International Symposium on Quantum Information and Communication (ISQIC), 2025 CQUERE, TCG CREST

Kolkata, India

Time: its strange aspects and how they reflect on quantum mechanics

Time: its strange aspects and how they reflect on quantum mechanics

I'll give a quantum description of time based on conditional probability amplitudes

Time: its strange aspects and how they reflect on quantum mechanics

I'll give a quantum description of time based on conditional probability amplitudes

... and an idea for a relativistic generalization: q spacetime

WHAT is time?

WHAT is time?

In physics?

In physics?

Time is what is measured by a clock

In physics?

Time is what is measured by a clock

... but, what's a clock?!

In physics?

Time is what is measured by a clock

... but, what's a clock?!

... or a "coordinate"

something that "measures" the distance between events

WHAT is time?

In physics?

Time is what is measured by a clock

... but, what's a clock?!

... or a "coordinate"

something that "measures" the distance between events

the two **main** meanings of "time" in physics

other meanings?!

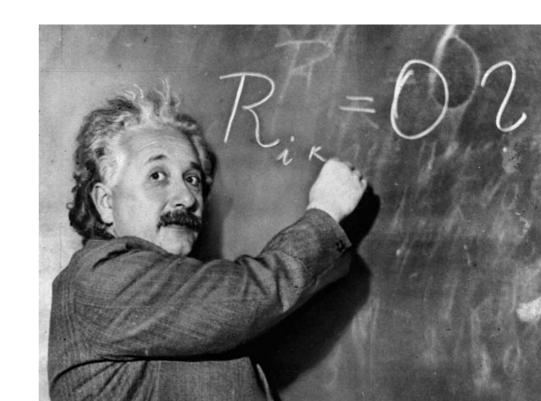
Table 2.1: Times.

Time notion	Property	Example	Form
Natural language time	memory	brain	?
Time-with-a-present	present	biology	R
Thermodynamical time	direction	thermodynamics	A
Newtonian time	unique	newtonian mechanics	M
Special relativistic time	external	special relativity	M^3
Cosmological time	spatially global	cosmological time	m
Proper time	temporally global	world line proper time	m^{∞}
Clock time	metric	clocks in GR	c
Parameter time	one dimensional	coordinate time	L^{∞}
No-time	none	quantum gravity	none

[Rovelli, "quantum gravity"]

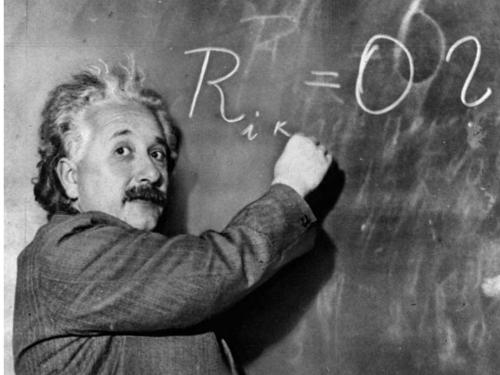
Oclock time Laproper time VZMXA Oquantum time a parameter O coordinate time X @ time of arrival @Anthropic time B Waw time >NO time and menory O "time" time DLeibni

The present "exists", thepast and the future don't



The present "exists", thepast and the future don't

rather: past-present-future have different degrees of existence (whatever that means)

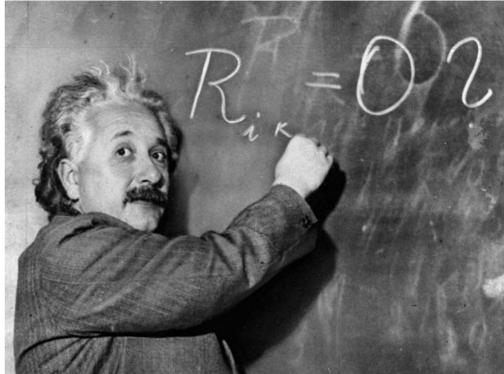


special relativity

NO!

The present "exists", thepast and the future don't

rather: past-present-future have different degrees of existence (whatever that means)

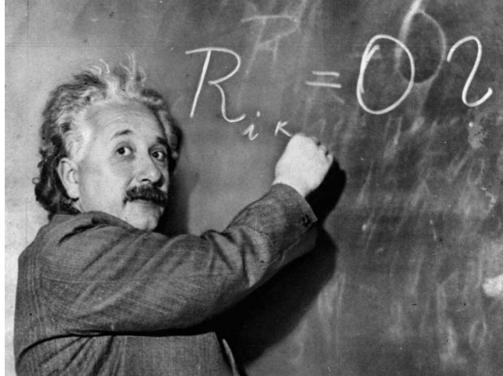


The present "exists", thepast and the future don't

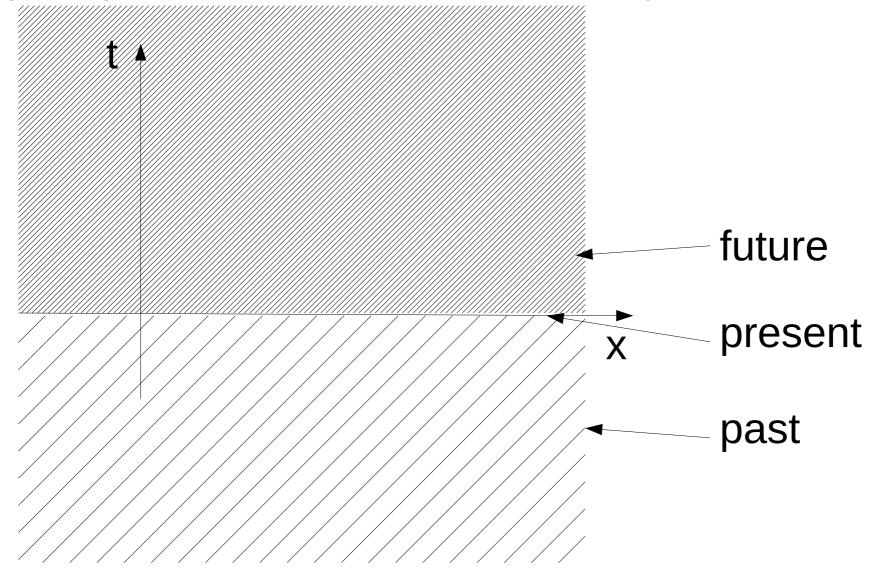
special relativity

rather: past-present-future have different degrees of existence (whatever that means)

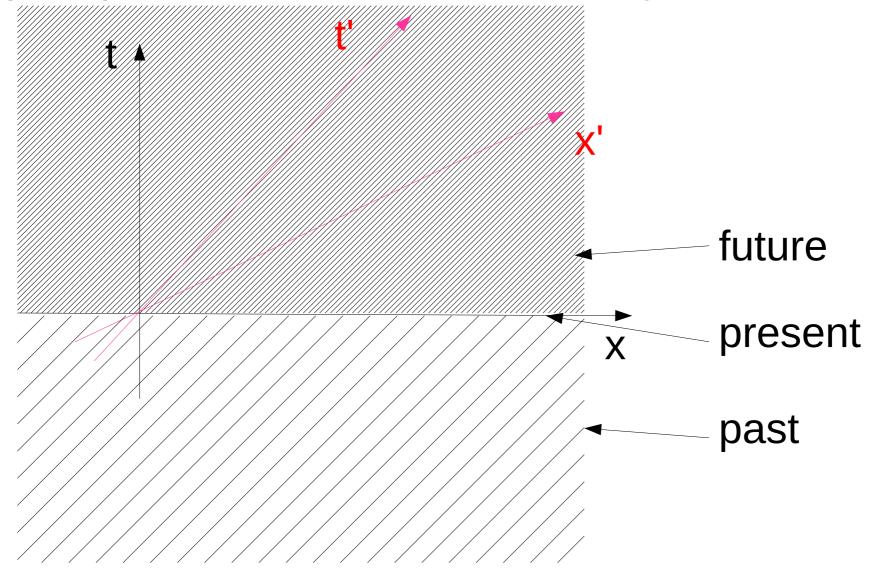
"NO"?!? why?



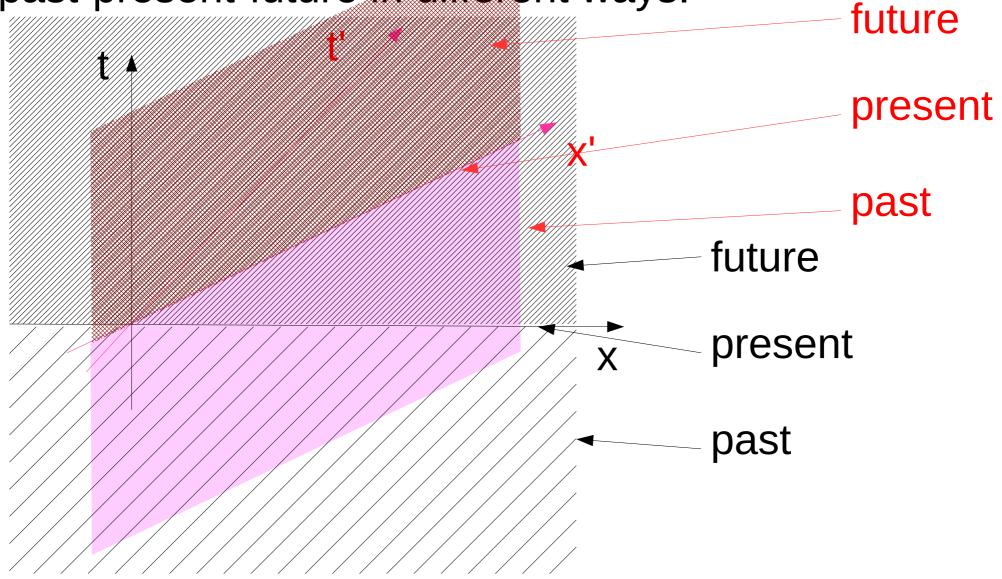
Observers in relative motion divide spacetime in past-present-future in different ways.



Observers in relative motion divide spacetime in past-present-future in different ways.



Observers in relative motion divide spacetime in past-present-future in different ways.

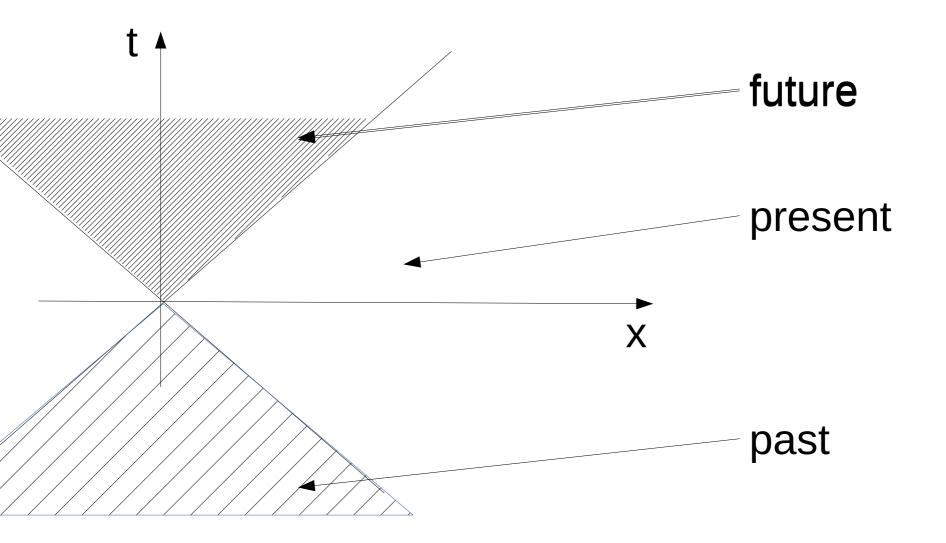


Observers in relative motion divide spacetime in past-present-future in different ways.

The present is **relative to the observer** So, whose present should be "real"!?

present

Light cones **are** invariant: can we use them to define past-future-present?



Light cones **are** invariant: can we use them to define past-future-present? **NO!!!** future present Х past

Now even observers in the same reference disagree on what is "real"



Some people (e.g. Lee Smolin) disagree, but they usually reject Galileian relativity

Some people (e.g. Lee Smolin) disagree, but they usually reject Galileian relativity (one of the *first* physical principles!).

Some people (e.g. Lee Smolin) disagree, but they usually reject Galileian relativity (one of the *first* physical principles!).

unappealing: one must introduce a privileged reference frame

(not incompatible with observations, but incompatible with textbook relativity).

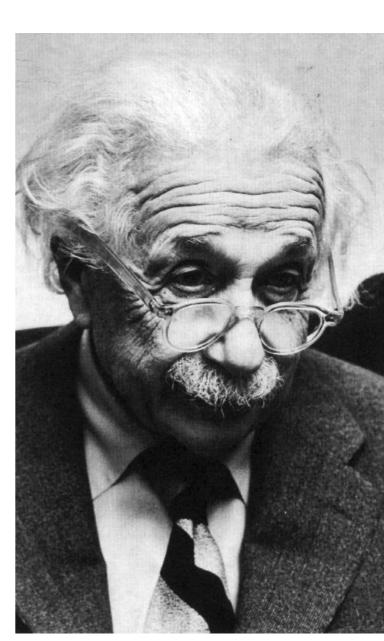
Some people (e.g. Lee Smolin) disagree, but they usually reject Galileian relativity (one of the *first* physical principles!).

unappealing: one must introduce a privileged reference frame

(not incompatible with observations, but incompatible with textbook relativity).

Technically: Presentism vs Eternalism

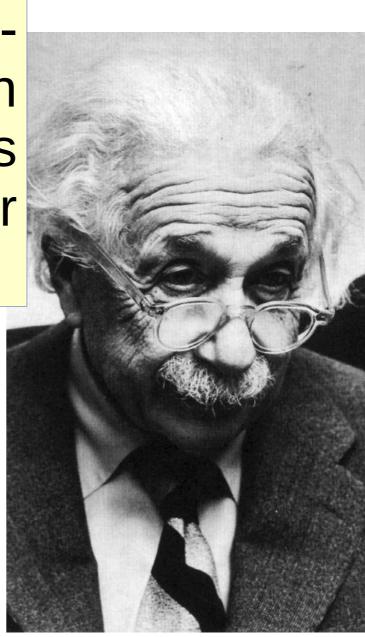
What did Einstein say about this?



What did Einstein say about this?

"For us convinced physicists the distinction between past, present, and future is only an illusion, however persistent."

Albert Einstein, 21 May 1955

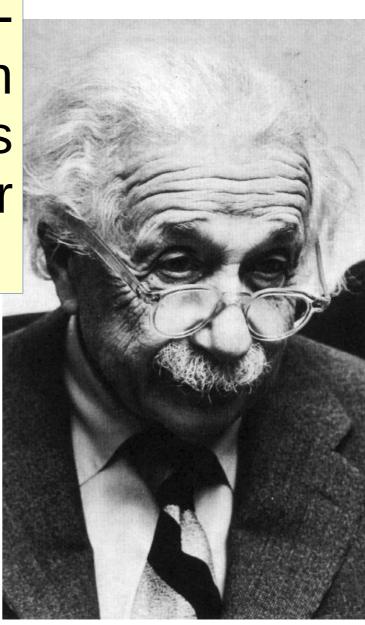


What did Einstein say about this?

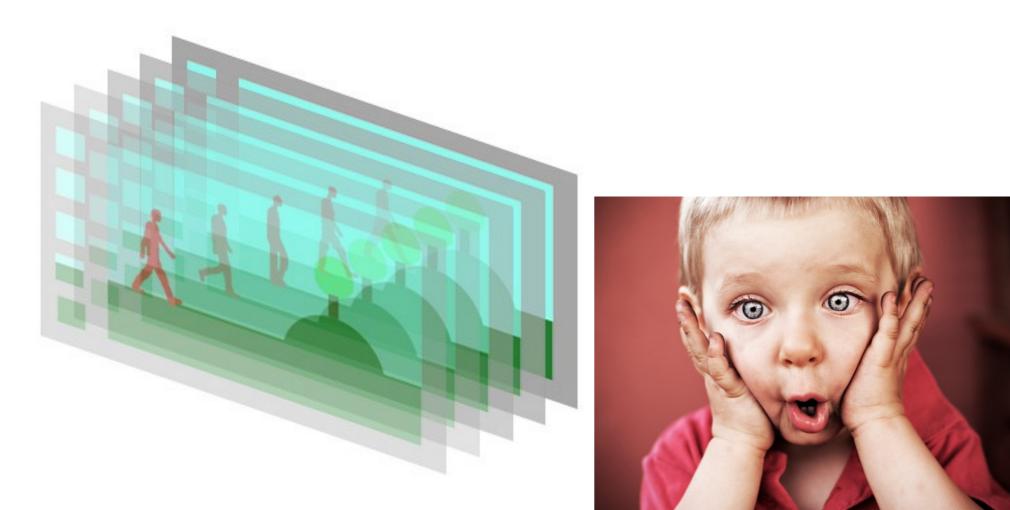
"For us convinced physicists the distinction between past, present, and future is only an illusion, however persistent."

Albert Einstein, 21 May 1955

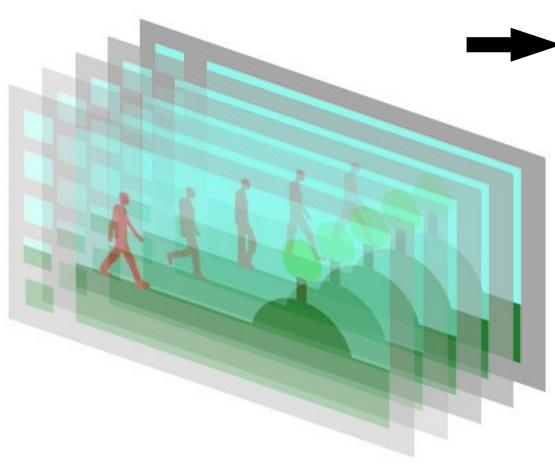
In a letter to the widow of his dear friend Michele Besso: trying to console her (or himself?) with special relativity.



Consequence: Block universe



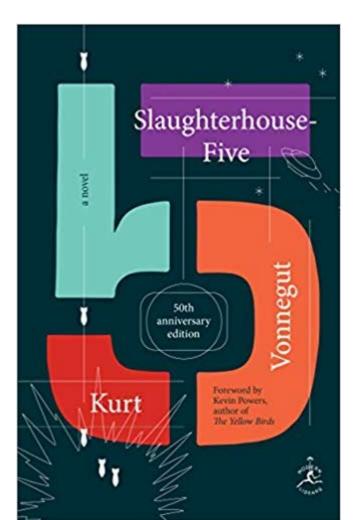
Consequence: Block universe



we'd like a quantum description of time that contains the BU

Our intuition fails badly...

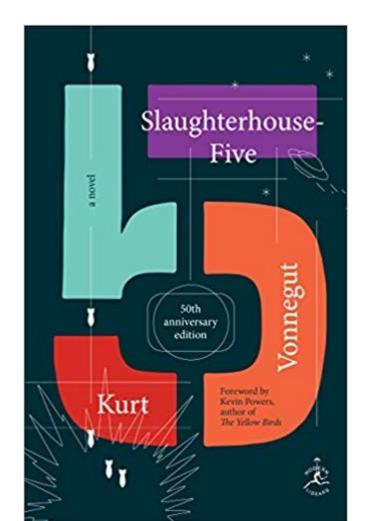
"Story of Your Life" by Ted Chiang.



Our intuition fails badly...

our perception of time is incompatible with relativity:

- we perceive time locally (only the present)
- we perceive space globally (we don't perceive only our own location)



...join GR and QM?!?

Canonical quantization of GR

Wheeler-De Witt equation:

$\hat{H}|\Psi\rangle = 0$

...join GR and QM?!?

Canonical quantization of GR

Wheeler-De Witt equation:

 $\hat{H}|\Psi\rangle = 0$

• The universe is stationary

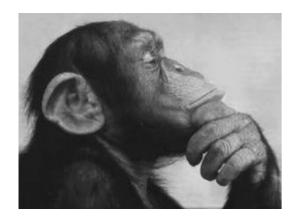
...join GR and QM?!?

Canonical quantization of GR

Wheeler-De Witt equation:

$\hat{H}|\Psi\rangle = 0$

The universe is stationary



...but!!!

...join GR and QM?!?

Canonical quantization of GR

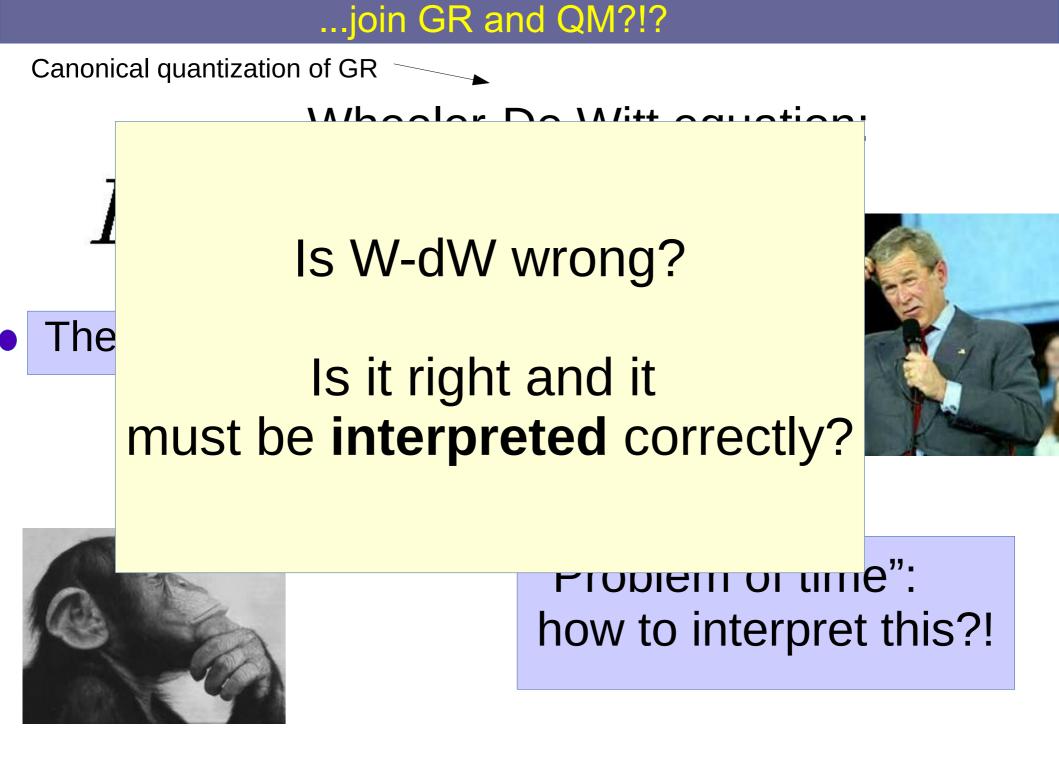
Wheeler-De Witt equation:

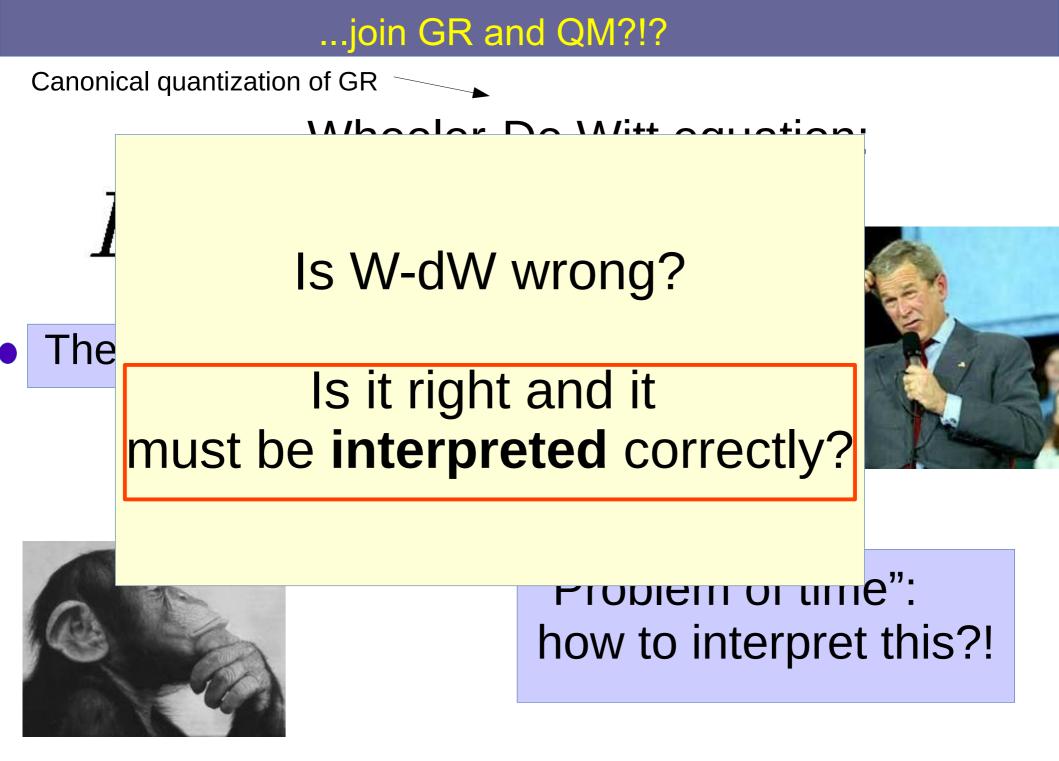
$\hat{H}|\Psi\rangle = 0$

The universe is stationary

...but!!!

"Problem of time": how to interpret this?!





Take a step back... Time in non-relativistic QM

Time in quantum mechanics:

Time in quantum mechanics:

a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$

Time in quantum mechanics: a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle$$

it indicates what is shown on the **clock** on the lab wall.

Time in quantum mechanics: a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)
angle = \hat{H}|\psi(t)
angle$$

it indicates what is shown on the **clock** on the lab wall.

a classical system!

Time in quantum mechanics: a classical parameter in the Schroedinger eq.

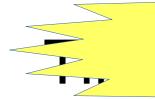
$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$

it indicates what is shown on the **clock** on the lab wall.

a classical system!

BUT... classical systems don't exist in a consistent theory of

(they're just a limiting situation)



Inconsistency in the formulation of QM (inconsistency in one of its postulates)

a classical parameter in the Schroedinger eq.

$$i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = \hat{H}|\psi(t)\rangle$$

it indicates what is shown on the **clock** on the lab wall.

a classical system!

BUT --- classical systems don't exist in a consistent theory of quantum mechanics

in a consistent theory of quantum mechanics (they're just a limiting situation)

Quantum Time

define: Time is "what is shown on a clock"

a clock

Quantum Time

define: Time is "what is shown on a clock"

hen use a quantum system as a clock

e.g. a quantum particle on a line (or any other quantum system)

Quantum Time

define: Time is "what is shown on a clock"

hen use a quantum system as a clock

e.g. a quantum particle on a line (or any other quantum system)

 $\mathcal{H} \equiv \mathcal{L}^2(\mathbb{R})$ eigenbasis $\{|x\rangle\}$

Time and entanglement

Time arises as **correlations** between the system and the clock

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

 $\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$

time Hilbert space

system Hilbert space

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

constraint operator: $\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

system Hamiltonian

constraint operator: _____ clock "momentum"

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi
angle
angle=0$

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

system Hamiltonian

constraint operator: ________ clock "momentum"

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi\rangle\rangle = 0$

bipartite state on $\mathfrak{H}:=\mathcal{H}_T\otimes\mathcal{H}_S$

Page and Wootters [PRD **27**,2885 (1983)] Aharonov and Kaufherr [PRD **30**, 368 (1984)]

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

time Hilbert space

system Hilbert space

system Hamiltonian

constraint operator: _____ clock "momentum"

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\mathbb{J}}|\Psi\rangle\rangle = 0$ bipartite state on $\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$

Page and Wootters [PRD **27**,2885 (1983)]

This means that for physical states the system Hamiltonian is the generator of *clock* time translations

$$\hat{\mathbb{J}} := \hbar \hat{\Omega} \otimes \mathbb{1}_S + \mathbb{1}_T \otimes \hat{H}_S ,$$

all **physical** states satisfy the constraint: $\hat{\Pi} = 0$

bipartite state on $\mathfrak{H}:=\mathcal{H}_T\otimes\mathcal{H}_S$

The conventional state: from **Conditioning**

The conventional state: from **Conditioning**

• to the time being *t*:

$$|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$$

The conventional state: from **Conditioning**

• to the time being *t*:

$$|\psi(t)\rangle_S = T\langle t|\Psi\rangle\rangle$$

$$\left(\hbar \hat{\Omega}_T + \hat{H}_S \right) |\Psi\rangle\rangle = 0$$

The conventional state: from **Conditioning**

• to the time being *t*:

$$|\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$$

$$_{T}\langle t|\langle \hbar\hat{\Omega}_{T}+\hat{H}_{S}\rangle|\Psi\rangle\rangle=0$$

The conventional state: from **Conditioning**

• to the time being *t*: $|\psi(t)\rangle_S = T\langle t|\Psi\rangle\rangle$

 $_{T}\langle t|\langle \hat{h}\hat{\Omega}_{T} + \hat{H}_{S} |\Psi\rangle\rangle = 0 \Leftrightarrow i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle_{S} = \hat{H}_{S}|\psi(t)\rangle_{S}$

position representation:

$$\langle x | \hat{P} = -i \frac{\partial}{\partial x} \langle x |$$

The conventional state: from **Conditioning**

• to the time being *t*: $|\psi(t)\rangle_S = T\langle t|\Psi\rangle\rangle$

$$T \langle t | (\hbar \hat{\Omega}_T + \hat{H}_S) | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_S = \hat{H}_S | \psi(t) \rangle_S$$

"position" representation=Schr eq.

position representation:

$$\langle x | \hat{P} = -i \frac{\partial}{\partial x} \langle x |$$

The conventional state: from **Conditioning**

• to the time being t: $|\psi|$

$$t: \quad |\psi(t)\rangle_S = {}_T \langle t|\Psi\rangle\rangle$$

 $T\langle t|\langle \hat{h}\hat{\Omega}_{T} + \hat{H}_{S} |\Psi\rangle \rangle = 0 \Leftrightarrow i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle_{S} = \hat{H}_{S} |\psi(t)\rangle_{S}$ "position" representation=Schr eq.

• to the energy being ω :

 $|\psi(\omega)\rangle_S = {}_T\langle\omega|\Psi\rangle\rangle ,$

The conventional state: from **Conditioning**

1 / . \ \ to the time being *t*:

The time being
$$t$$
:
 $|\psi(t)\rangle_S = T\langle t|\Psi\rangle\rangle$
 $T_T\langle t|\Phi\hat{\Omega}_T + \hat{H}_S|\Psi\rangle\rangle = 0 \Leftrightarrow i\hbar\frac{\partial}{\partial t}|\psi(t)\rangle_S = \hat{H}_S|\psi(t)\rangle_S$

I = T

"position" representation=Schr eq.

• to the energy being ω : $|\psi(\omega)\rangle_S = T\langle \omega|\Psi\rangle\rangle$,

$$_{T}\langle\omega|\hat{h}\hat{\Omega}_{T}+\hat{H}_{S}|\Psi\rangle\rangle=0\Leftrightarrow\hat{H}_{S}|\psi(\omega)\rangle_{S}=-\hbar\omega|\psi(\omega)\rangle_{S}$$

The conventional state: from **Conditioning**

• to the time being *t*:

$$t: \quad |\psi(t)\rangle_S = {}_T \langle t|\Psi\rangle \rangle$$

 $T \langle t | \langle \hbar \hat{\Omega}_{T} + \hat{H}_{S} | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_{S} = H_{S} | \psi(t) \rangle_{S}$ "position" representation=Schr eq.

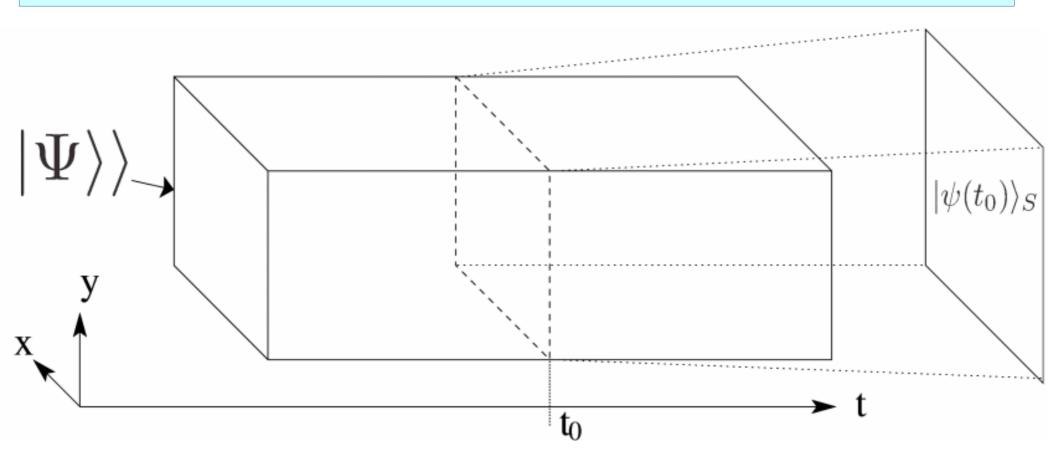
• to the energy being ω : $|\psi(\omega)
angle_S = {}_T\langle\omega|\Psi
angle
angle\;,$

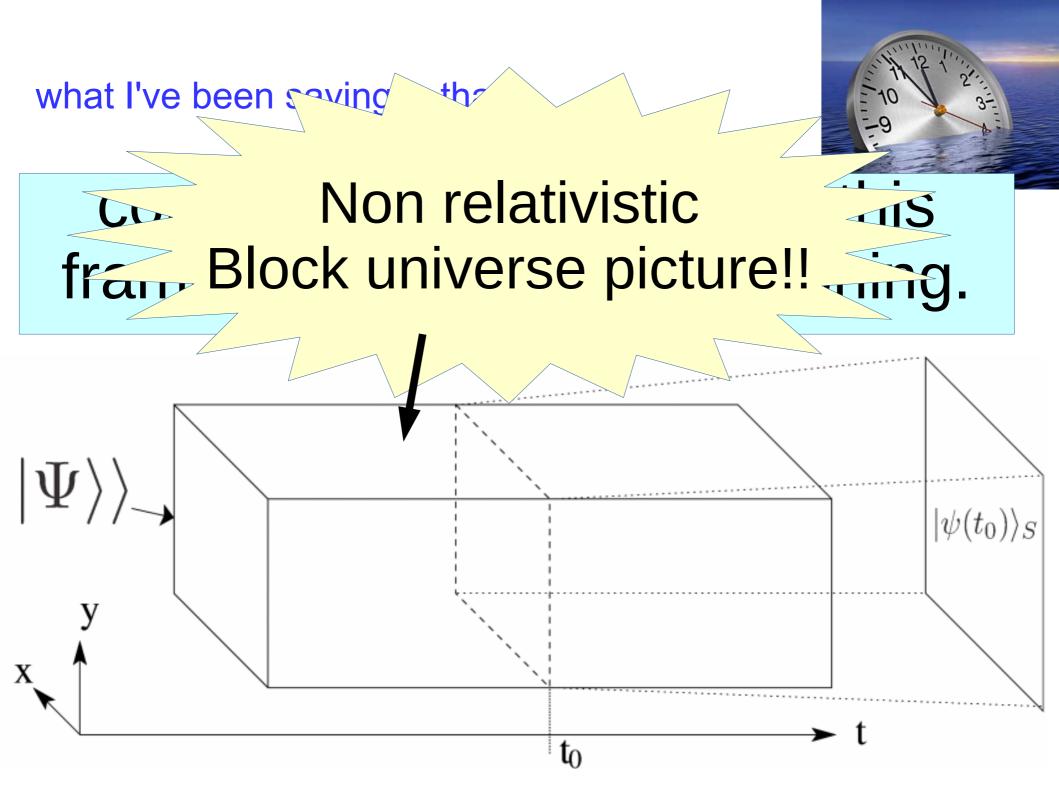
$$_{T}\langle\omega|\hat{h}\hat{\Omega}_{T}+\hat{H}_{S}|\Psi\rangle\rangle=0\Leftrightarrow\hat{H}_{S}|\psi(\omega)\rangle_{S}=-\hbar\omega|\psi(\omega)\rangle_{S}$$

"momentum" representation=time indep. Schr eq.

what I've been saying is that

conventional qm arises in this framework through conditioning.





conditioning?

conditioning?

All $_{ ext{pure}}$ solutions to the WdW eq. $\hat{\mathbb{J}}|\Psi
angle
angle=0$

are of the form:

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

conditioning?

All $_{ ext{pure}}$ solutions to the WdW eq. $\hat{\mathbb{J}}|\Psi
angle
angle=0$

are of the form:

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

which means that the conventional state of the system at time $t |\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

conditioning?

All $_{ ext{pure}}$ solutions to the WdW eq. $\hat{\mathbb{J}}|\Psi
angle
angle=0$

are of the form:

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

which means that the conventional state of the system at time $t |\psi(t)\rangle_S = {}_T\langle t|\Psi\rangle\rangle$

is a **conditioned state**: the state *given that* the time was *t*

conditioning?

All _{pure} solutions to the WdV eq. $\hat{\mathbb{I}}|\Psi
angle
angle=0$

Remember this! Relation QM-Relativity

which mean system at me

are of th

765

is a **conditioned state**: the state *given that* the time was *t*

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$ $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi
angle
angle = \int dt \, \boldsymbol{\phi}(t) \, |t
angle_T \otimes |\psi(t)
angle_S ,$

this does not necessarily imply that time is discrete!!

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi
angle
angle = \int dt \, \boldsymbol{\phi}(t) \, |t
angle_T \otimes |\psi(t)
angle_S ,$

this does not necessarily imply that time is discrete!!

(it's a continuous quantum degree of freedom with the choice $\mathcal{H}\equiv\mathcal{L}^2(\mathbb{R})$)

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

this does **not** necessarily imply that time is **discrete!!**

(it's a **continuous** quantum degree of freedom with the choice $\mathcal{H} \equiv \mathcal{L}^2(\mathbb{R})$) $\hat{T} = \int_{-\infty}^{+\infty} dt \; t | t'$

a quantization of time

time is here a **quantum degree of freedom** (with its Hilbert space) and can be entangled

$$\mathfrak{H} := \mathcal{H}_T \otimes \mathcal{H}_S$$

 $|\Phi\rangle\rangle = \int dt \, \phi(t) \, |t\rangle_T \otimes |\psi(t)\rangle_S ,$

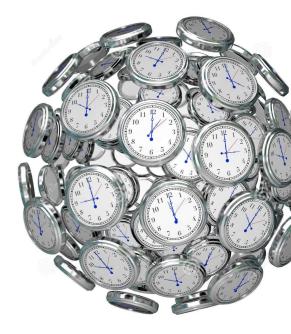
this does **not** necessarily imply that time is **discrete!!**

 $dt t |t\rangle$

(it's a **continuous** quantum degree of freedom with the choice $\mathcal{H} \equiv \mathcal{L}^2(\mathbb{R})$) $\hat{\mathcal{I}}$ Other choices are possible!! **Physical interpretation**

The time Hilbert space is the Hilbert space of the clock that **defines** time

remember: "time is what is measured by a clock"!



Physical interpretation

The time Hilbert space is the Hilbert space of the clock that **defines** time

remember: "time is what is measured by a clock"!

here: we used a Hilbert space for a particle on a line, appropriate for a continuous time that goes from $-\infty$ to $+\infty$

Physical interpretation

The time Hilbert space is the Hilbert space of the clock that **defines** time

remember: "time is what is measured by a clock"!

here: we used a Hilbert space for a particle on a line, appropriate for a continuous time that goes from $-\infty$ to $+\infty$

other choices are possible..

if the clock has finite energy, time is cyclic: e.g. a spin (appropriate for certain closed cosmologies) Up to now: the time Hilbert space is the Hilbert space of the clock that **defines** time

BUT, a physical interpretation of the time Hilbert space is **un-necessary**

Up to now: the time Hilbert space is the Hilbert space of the clock that **defines** time

BUT, a physical interpretation of the time Hilbert space is **un-necessary**

alternative:

It can be seen as an **abstract** purification space

Is entanglement important? Could we do with classical correlations?

$$\begin{split} |\Psi\rangle\rangle &= \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S \\ &= \int d\mu(\omega) \; |\omega\rangle_T \otimes |\psi(\omega)\rangle_S \; , \end{split}$$

Is entanglement important? Could we do with classical correlations?

$$\begin{split} |\Psi\rangle\rangle &= \int dt \ |t\rangle_T \otimes |\psi(t)\rangle_S \\ &= \int d\mu(\omega) \ |\omega\rangle_T \otimes |\psi(\omega)\rangle_S \ , \end{split}$$
NO!

Is entanglement important? Could we do with classical correlations?

$$\begin{split} |\Psi\rangle\rangle &= \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S \\ &= \int d\mu(\omega) \; |\omega\rangle_T \otimes |\psi(\omega)\rangle_S \; , \end{split}$$

NO! Without entanglement there is no **Solution** (naively one would expect to either time-dep. or time-indep Sch. eq. but not both, but this not correct: neither solution is possible),

Is entanglement important? Could we do with classical correlations?

$$\begin{split} |\Psi\rangle\rangle &= \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S \\ &= \int d\mu(\omega) \; |\omega\rangle_T \otimes |\psi(\omega)\rangle_S \; , \end{split}$$

NO! Without entanglement there is no **Solution** (naively one would expect to either time-dep. or time-indep Sch. eq. but not both, but this not correct: neither solution is possible),

$$T \langle t \langle \hbar \hat{\Omega}_{T} + \hat{H}_{S} | \Psi \rangle \rangle = 0 \Leftrightarrow i \hbar \frac{\partial}{\partial t} | \psi(t) \rangle_{S} = \hat{H}_{S} | \psi(t) \rangle_{S}$$
$$T \langle \omega \langle \hbar \hat{\Omega}_{T} + \hat{H}_{S} | \Psi \rangle \rangle = 0 \Leftrightarrow \hat{H}_{S} | \psi(\omega) \rangle_{S} = -\hbar \omega | \psi(\omega) \rangle_{S} ,$$

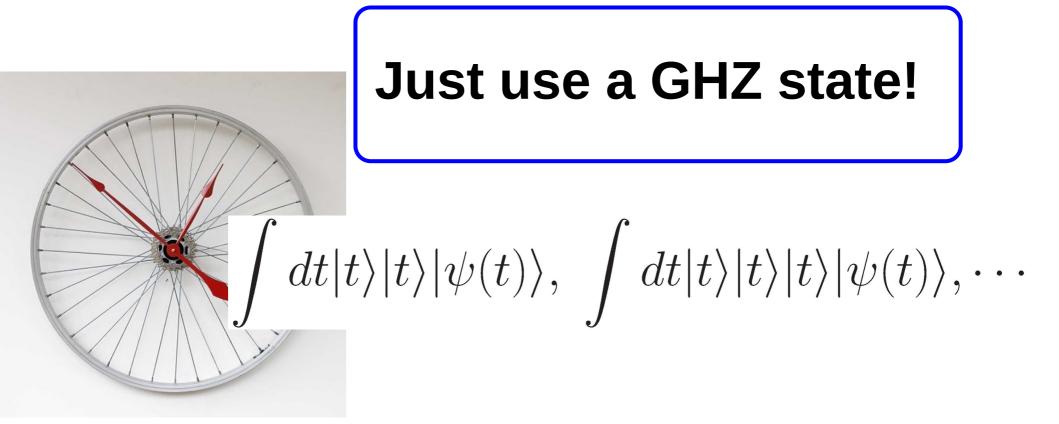
Instead of bipartite entanglement

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$

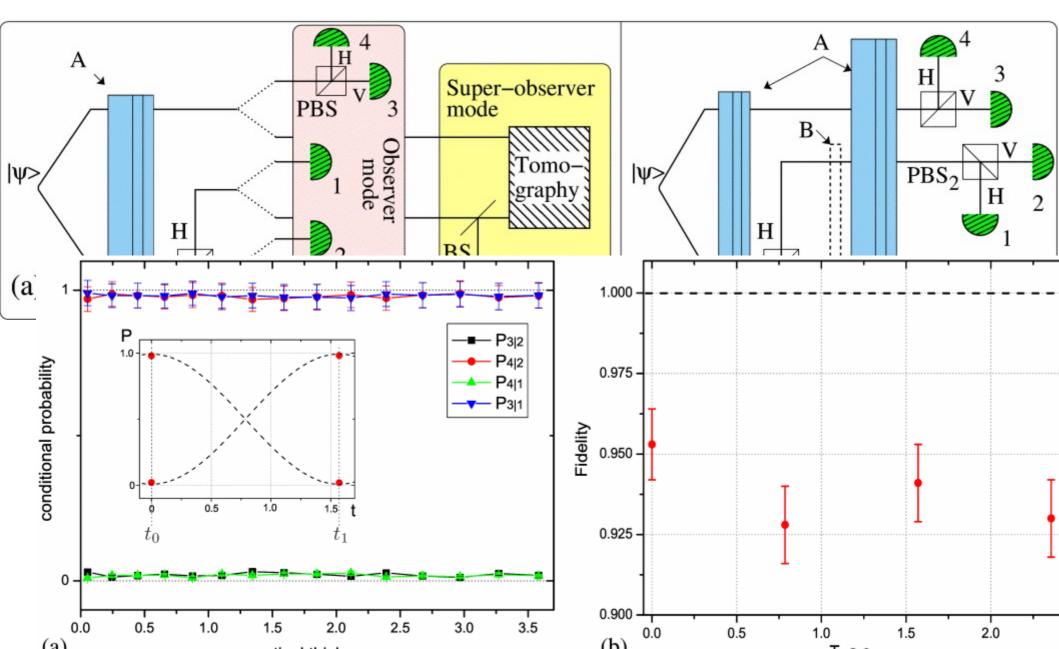
Just use a GHZ state!

Instead of bipartite entanglement

$$|\Psi\rangle\rangle = \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S$$



Experimental illustration (collaboration with the INRIM group)



These ideas were basically abandoned in the 80s: because of objections (Kuchar, Unruh, etc.)

What Ever

We removed these objections

... and also perfected the model (e.g. role of entanglement, momentum representation)

Criticisms to time quantizations

IC

mo

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

8765

i.e. $[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

i.e.
$$[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$$

... but wait!! In our case we have $[\hat{T},\hat{\Omega}]=i\hbar\Rightarrow\lambda(\hat{\Omega})\in(-\infty,+\infty)$

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

i.e.
$$[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$$

... but wait!! In our case we have $[\hat{T}, \hat{\Omega}] = i\hbar \Rightarrow \lambda(\hat{\Omega}) \in (-\infty, +\infty)$

only the clock energy (momentum) must have infinite spectrum (obvious if we want it to take all values on a line).

NOT the system Hamiltonian \hat{H}_S !!!

Pauli: "time **cannot be quantized**, because a time operator that is a generator of energy translations implies that the energy is unbounded (also from below)"

i.e.
$$[\hat{T}, \hat{H}_S] = i\hbar \Rightarrow \lambda(\hat{H}_S) \in (-\infty, +\infty)$$

... but wait!! In our case we have $\begin{bmatrix} \hat{T} & \hat{O} \end{bmatrix} = i\hbar \rightarrow \lambda(\hat{O}) \subset (-\infty)$

$$[T,\Omega] = i\hbar \Rightarrow \lambda(\Omega) \in (-\infty, +\infty)$$

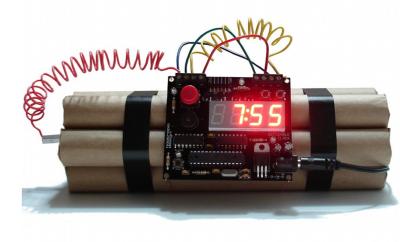
only the clock energy (momentum) must have infinite spectrum (obvious if we want it to take all values on a line).

NOT the system Hamiltonian H_S !!!

can be anything In other words, the **Pauli argument fails** in our case because the energy-time connection is not enforced dynamically as

$$[\hat{T}, \hat{H}_S] = i\hbar$$

but as a constraint on the physical states through a WdW eq: $\hat{\mathbb{J}}|\Psi
angle
angle=0$

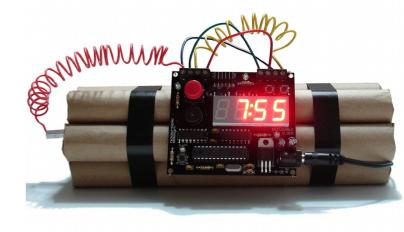


In other words, the **Pauli argument fails** in our case because the energy-time connection is not enforced dynamically as

$$[\hat{T}, \hat{H}_S] = i\hbar$$

but as a constraint on the physical states through a WdW eq: $\hat{\mathbb{J}}|\Psi
angle
angle=0$

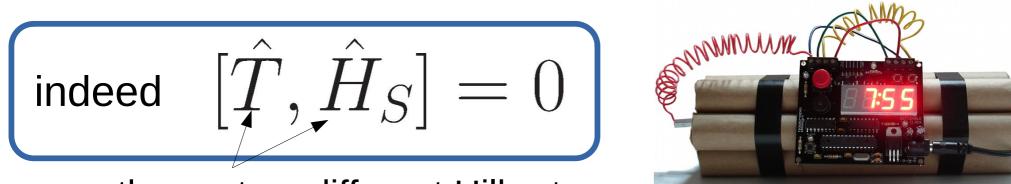
indeed
$$[\hat{T},\hat{H}_S]=0$$



In other words, the **Pauli argument fails** in our case because the energy-time connection is not enforced dynamically as

$$[\hat{T}, \hat{H}_S] = i\hbar$$

but as a constraint on the physical states through a WdW eq: $\hat{\mathbb{J}}|\Psi
angle
angle=0$



they act on different Hilbert spaces

The Peres argument

Peres argument: "if energy generates time translations and momentum generates position translations, then the Hamiltonian and the momentum operator should commute always"

(not intended as a criticism against quantization of time)

The Peres argument

Peres argument: "if energy generates time translations and momentum generates position translations, then the Hamiltonian and the momentum operator should commute always"

(not intended as a criticism against quantization of time)

•in conventional qm, time is not a dynamical variable \Rightarrow no problem.

The Peres argument

Peres argument: "if energy generates time translations and momentum generates position translations, then the Hamiltonian and the momentum operator should commute always"

(not intended as a criticism against quantization of time)

•in conventional qm, time is not a dynamical variable \Rightarrow no problem.

• in our case, time is a dynamical variable, but its translations are NOT generated by \hat{H}_S (but by $\hat{\Omega}$)

The Kuchar argument against PaW

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

The Kuchar argument against PaW

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

Kuchar's objection killed PaW's argument

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

$$\begin{split} |\Psi\rangle\rangle &= \int dt \; |t\rangle_T \otimes |\psi(t)\rangle_S \\ & \int \text{time } t \\ |\psi(t)\rangle \end{split}$$

after a measurement of time, the state collapses to $|\psi(t)\rangle$: successive measurements give wrong statistics: no more evolution

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

a careful formalization of **what a two-time measurement is** solves the problem!

Kuchar: "measurements of a system at two times will give the wrong statistics: the first measurement "collapses" the time d.o.f. and the system remains stuck"

a careful formalization of **what a two-time measurement is** solves the problem!

The second measurement is a joint measurement on the system and on the d.o.f. that stored the outcome of the first.

In formulas (using von Neumann's prescription for a measurement):

In formulas (using von Neumann's prescription for a measurement): Measurement of observable with eigenstates $|a\rangle$ at t_0 :

$$|\psi(t_0)\rangle_S|\mathbf{r}\rangle_m \xrightarrow{U} |\psi'\rangle_{Sm} \equiv \sum_a \psi_a |a\rangle_S|\mathbf{a}\rangle_m$$

$$|\psi(t_0)\rangle = \sum_a \psi_a(t_0)|a\rangle$$

In formulas (using von Neumann's prescription for a measurement): Measurement of observable with eigenstates $|a\rangle$ at t_0 :

$$|\psi(t_0)\rangle_S|\mathbf{r}\rangle_m \xrightarrow{U} |\psi'\rangle_{Sm} \equiv \sum_a \psi_a |a\rangle_S|\mathbf{a}\rangle_m$$

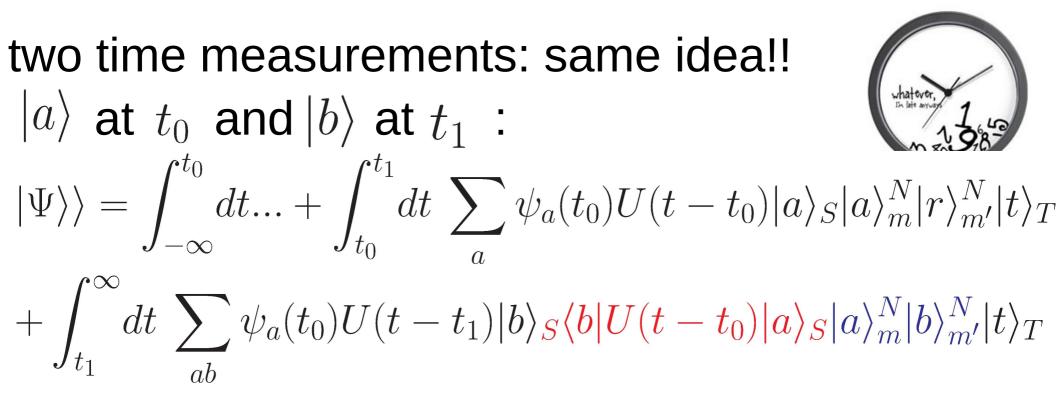
$$\begin{split} |\psi(t_0)\rangle &= \sum_{a} \psi_a(t_0) |a\rangle \\ |\Psi\rangle\rangle &= \int_{-\infty}^{t_0} dt |\psi(t)\rangle_S |r\rangle_m^N |t\rangle_T + \\ &\searrow_{\text{memory dof}} \\ \int_{t_0}^{\infty} dt \sum_{a} \psi_a(t_0) \tilde{U}(t-t_0) |a\rangle_S |a\rangle_m^N |t\rangle_T \end{split}$$

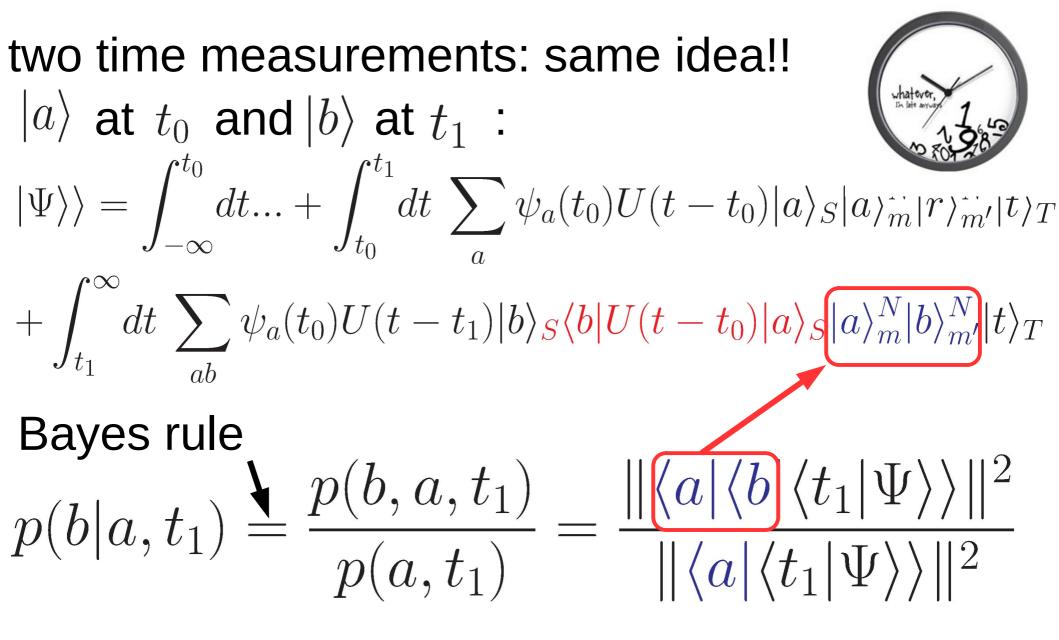
Measurement of observable with eigenstates $|a\rangle$ at t_0 :

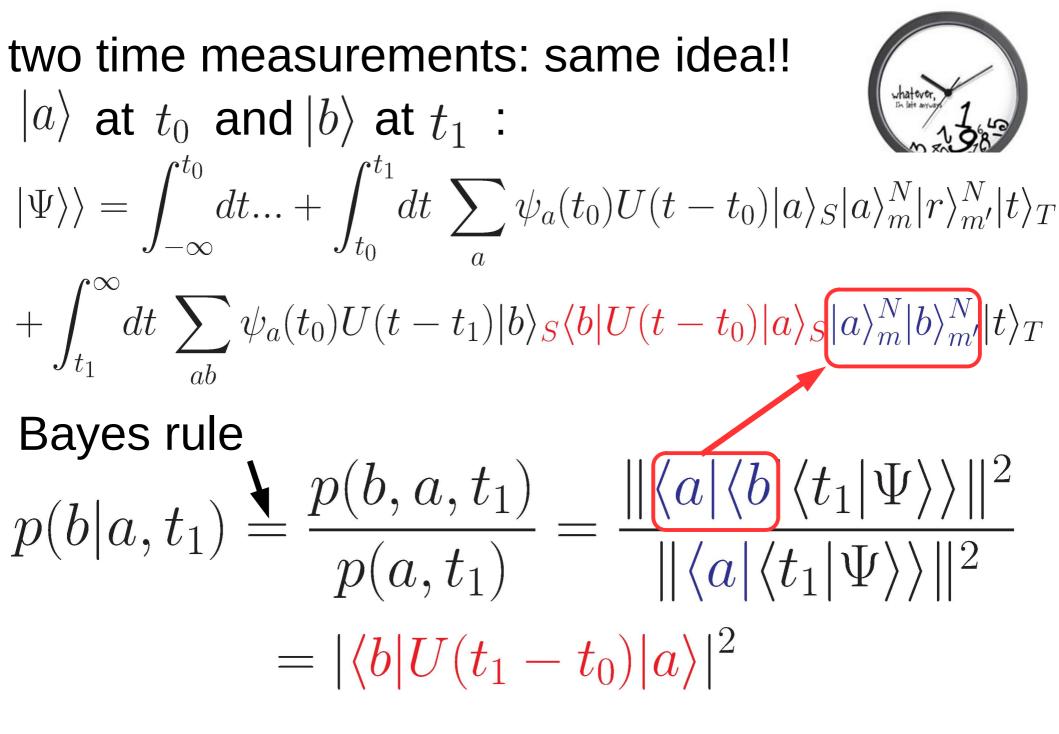
$$\begin{split} |\Psi\rangle\rangle &= \int_{-\infty}^{t_0} dt |\psi(t)\rangle_S |r\rangle_m^N |t\rangle_T + \\ &\searrow_{\text{memory dof}} \\ \int_{t_0}^{\infty} dt \sum_a \frac{\psi_a(t_0)\tilde{U}(t-t_0)|a\rangle_S |a\rangle_m^N |t\rangle_T \end{split}$$

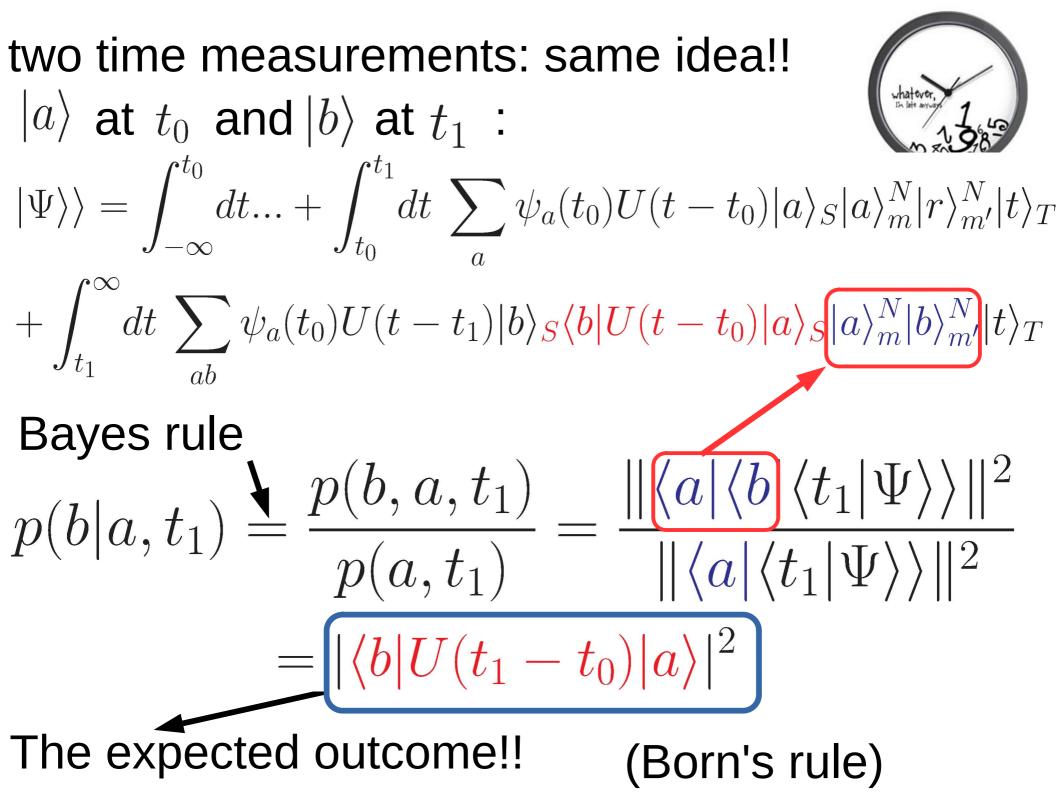
$$\Rightarrow p(a|t_0) = |\langle a|\psi(t_0)\rangle|^2 \equiv ||_{m} \langle a|_{T} \langle t_0|\Psi\rangle\rangle|^2$$
$$= |\psi_a(t_0)|^2 \quad \text{(Born's rule)}$$

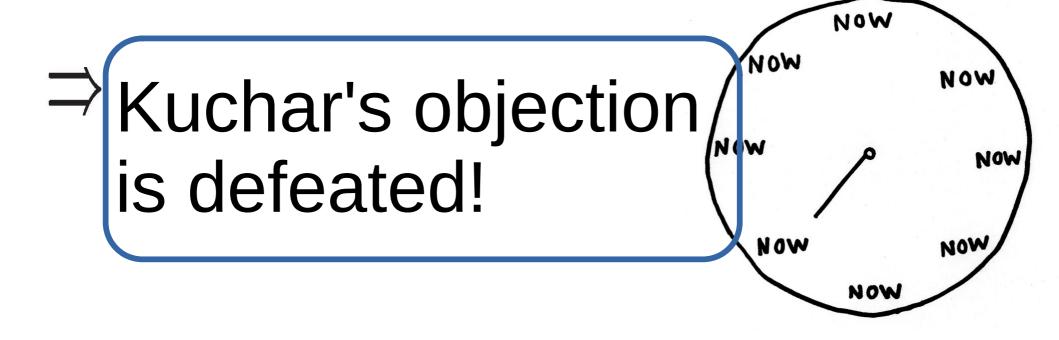
two time measurements: same idea!!

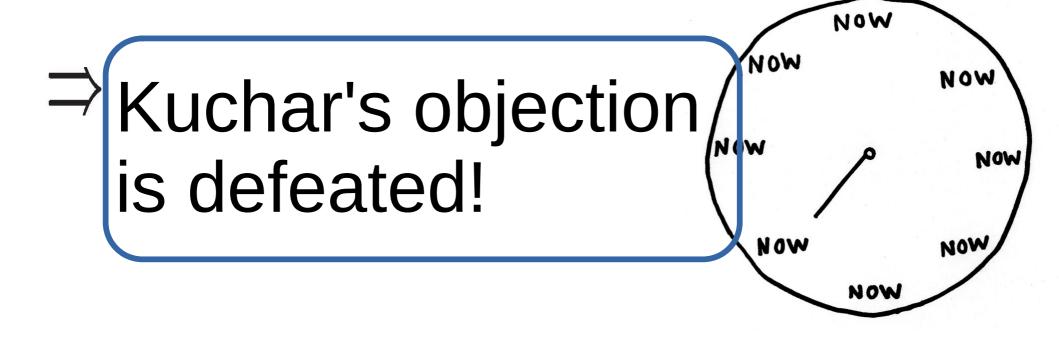












this argument can be extended to POVMS, propagators, etc...

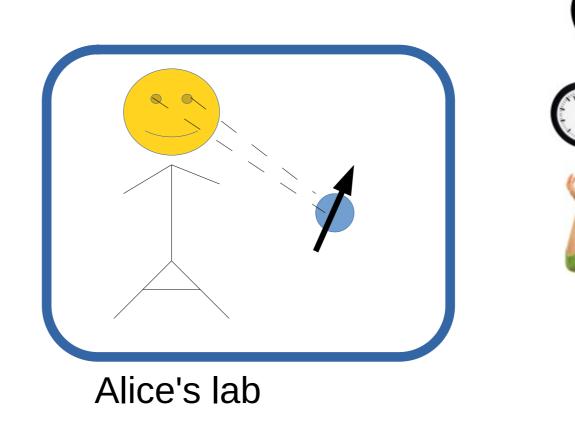
What are the hypotheses for this argument? Use von Neumann's quantum mechanics! (Born's rule and all that)

Use von Neumann's quantum mechanics! (Born's rule and all that)

While we do admit that a unitary description of a measurement apparatus must exist, we still work in the conventional quantum framework.

Use von Neumann's quantum mechanics! (Born's rule and all that)

While we do admit that a unitary description of a measurement apparatus must exist, we still work in the conventional quantum framework.



Use von Neumann's quantum mechanics! (Born's rule and all that)

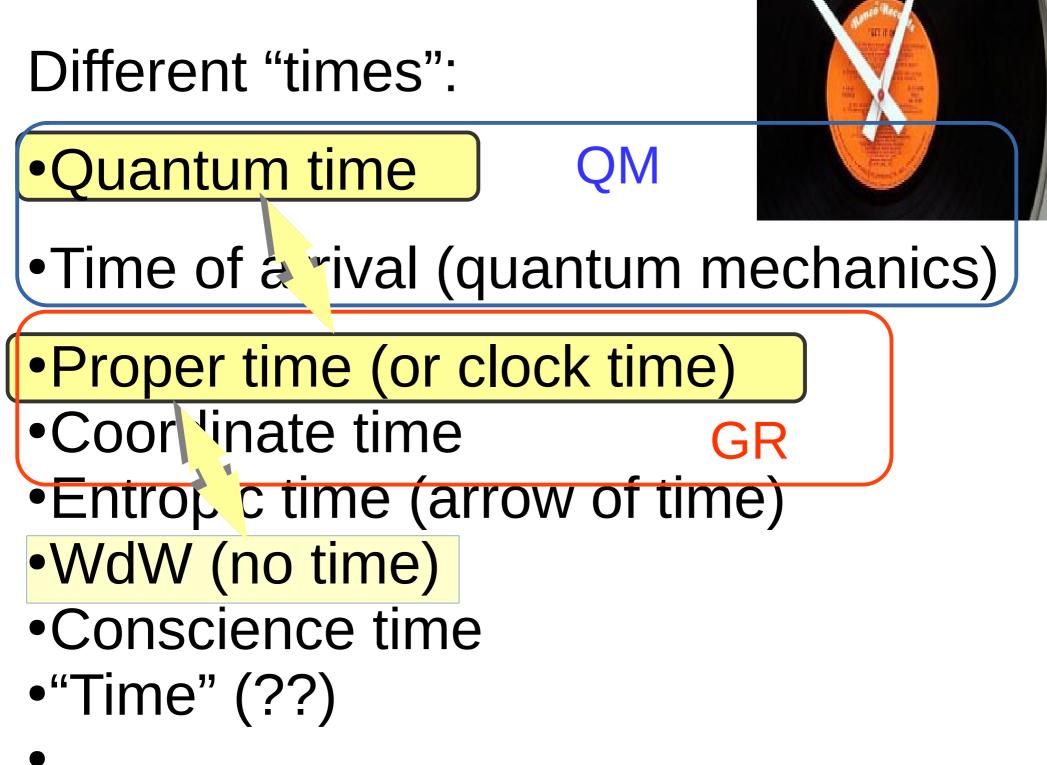
While we do admit that a unitary description of a measurement apparatus must exist, we still work in the conventional quantum framework.

Bob's point of view Alice's lab

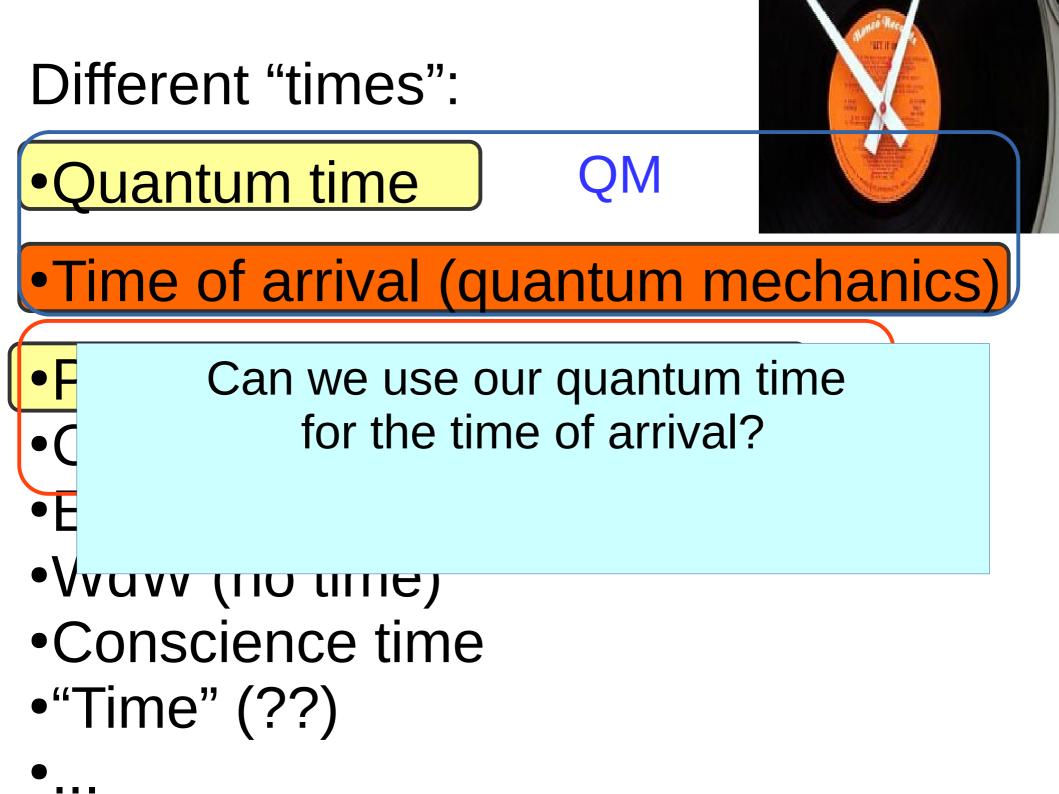
- Different "times":
- Quantum time

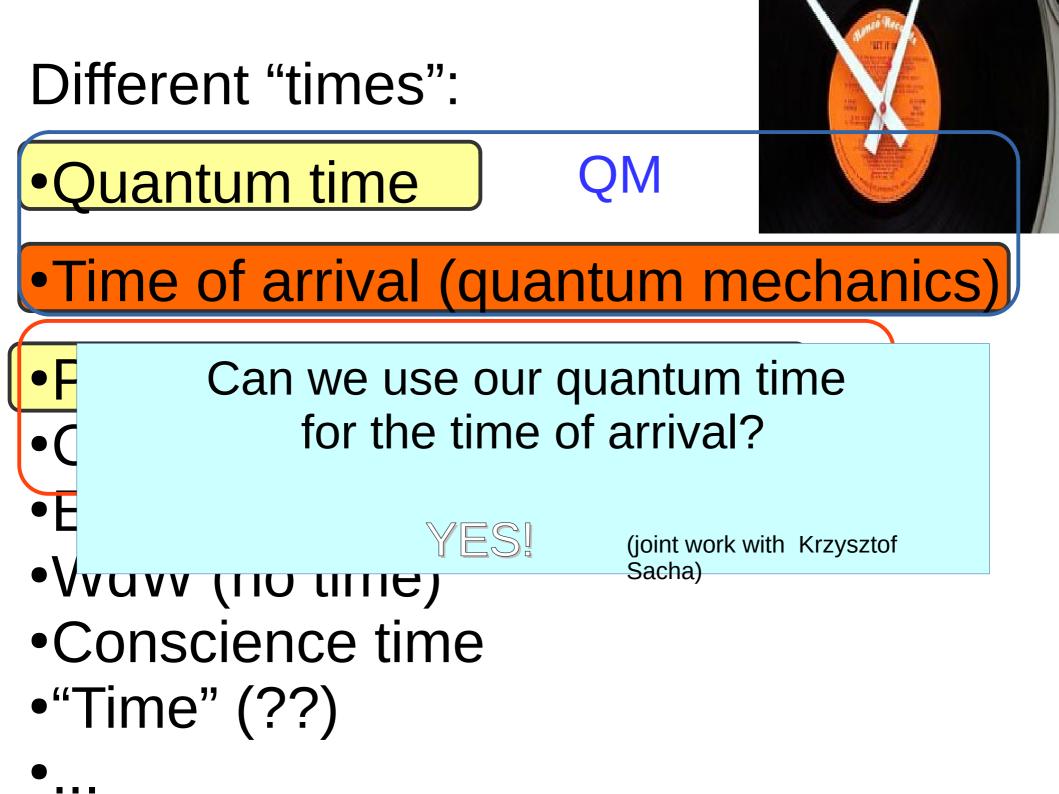
- •Time of arrival (quantum mechanics)
- Proper time (or clock time)
- Coordinate time
- •Entropic time (arrow of time)
- •WdW (no time)
- Conscience time
- •"Time" (??)
- •

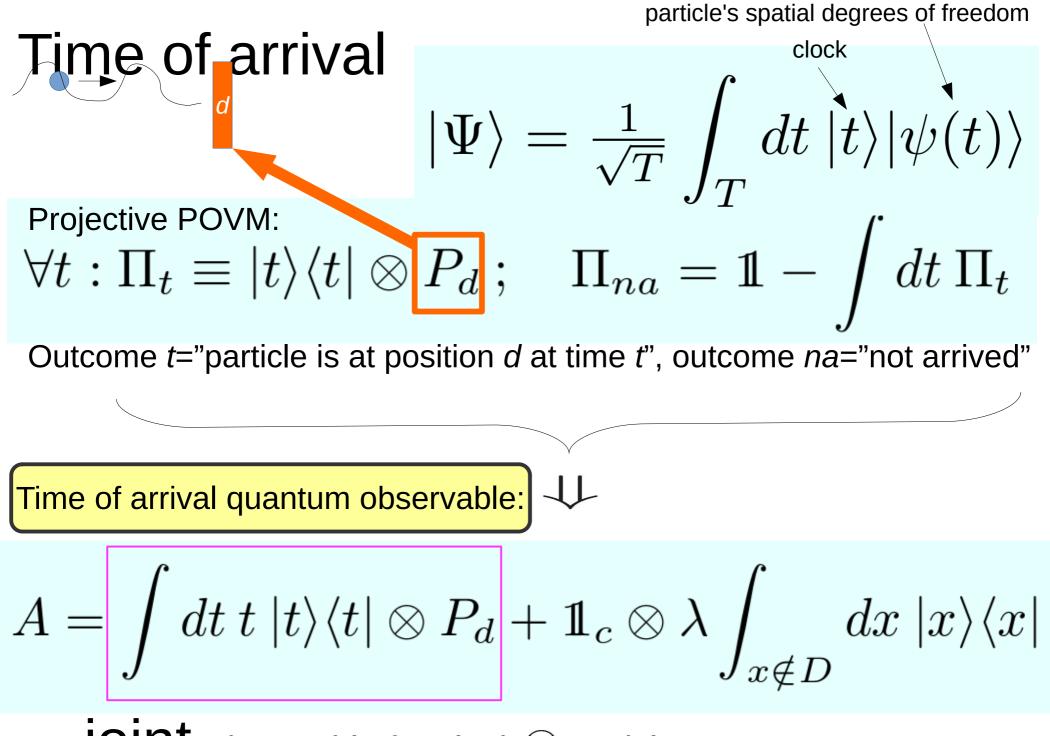
- Quantum time
- Time of arrival (quantum mechanics)
- •Proper time (or clock time)
- Coordinate time
- •Entropic time (arrow of time)
- •WdW (no time)
- Conscience time
- •"Time" (??)
- •



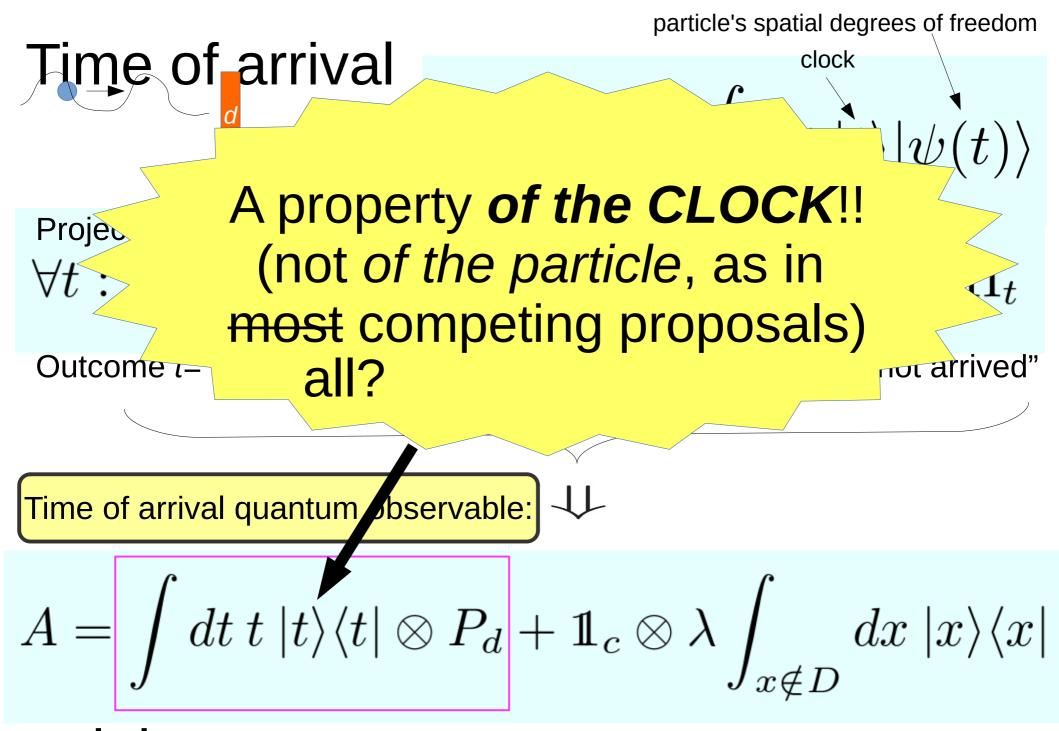
- - - -





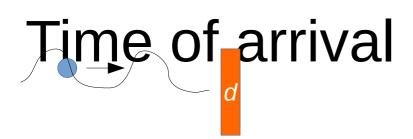


A **JOINT** observable for clock \otimes particle

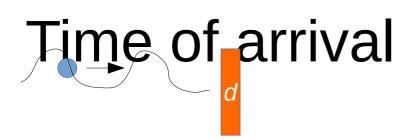


A **JOINT** observable for clock \otimes particle

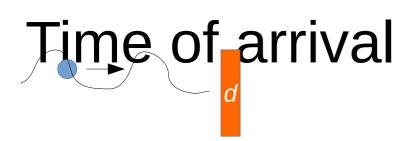
particle's spatial degrees of freedom Time of arrival clock $|\Psi\rangle = \frac{1}{\sqrt{T}} \int_{T} dt \, |t\rangle |\psi(t)\rangle$ **Projective POVM:** $\forall t : \Pi_t \equiv |t\rangle \langle t| \otimes P_d; \quad \Pi_{na} = \mathbb{1} - \int dt \, \Pi_t$ Outcome *t*="particle is at position *d* at time *t*", outcome *na*="not arrived" $(t, x = d) = \operatorname{Tr}[|\Psi\rangle\langle\Psi|\Pi_t] = \frac{1}{T}|\psi(d|t)|^2$, Born's rule with $\psi(x|t) \equiv \langle x|\psi(t)\rangle$ $p(t|x=d) = \frac{p(t,x)}{2}$ $\left|\frac{x=d}{x}\right| = \frac{|\psi(d|t)|^2}{\int_T dt \, |\psi(d|t)|^2} ,$ yes rule Time of arrival prob. distribution



• take the projector for the particle at *d* and for the clock at *t*.



- take the projector for the particle at *d* and for the clock at *t*.
- build a joint observable from this



8

2

- take the projector for the particle at *d* and for the clock at *t*.
- build a joint observable from this
- from the joint probability of clock+particle, get the time of arrival prob through the Bayes rule.

Only "time of arrival"?

Only "time of arrival"? NO!

Extensions to other time measurements:

a generic time measurement is

"At what time did the event E happen?"

Only "time of arrival"? NO!

Extensions to other time measurements:

a generic time measurement is

t_E

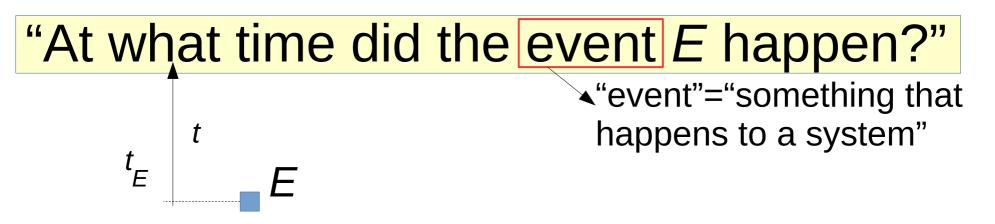
"At what time did the event E happen?"

"event"="something that happens to a system"

Only "time of arrival"? NO!

Extensions to other time measurements:

a generic time measurement is

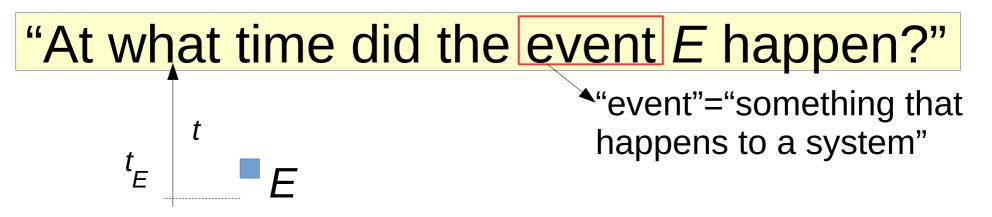


Use the same trick: a joint projector on the clock and on the system (the projector on the system referring to the event *E*)

Only "time of arrival"? NO!

Extensions to other time measurements:

a generic time measurement is



Use the same trick: a joint projector on the clock and on the system (the projector on the system referring to the event *E*)

e.g. "at what time is the spin up?" The projector is $|\uparrow\rangle\langle\uparrow|$

All usual manipulations

for observables can be done:

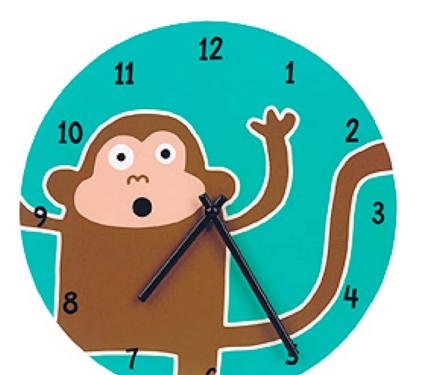
- Expectation values
- Probability distributions
- •Eigenstates, eigenvalues, etc.

Advantages with respect to previous proposals:

- Describe situations that prev prop could not (multiple pass, stationary particle, etc.)
- •Extension to arbitrary events
- Possibility of describing multiple clocks
- Testable differences: experiment!

Up to now: nonrelativistic QM

Can we use similar ideas for relativistic QM?



•GR — • events

quantum systems

Inifinitely extended in time (finite or infinite in space)

events

•GR

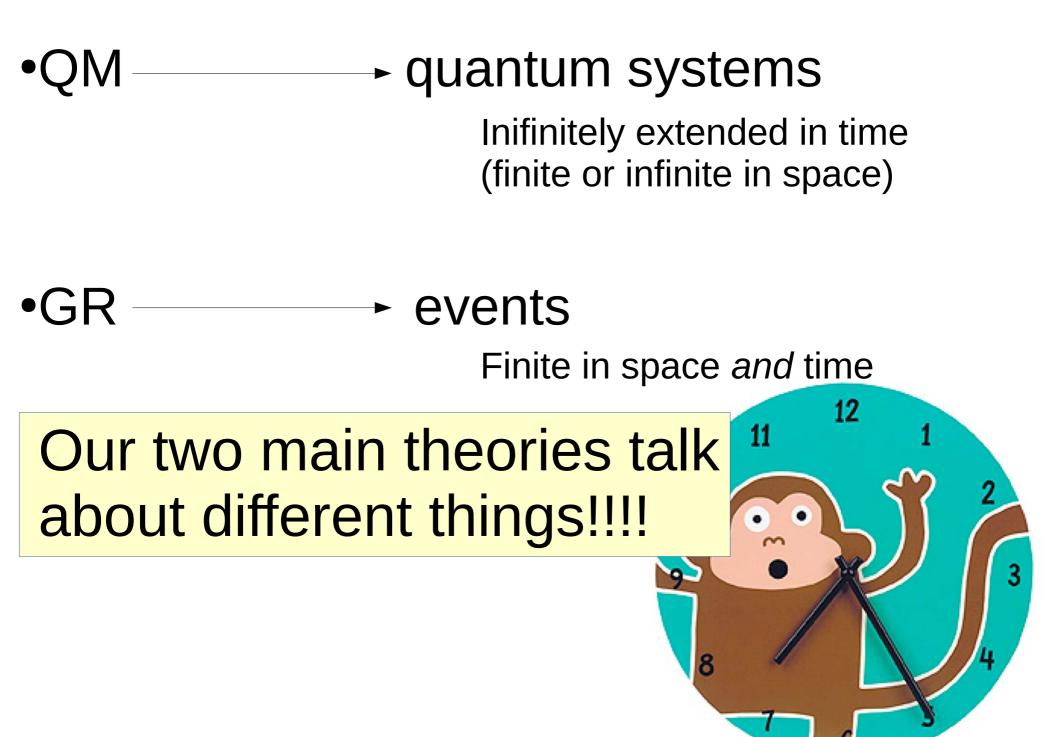
Finite in space and time

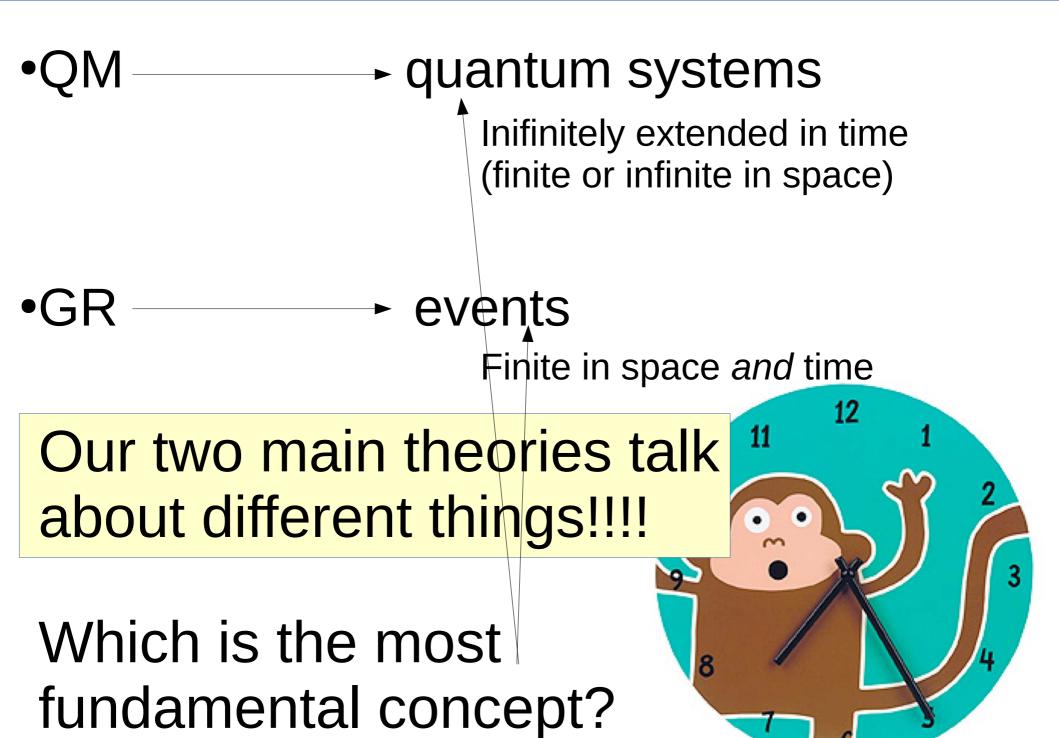
10

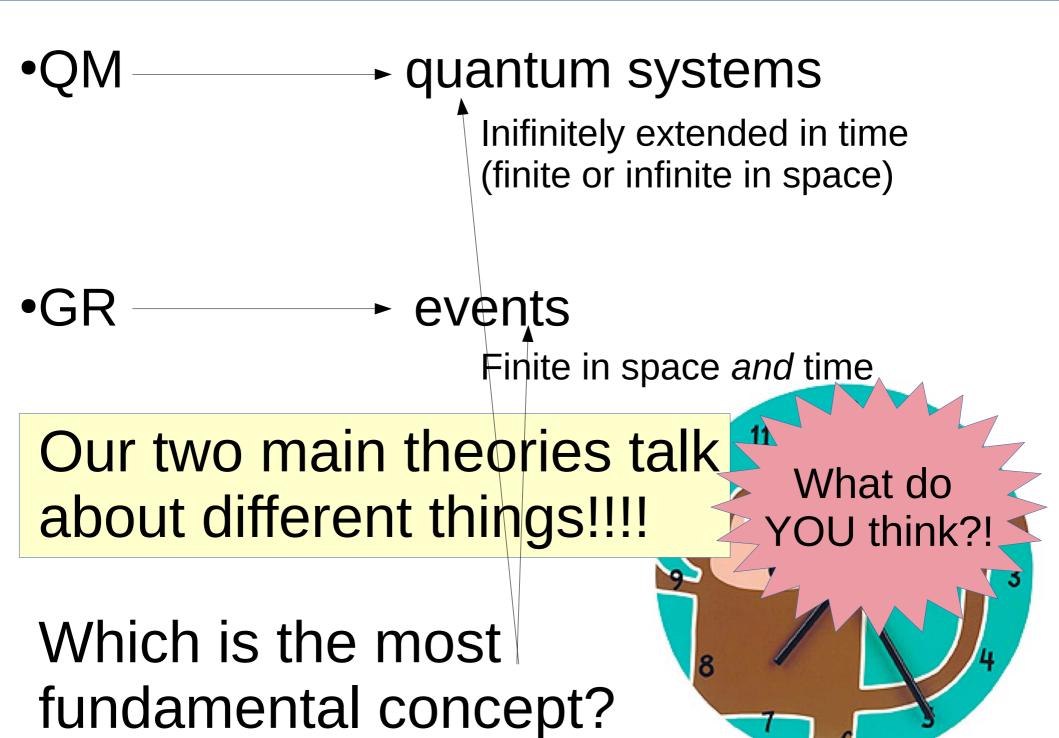
12

3

11







General relativistic theory of QM

Systems are more fundamental: GR is made of quantum fields

•Quantum theory of GR

Events are more fundamental:

General relativistic theory of QM

Systems are more fundamental: GR is made of quantum fields event=what happens to a quantum system

•Quantum theory of GR

Events are more fundamental:

Quantum system=succession of events

•General relativistic theory of QM

Systems are more fundamental: GR is made of quantum fields event=what happens to a quantum system

•Quantum theory of GR

Events are more fundamental:

Quantum system=succession of events

Quantum gravity approaches up to now?

General relativistic theory of QM

Systems are more fundamental: GR is made of quantum fields event=what happens to a quantum system

•Quantum theory of GR

Events are more fundamental:

Quantum system=succes/sion of events

Quantum gravity / approaches up to now?

General relativistic theory of QM

Systems are more fundamental: GR is made of quantum fields event=what happens to a quantum system

•Quantum theory of GR

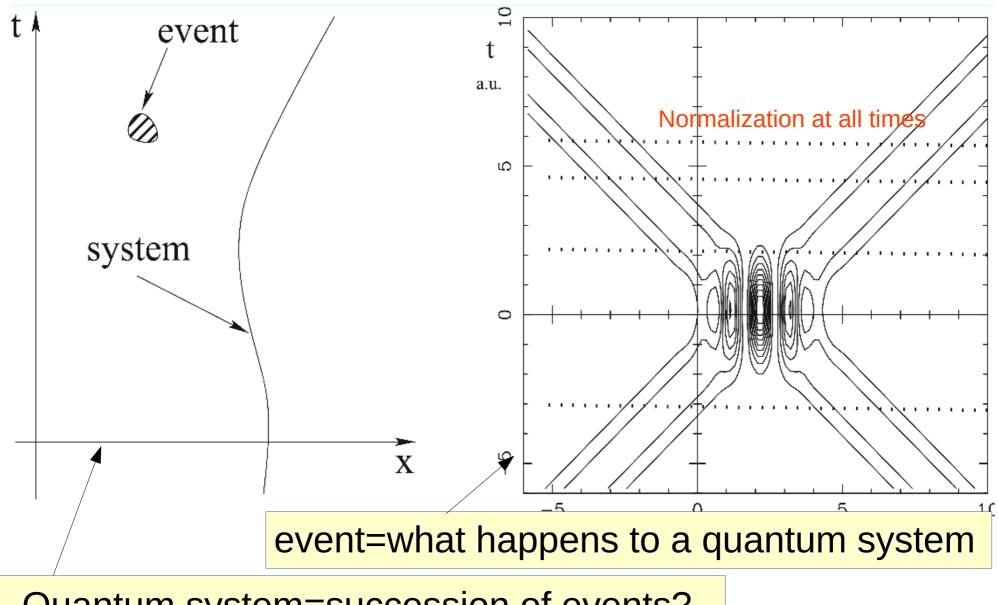
Events are more fundamental:

Quantum system=succes/sion of events

Quantum gravity / approaches up to now?

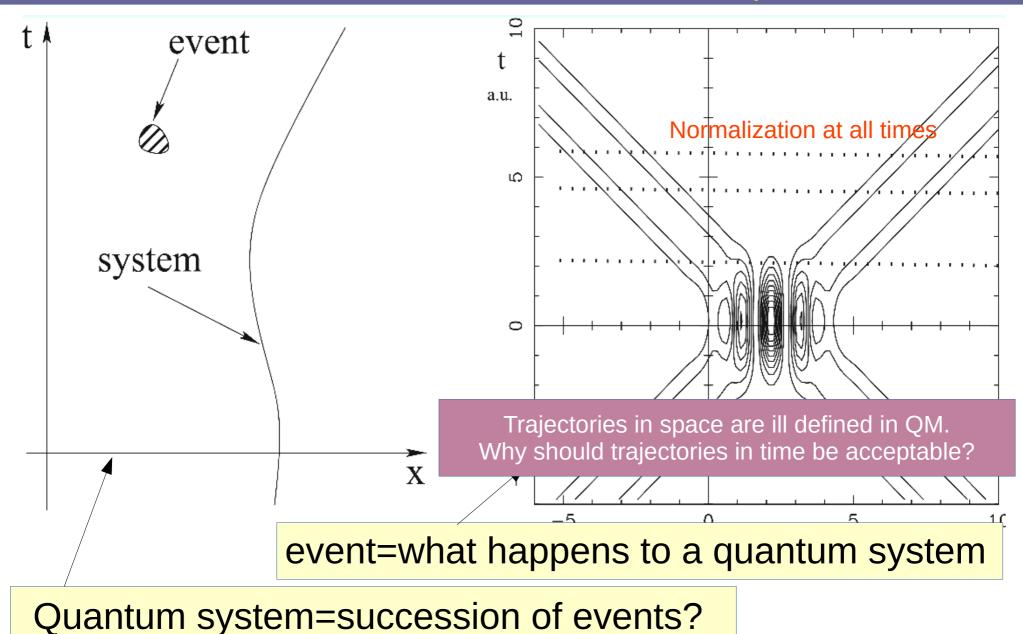
Explore the alternative!!

Current QM not able to deal with q events

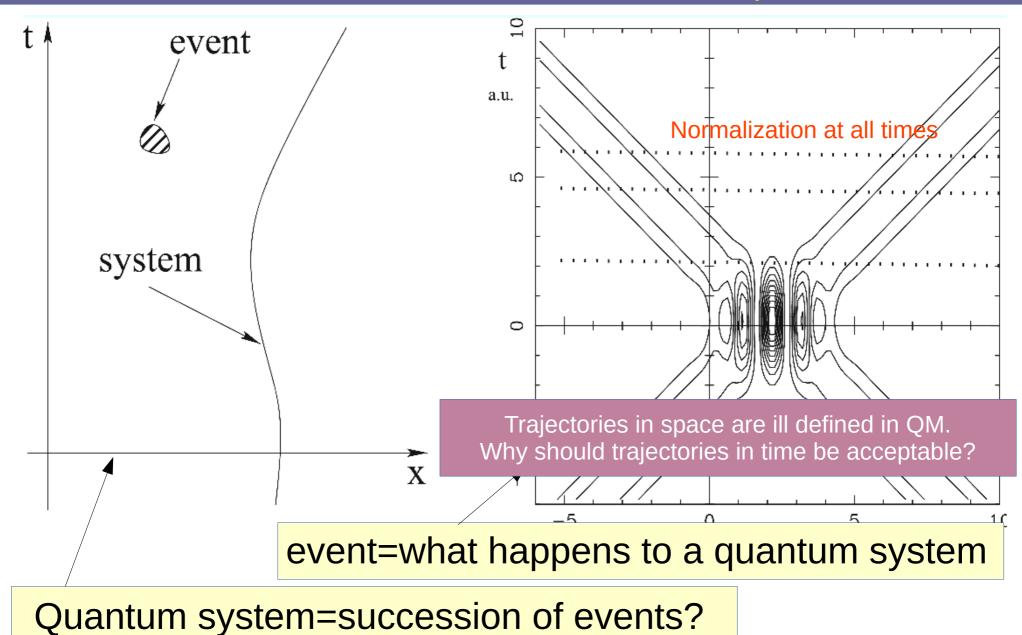


Quantum system=succession of events?

Current QM not able to deal with q events



Current QM not able to deal with q events



Need: Hilbert space for events (and its composition rule!)

Start with SPECIAL relativity

Let's deal with GR in the future (much in the future!)

QM uses time conditioned quantities

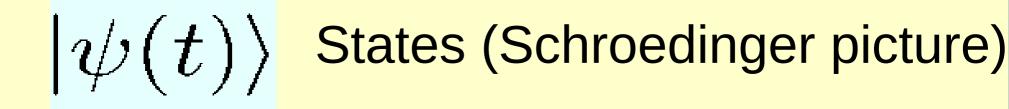
Textbook QM and QFT

QM uses time conditioned quantities

$|\psi(t) angle$ States (Schroedinger picture)X(t) Observables (Heis. picture)

Textbook QM and QFT

QM uses time conditioned quantities



X(t) Observables (Heis. picture)

CANNOT be relativistically covariant (covariance="formulas look the same in all reference frames")

Wait?!? What about QFT?

Wait?!? What about QFT?

• QFT uses a couple of tricks to recover covariance:

- QFT uses a couple of tricks to recover covariance:
- 1) use observables in the Heisenberg picture with covariant spacetime dependence, e.g. $a^{\dagger} e^{-ix^{\mu}p_{\mu}}$

- QFT uses a couple of tricks to recover covariance:
- 1) use observables in the Heisenberg picture with covariant spacetime dependence, e.g. $a^{\dagger} e^{-ix^{\mu}p_{\mu}}$

2) Use a state that is invariant for Lorentz transforms, e.g the vacuum $|0\rangle$

Our approach: Geometric Event-Based QM

Our approach: Geometric Event-Based QM

quantum events → fundamental

Our approach: Geometric Event-Based QM

quantum events → fundamental

quantum systems \rightarrow derived: a quantum state for a succession of events in q spacetime

(without energy nothing can happen, without momentum, nothing can be localized)

(without energy nothing can happen, without momentum, nothing can be localized)

basic observables:

$$\overline{X} := (X^0, X^1, X^2, X^3) \overline{P} := (P^0, P^1, P^2, P^3)$$

(without energy nothing can happen, without momentum, nothing can be localized)

basic observables:

$$\overline{X} := (X^0, X^1, X^2, X^3) \overline{P} := (P^0, P^1, P^2, P^3)$$

canonical commutations:

 $[X^{\mu}, P^{\nu}] = -i\eta^{\mu\nu}$ and $[X^{\mu}, X^{\nu}] = [P^{\mu}, P^{\nu}] = 0$

(without energy nothing can happen, without momentum, nothing can be localized)

basic observables:

$$\overline{X} := (X^0, X^1, X^2, X^3) \overline{P} := (P^0, P^1, P^2, P^3)$$

canonical commutations:

 $[X^{\mu}, P^{\nu}] = -i\eta^{\mu\nu}$ and $[X^{\mu}, X^{\nu}] = [P^{\mu}, P^{\nu}] = 0$

why?!?

(without energy nothing can happen, without momentum, nothing can be localized)

basic observables:

$$\overline{K} := (X^0, X^1, X^2, X^3) \overline{P} := (P^0, P^1, P^2, P^3)$$

canonical commutations:

 $[X^{\mu}, P^{\nu}] = -i\eta^{\mu\nu}$ and $[X^{\mu}, X^{\nu}] = [P^{\mu}, P^{\nu}] = 0$

why?!? Poincare' algebra: $\begin{bmatrix} M^{\mu\nu}, P^{\rho} \end{bmatrix} = -i(\eta^{\mu\rho}P^{\nu} - \eta^{\nu\rho}P^{\mu}), \\ \begin{bmatrix} M^{\mu\nu}, M^{\rho\sigma} \end{bmatrix} = i(\eta^{\nu\rho}M^{\mu\sigma} - \eta^{\mu\rho}M^{\nu\sigma}) \\ -\eta^{\mu\sigma}M^{\rho\nu} + \eta^{\nu\sigma}M^{\rho\mu}) \end{bmatrix}$ Now we can do GEB of easy systems (scalar KG and Dirac). Can we extend to more complex fields?

Can we extend to GR?

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

Not all GEB states are physical!

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

Not all GEB states are physical!

 $\left|\overline{x}\right\rangle$ is not (it describes a detection event of a particle that exists only at one spt location)

It cannot describe a quantum system (i.e. a succession of events), but it can describe a measurement apparatus.

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

Not all GEB states are physical!

 $\left|\overline{x}\right\rangle$ is not (it describes a detection event of a particle that exists only at one spt location)

It cannot describe a quantum system (i.e. a succession of events), but it can describe a measurement apparatus.

Physical states are the ones that satisfy some constraints (e.g. PW WdW).

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

Amplitudes (wavefunctions)

$$\Phi(\overline{x}) := \langle \overline{x} | \Phi \rangle , \ \tilde{\Phi}(\overline{p}) := \langle \overline{p} | \Phi \rangle = \int \frac{d^4x}{4\pi^2} e^{i\overline{x} \cdot \underline{p}} \ \Phi(\overline{x})$$

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

Amplitudes (wavefunctions)

$$\Phi(\overline{x}) := \langle \overline{x} | \Phi \rangle , \ \tilde{\Phi}(\overline{p}) := \langle \overline{p} | \Phi \rangle = \int \frac{d^4x}{4\pi^2} e^{i\overline{x} \cdot \underline{p}} \Phi(\overline{x})$$

Born rule: $P(\overline{x}|\Phi) = |\Phi(\overline{x})|^2 = |\langle \overline{x}|\Phi \rangle|^2$

$$|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$$

Amplitudes (wavefunctions)

$$\Phi(\overline{x}) := \langle \overline{x} | \Phi \rangle , \ \tilde{\Phi}(\overline{p}) := \langle \overline{p} | \Phi \rangle = \int \frac{d^4x}{4\pi^2} e^{i\overline{x} \cdot \underline{p}} \Phi(\overline{x})$$

Born rule: $P(\overline{x}|\Phi) = |\Phi(\overline{x})|^2 = |\langle \overline{x}|\Phi \rangle|^2$

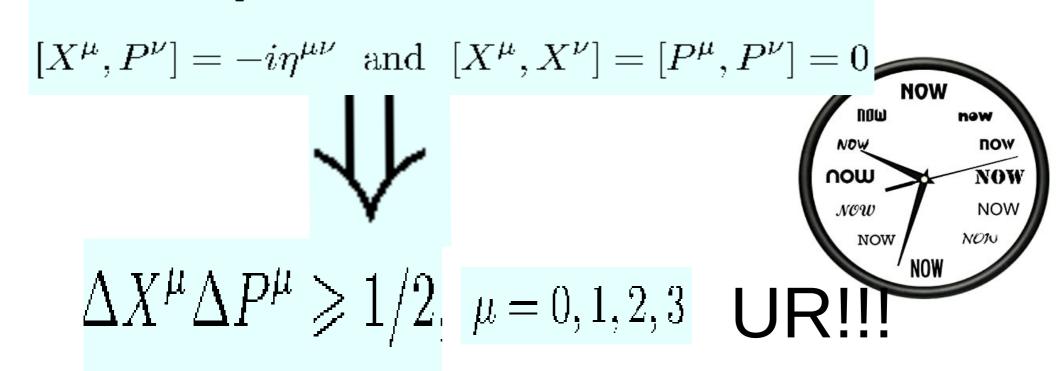
UNCONDITIONED probability that the event is in spacetime position \overline{x}

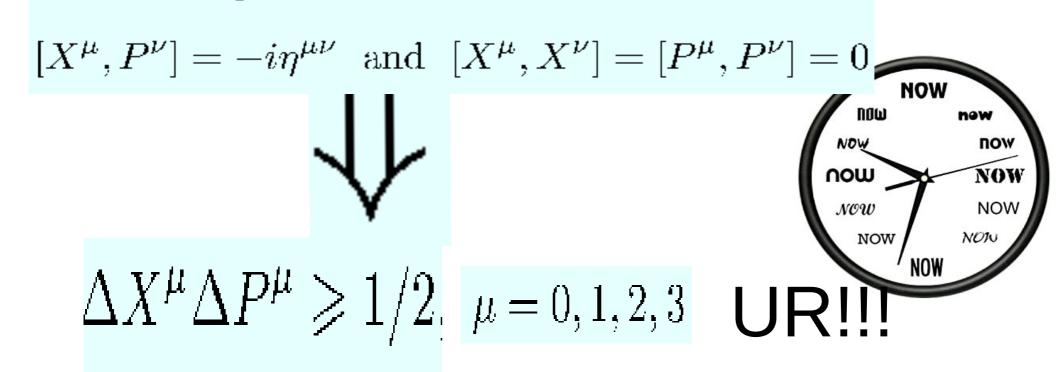
Born rule: $P(\overline{x}|\Phi) = |\Phi(\overline{x})|^2 = |\langle \overline{x}|\Phi \rangle|^2$ **UNCONDITIONED** probability that the event is in spacetime position \overline{x} GEB

Born rule: $P(\overline{x}|\Phi) = |\Phi(\overline{x})|^2 = |\langle \overline{x}|\Phi \rangle|^2$ UNCONDITIONED probability that the event is in spacetime position \overline{x} GEB

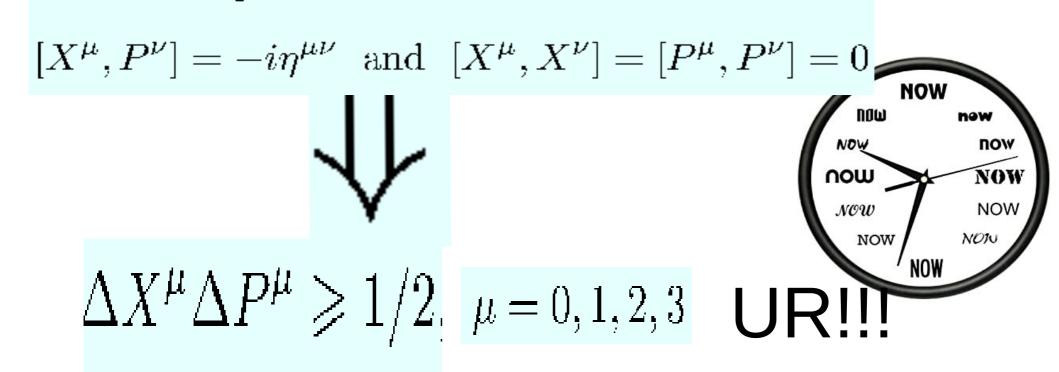
Born rule in QM is **CONDITIONED** $p(\vec{x}|\psi,t) = |\langle \vec{x}_S | \psi_S(t) \rangle|^2 = [\langle \vec{x}_H(t) | \psi_H \rangle|^2$ Probability that the particle is at position \vec{x} *Given* that the time is t!!! QM

Born rule: $P(\overline{x}|\Phi) = |\Phi(\overline{x})|^2 = |\langle \overline{x}|\Phi\rangle|^2$ **UNCONDITIONED** probability that the event is in spacetime position \overline{x} QM probabilities are NOT covariant **GEB** probabilities ARE covariant Born rule in QM is **CONDITIONED** $p(\vec{x}|\psi,t) = |\langle \vec{x}_S |\psi_S(t)\rangle|^2 = |\langle \vec{x}_H(t)|\psi_H\rangle|^2$ Probability that the particle is at position \vec{x} *QIVEN* that the time is t!!!





In GEB $\Delta X^0 \Delta P^0 \ge \hbar/2$ is a Heisenberg-Robertson inequality, in QM it is completely meaningless (e.g. Peres, Aharonov-Bohm)



In GEB $\Delta X^0 \Delta P^0 \ge \hbar/2$ is a Heisenberg-Robertson inequality, in QM it is completely meaningless (e.g. Peres, Aharonov-Bohm)

Cannot localize an event in time unless it has an energy spread

LORENTZ TRANSFORMS IN GEB

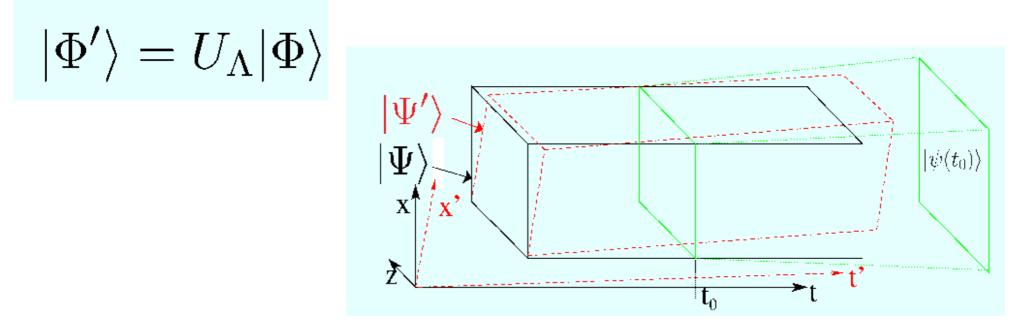
LORENTZ TRANSFORMS IN GEB

Just a **unitary transformation on the GEB state** (Wigner's prescription on how to describe symmetries of a theory)

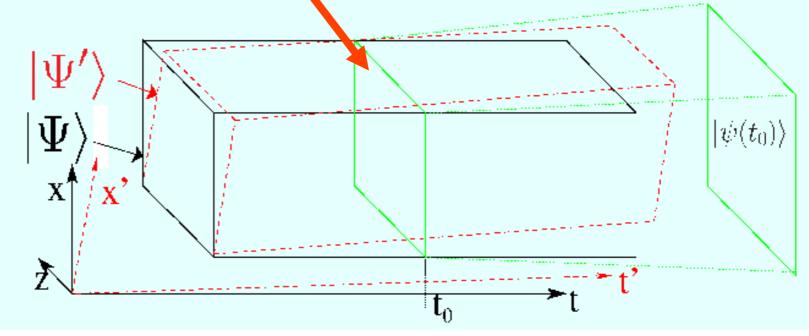
$$|\Phi'\rangle = U_{\Lambda}|\Phi\rangle$$

LORENTZ TRANSFORMS IN GEB

Just a **unitary transformation on the GEB state** (Wigner's prescription on how to describe symmetries of a theory)



 $|\Phi\rangle = \int d^4x \; \Phi(\overline{x}) \; |\overline{x}\rangle = \int d^4p \; \tilde{\Phi}(\overline{p}) \; |\overline{p}\rangle$

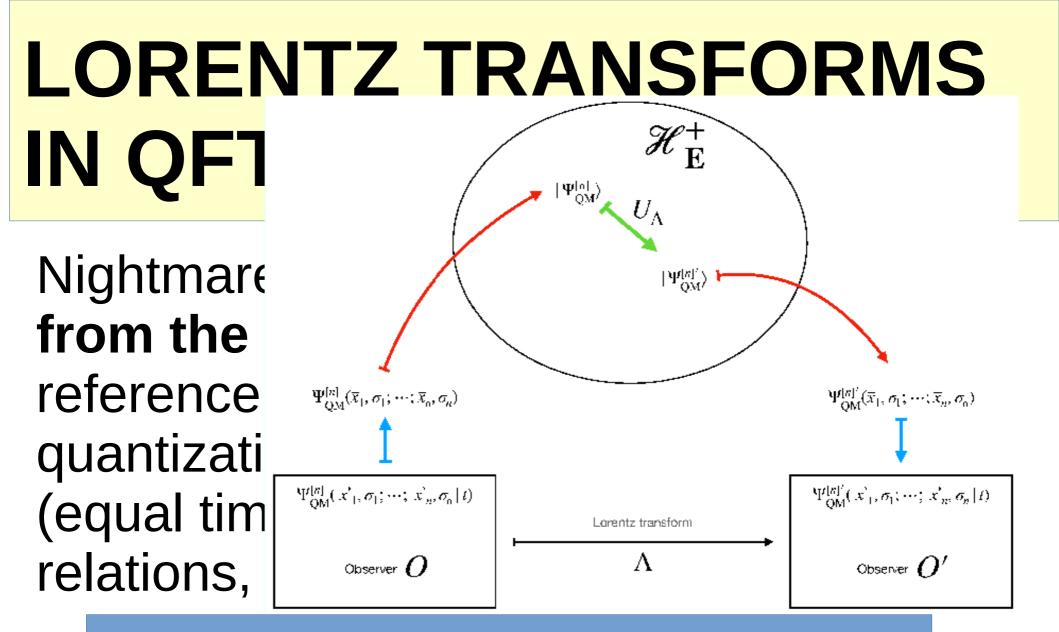


Nightmare!

Nightmare! Need to **quantize from the start** in the new reference frame: rerun the quantization procedure (equal time commutation relations, etc.).

Nightmare! Need to **quantize from the start** in the new reference frame: rerun the quantization procedure (equal time commutation relations, etc.).

... or you can take a shortcut through GEB



Easier than requantizing everything: a good first motivation for GEB

GEB

(if fixed number of events n)

$$|\Phi^{[n]}\rangle = \sum_{\sigma_1,\cdots,\sigma_n} \int d^4 x_1 \cdots d^4 x_n \; \Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \Big| \overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n \Big\rangle$$

(if fixed number of events n)

Fock space

$$|\Phi^{[n]}\rangle = \sum_{\sigma_1,\cdots,\sigma_n} \int d^4 x_1 \cdots d^4 x_n \; \Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \Big| \overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n \big\rangle$$

(otherwise)

$$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,a\frac{\dagger}{\overline{x}_1,\sigma_1}\cdots a\frac{\dagger}{\overline{x}_n,\sigma_n}|0\rangle_4$$

Creation operators: create an event at position x_1

(if fixed number of events n)

$$\begin{split} |\Phi^{[n]}\rangle &= \sum_{\sigma_{1},\cdots,\sigma_{n}} \int d^{4}x_{1}\cdots d^{4}x_{n} \Phi^{[n]}(\overline{x}_{1},\sigma_{1};\cdots;\overline{x}_{n},\sigma_{n}) |\overline{x}_{1},\sigma_{1};\cdots;\overline{x}_{n},\sigma_{n}\rangle \\ \hline \textbf{Fock space} \quad \textbf{(otherwise)} \\ &= \frac{1}{\sqrt{n!}} \sum_{\sigma_{1},\cdots,\sigma_{n}} \int d^{4}x_{1}\cdots d^{4}x_{n} \Phi^{[n]}(\overline{x}_{1},\sigma_{1};\cdots;\overline{x}_{n},\sigma_{n}) |u_{\overline{x}_{1},\sigma_{1}}^{\dagger}\cdots u_{\overline{x}_{n},\sigma_{n}}^{\dagger}|0\rangle_{4} \\ P^{[n]}(\overline{x}_{1},\sigma_{1};\cdots;\overline{x}_{n},\sigma_{n}) &= |\Phi^{[n]}(\overline{x}_{1},\sigma_{1};\cdots;\overline{x}_{n},\sigma_{n})|^{2} \end{split}$$

Joint probability for the n events to happen in spt positions $x_1...x_n$

(if fixed number of events n)

 $|\Phi^{[n]}
angle = \sum \int d^4x_1 \cdots d^4x_n \Phi^{[n]}(\overline{x}_1, \sigma_1; \cdots; \overline{x}_n, \sigma_n) |\overline{x}_1, \sigma_1; \cdots; \overline{x}_n, \sigma_n
angle$

EACH EVENT WITH ITS OWN TIME!!!! (cfr Dirac's multiparticle-multitime)

$$P^{[n]}(\overline{x}_1, \sigma_1; \cdots; \overline{x}_n, \sigma_n) = |\Phi^{[n]}(\overline{x}_1, \sigma_1; \cdots; \overline{x}_n, \sigma_n)|^2$$

Joint probability for the n events to happen in spt positions $x_1...x_n$

$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,\left[a\frac{\dagger}{\overline{x}_1},\sigma_1\cdots a\frac{\dagger}{\overline{x}_n},\sigma_n\right]|0\rangle_4$

$$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,\left[a\frac{\dagger}{\overline{x}_1},\sigma_1\cdots a\frac{\dagger}{\overline{x}_n},\sigma_n\right]|0\rangle_4$$

Commutators:

Bose:
$$[a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}^{\dagger}] = \delta_{\sigma,\sigma'} \delta^{(4)}(\overline{x} - \overline{x}'), \ [a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}] = 0,$$

Fermi: $\{a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}^{\dagger}\} = \delta_{\sigma,\sigma'} \delta^{(4)}(\overline{x} - \overline{x}'), \ \{a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}\} = 0$

$$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,\left[a\frac{\dagger}{\overline{x}_1},\sigma_1\cdots a\frac{\dagger}{\overline{x}_n},\sigma_n\right]|0\rangle_4$$

Commutators:

Bose:
$$[a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}^{\dagger}] = \delta_{\sigma,\sigma'} \delta^{(4)}(\overline{x} - \overline{x}'), \ [a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}] = 0,$$

Fermi: $\{a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}^{\dagger}\} = \delta_{\sigma,\sigma'} \delta^{(4)}(\overline{x} - \overline{x}'), \ \{a_{\overline{x},\sigma}, a_{\overline{x}',\sigma'}\} = 0$

Bosonic events — Bosons

Fermionic events — Fermions

9-1 6 V

$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,a\frac{\dagger}{\overline{x}_1,\sigma_1}\cdots a\frac{\dagger}{\overline{x}_n,\sigma_n} |0\rangle_4$

4D vacuum

$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,a\frac{\dagger}{\overline{x}_1,\sigma_1}\cdots a\frac{\dagger}{\overline{x}_n,\sigma_n} |0\rangle_4$

4D vacuum

Different state from the 3D vacuum of QFT $(|0\rangle_3 = n0)$ particles at time t=0 in the Heis pic)

$$=\frac{1}{\sqrt{n!}}\sum_{\sigma_1,\cdots,\sigma_n}\int d^4x_1\cdots d^4x_n \,\Phi^{[n]}(\overline{x}_1,\sigma_1;\cdots;\overline{x}_n,\sigma_n) \,a\frac{\dagger}{\overline{x}_1,\sigma_1}\cdots a\frac{\dagger}{\overline{x}_n,\sigma_n} |0\rangle_4$$

vacuum

$$|0\rangle_3 = \text{foliate}(a_{\overline{p}=0}^{\dagger}|0\rangle_4)$$

Event state of **zero 4-momentum**: ground state of the field

Relativistic QM FROM GEB

Relativistic QM FROM GEB

Use **constraints** (as in the quantum time P&W, WdW, etc.)!

Use **constraints** (as in the quantum time P&W, WdW, etc.)!

- 1) Start from a single-particle wavefunction:
- $\Psi_{\rm QM}(\vec{x},\sigma|t)$ (prob amplitude of finding particle in x given that the time is t)

Use **constraints** (as in the quantum time P&W, WdW, etc.)!

- 1) Start from a single-particle wavefunction:
 - $\Psi_{\rm QM}(\vec{x},\sigma|t)$ (prob amplitude of finding particle in x given that the time is t)
- 2) Construct a GEB state from it:

$$\Psi_{\rm QM}(\overline{x},\sigma) := \Psi_{\rm QM}(\vec{x},\sigma|t) \ \left| \Psi_{\rm QM} \right\rangle := \sum_{\sigma} \int d^4x \ \Psi_{\rm QM}(\overline{x},\sigma) \ \left| \overline{x},\sigma \right\rangle$$

(GEB state describing the whole dynamics of the **particle as a state of a sequence of events**)

Use **constraints** (as in the quantum time P&W, WdW, etc.)!

- 1) Start from a single-particle wavefunction:
- 2) Construct a GEB state from it:

$$\Psi_{\rm QM}(\overline{x},\sigma) := \Psi_{\rm QM}(\vec{x},\sigma|t) \quad |\Psi_{\rm QM}\rangle := \sum_{\sigma} \int d^4x \; \Psi_{\rm QM}(\overline{x},\sigma) \; |\overline{x},\sigma\rangle$$

 $K|\Psi_{\rm QM}\rangle = 0$

(GEB state describing the whole dynamics of the **particle as a state of a sequence of events**)

 Write it as an eigenstate of a constraint op.

Use **constraints**

Same procedure works for more complex QFT systems e.g.

Use **constraints**

Same procedure works for more complex QFT systems e.g.

Klein-Gordon eq. constraint in Fock sp:

$$K_{\mathrm{KG}^+}^{(\mathrm{Fock})} := \int d^4p \left[\Theta(p^0) \ \overline{p} \cdot \underline{p} - m^2\right]^2 \ a_{\overline{p}}^{\dagger} a_{\overline{p}}$$

Use **constraints**

Same procedure works for more complex QFT systems e.g.

Klein-Gordon eq. constraint in Fock sp:

$$K_{\mathrm{KG}^+}^{(\mathrm{Fock})} := \int d^4p \left[\Theta(p^0) \ \overline{p} \cdot \underline{p} - m^2\right]^2 \ a_{\overline{p}}^{\dagger} a_{\overline{p}}$$

Similarly for the Dirac eq. constraint.

No claim that QFT is incorrect.

GEB is an **alternative** in the sense "a different way to obtain the same results"

No claim that QFT is incorrect.

GEB is an **alternative** in the sense "a different way to obtain the same results"

WHY?

No claim that QFT is incorrect.

GEB is an **alternative** in the sense "a different way to obtain the same results"

WHY?

To get a better ontology? To go further than QFT can go?

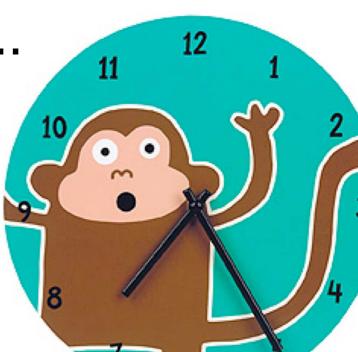
Conclusions

• Philosophical considerations about time

- Philosophical considerations about time
- •Time as a quantum degree of freedom

- Philosophical considerations about time
- •Time as a quantum degree of freedom
- The conventional formulation: conditioning

- Philosophical considerations about time
- •Time as a quantum degree of freedom
- The conventional formulation: conditioning
- Pauli objections and others..



- Philosophical considerations about time
- •Time as a quantum degree of freedom
- The conventional formulation: conditioning

12

11

- Pauli objections and others..
- Quantum time measurements

- Philosophical considerations about time
- •Time as a quantum degree of freedom
- The conventional formulation: conditioning

12

11

- Pauli objections and others..
- Quantum time measurements
- GEB a relativistically covariant quantiz

Take home message

A quantization of time based on conditional probability amplitudes

quantum time: PRD **92**, 045033 Geometric Event-Based QM: NJP **25**, 023027 time observable: PRL **124**, 110402

Lorenzo Maccone maccone@unipv.it