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➢ In Quantum world, however, the 
complementarity principle holds. 
There are certain pairs of 
complementary properties that 
cannot all be observed or measured 
simultaneously.

➢ First, pointed out by Niels Bohr’s in 
1927 at the Como Conference in 
Italy.

❖ N. Bohr, The Quantum Postulate and the Recent Development of 
Atomic Theory, Nature 121, 580–590 (1928).

❖ De Gregorio, Bohr’s way to defining complementarity, Stud. Hist. 
Philos. Sci. B 45, 72–82 (2014).



Complementarity: Example

✓ Path information and interference visibility in the 
double-slit experiment

✓ Non-commuting observables such as position and momentum, or 
spin components along different axes [1-3]

1. E. B. Davies, Quantum Theory of Open Systems (Academic Press, 1976) 
2. P. J. Lahti, Uncertainty and complementarity in axiomatic quantum mechanics, Int. J. Theo. Phys. 19, 789–842 (1980)
3. P. Busch, Indeterminacy relations and simultaneous measurements in quantum theory, Int. J. Theo. Phys. 24, 63–92 (1985)



Joint measurement of incompatible observables

✓ The development of generalized measurements, formalized via positive operator-valued measures 
(POVMs), demonstrates that incompatible observables can, in fact, be jointly measured – albeit with 
an inherent degree of fuzziness or imprecision [1-2]

1. P. Mittelstaedt, A. Prieur, and R. Schieder, Unsharp particle-wave duality in a photon split-beam experiment, Found. Phys.17, 891–903 (1987)
2. P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer Berlin Heidelberg, 1996)



Joint measurement of incompatible observables

✓ The development of generalized measurements, formalized via positive operator-valued measures 
(POVMs), demonstrates that incompatible observables can, in fact, be jointly measured – albeit with 
an inherent degree of fuzziness or imprecision [1-2]

✓ Spin-1/2 system

1. P. Mittelstaedt, A. Prieur, and R. Schieder, Unsharp particle-wave duality in a photon split-beam experiment, Found. Phys.17, 891–903 (1987)
2. P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer Berlin Heidelberg, 1996)
3. P. Busch, Unsharp reality and joint measurements for spin observables, Phys. Rev. D 33, 2253 (1986)



Joint measurement of incompatible observables

✓ The development of generalized measurements, formalized via positive operator-valued measures 
(POVMs), demonstrates that incompatible observables can, in fact, be jointly measured – albeit with 
an inherent degree of fuzziness or imprecision [1-2]

✓ Spin-1/2 system

1. P. Mittelstaedt, A. Prieur, and R. Schieder, Unsharp particle-wave duality in a photon split-beam experiment, Found. Phys.17, 891–903 (1987)
2. P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer Berlin Heidelberg, 1996)
3. P. Busch, Unsharp reality and joint measurements for spin observables, Phys. Rev. D 33, 2253 (1986)



Joint measurement of incompatible observables

✓ The development of generalized measurements, formalized via positive operator-valued measures 
(POVMs), demonstrates that incompatible observables can, in fact, be jointly measured – albeit with 
an inherent degree of fuzziness or imprecision [1-2]

✓ Spin-1/2 system

1. P. Mittelstaedt, A. Prieur, and R. Schieder, Unsharp particle-wave duality in a photon split-beam experiment, Found. Phys.17, 891–903 (1987)
2. P. Busch, P. J. Lahti, and P. Mittelstaedt, The Quantum Theory of Measurement (Springer Berlin Heidelberg, 1996)
3. P. Busch, Unsharp reality and joint measurements for spin observables, Phys. Rev. D 33, 2253 (1986)

Spin Observables along X and  
Y directions are compatible up-
to the sharpness value 𝛌=1/√2, 
while observables along X,Y,Z 
are compatible up-to 𝛌=1/√3



Quantum incompatible: other facets

✓ More recently, measurement incompatibility has been shown to be 
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✓ More recently, measurement incompatibility has been shown to be 
intimately connected to other nonclassical phenomena, such as Bell 
nonlocality and Einstein-Podolsky-Rosen steering [1-2]. 

✓ Measurement incompatibility also plays a critical role in quantum 
technologies, underpinning key protocols in quantum key distribution, 
state discrimination, and randomness certification [3]. 

✓ This recognition has motivated a deeper exploration of incompatibility, 
including scenarios involving multiple copies of a quantum system per 
experimental run [4]. 

1. N. Brunner et al, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014)
2. R. Uola et al, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020)
3. O. Gühne et al, Colloquium: Incompatible measurements in quantum information science, Rev. Mod. Phys. 95, 011003 (2023)
4. C. Carmeli et al, Quantum Incompatibility in Collective Measurements, Mathematics 4, 54 (2016)
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X, Y and Z observables become 
two-copy compatible up-to the 

sharpness parameter value 
𝛌=√3/2
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Analysis of the advantage in antiparallel case 

✓ The framework of generalized probabilistic theories (GPTs) offers valuable insight.

✓ I. Namioka and R. Phelps, Pac. J. Math. 31, 469–480 (1969)
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Analysis of the advantage in antiparallel case 

✓ The framework of generalized probabilistic theories (GPTs) offers valuable 
insight.

POPT

Entangled 

Separable
✓ H. Barnum et al, Phys. Rev. Lett. 104, 140401 (2010)
✓ S. G. Naik et al, Phys. Rev. Lett. 128, 140401 (2022)
✓ R. K. Patra et al, Phys. Rev. Lett. 130,110202 (2023)
✓ Bhattacharya et al. Phys. Rev. Research 2, 012068(R) (2020)
✓ Saha et al. Ann. Phys. (Berlin) 532, 2000334 (2020)
✓ Banik et al. Phys. Rev. A 100, 060101(R) (2019)
✓ Banik et al. Phys. Rev. A 92, 030103(R) (2015) 
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This configuration offers an 
advantage over the parallel 
configuration for the joint 
measurability of {X, Y, Z} 

whenever μ > √3 − 1



Conclusions

✓ We demonstrate that the antiparallel configuration enables exact simultaneous 
prediction of three mutually orthogonal spin components—an advantage 
unattainable in the parallel case. 

✓ As we show, this enhanced measurement compatibility in antiparallel configuration 
is better appreciated within the framework of generalized probabilistic theories, 
which allow a broader class of composite structures while preserving quantum 
descriptions at the subsystem level.

✓ Furthermore, this approach extends the study of measurement incompatibility to 
more general configurations beyond the parallel and antiparallel cases only, 
providing deeper insight into the boundary between physical and unphysical 
quantum state evolutions.

✓ At present we are extending this concept to a finite subset of states so that the 
reported advantage can be experimentally verified (not discussed in this talk). 



“Relations between authors and referees are, of course, almost 
always strained. Authors are convinced that the malicious 
stupidity of the referee is alone preventing them from laying 
their discoveries before an admiring world. Referees are 
convinced that authors are too arrogant and obtuse to 
recognize blatant fallacies in their own reasoning, even when 
these have been called to their attention with crystalline 
lucidity. All physicists know this, because all physicists are both 
authors and referees, but it does no good. The ability of one 
person to hold both views is an example of what Bohr called 
complementarity.’’
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