripta 98, 65115 (2023)

Towards Partially Coherent Qubits

Type II SPDC Biphoton Profile

Double-slit interference using signal beam of single photons

P. Sharma, S. Rao and B. Kanseri, Physica Scripta 98, 65115 (2023)

Conditional probability distribution

Transfer for spatial coherence properties in SPDC process from pump to down converted photons

Demonstrates double-slit interference with single-photons is affected by partial spatial coherence of photons

P. Sharma, S. Rao and B. Kanseri, Physica Scripta 98, 65115 (2023)

Effect of partially coherent pump on Entanglement

PS, NKP and BK, **Results in Physics 27, 104506 (2021)**

Entanglement Recovery in Partially Coherent Qubits

Multiple spatial-mode entanglement generation and single mode detection

SR, PS, and BK, Optics Letters 49, 1381-84 (2024)

Ghost interference with partially coherent light

Y. Cai et al, Optics Letters 23, 2716 (2004)I. Vidal et al, Optics Letters 34, 1450 (2009)

Nonlocal interference with partially coherent qubits

Effect of unknown object is acquired by measuring the intensity correlations

SR, and BK, Submitted (2024)

A=0.99, 0.65, 0.4, 0.1

Nonlocal interference with partially coherent qubits

We can achieve high visibility and quality simultaneously with partial coherence features

Exploring Applications in Quantum Imaging

SR, and BK, Submitted (2024)

Hybrid QKD and Network Architecture Way forward to Quantum Internet

Summary

Entangled photon sources

Fibre based QKD in field

Partially coherent qubit

Coherence and entanglement

Recovery of entanglement

Application: Quantum Imaging

Experimental Quantum Interferometry and Polarization (EQUIP) group

Group Leader: Dr. Bhaskar Kanseri

Hemant K. Singh, Preeti Sharma, Sakshi, Nishant K. Pathak, Manisha, Sangeeta, Sohan Singh, Abhay K, Suraj

bkanseri@physics.iitd.ac.in https://web.iitd.ac.in/~bkanseri

