Diffie-Hellman Key Exchange Protocol and
RSA-FDH

Subhabrata Samajder

CREST CRYPTO SUMMER SCHOOL (CCSS), 2025

tcg crest

Inventing Harmon ious Future

24t June, 2025

0/36



Symmetric-Key Encryption (Recap)

Secure Channel : Key Exchange

K K
P Insecure Channel : C P
:&ncryption a

\%

Figure: Symmetric-key Setup

1/36



The Discrete-Logarithm Problem (DLog)

DA

1/36



Assumptions

@ G(1"): Denotes a generic, PPT group generations algorithm.

o Outputs a description of a cyclic group G of order g (with ||q|]| 2
[log, g] = n), and a generator g € G.

@ The description of a cyclic group specifies how elements of the
group are represented as bit-strings.

@ Each group element is represented by a unique bit-string.

@ There are efficient algorithms for computing the following.

e The group operation o in G.
o Testing whether a given bit-string represents an element of G.

o Efficient computation of the group operation:

o Efficient algorithms for exponentiation in G
e Sampling a uniform element h € G.

o Choose x +— Zq.
e Set h:=g*.
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Discrete Logarithm

If G = (g) with o(G) = q, then G = {g° g*,..., g9 1}.

Equivalently, for every h € G there is a unique x € Zg, s.t.,

g5 =h

Discrete logarithm of h with respect to g: logg h = x.

Note: If g¥' = h for some X’ € Z, then X’ mod q = log, h.

o Some Properties:
o log,1=0.
o log, h" = (r-log, h) mod gq.
o log,(h1h2) = (log, h1 + log, h2) mod gq.
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The Discrete-Logarithm Experiment: DLog 4 (n)
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The Discrete-Logarithm Experiment: DLog 4 (n)

Challenger (C) Adversary (A)

(G,q,8) < G(1")

Choose h <i G.
(G,q,8,h)

Output 1 if g¥ = h;
Otherwise, output 0

Definition (Discrete-Logarithm Assumption)

We say that the discrete-logarithm problem is hard relative to G if
for all PPT algorithms A there exists a negligible function negl, s.t.,

Pr[DLog 4 g(n) = 1] < negl(n).
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The Diffie-Hellman Key-exchange Protocol
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Using Asymmetry for Key Exchange

o Until 1976, it was generally believed that secure communica-
tion could not be achieved without first sharing some secret
information using a private channel.

e Whitfield Diffie and Martin Hellman. IEEE-IT (1976), “New
Directions in Cryptography”.
o Observed that there is often asymmetry in the world.

o Certain actions can be performed easily but cannot be easily
reversed.

o Example:

o Padlocks can be locked without a key, but then cannot be re-
opened.

@ It is easy to shatter a glass vase but extremely difficult to put
it back together again.

e Factorization Problem: It is easy to multiply two large primes
but difficult to recover those primes from their product.
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The Setting

@ Alice and Bob: Both runs a probabilistic protocol I1 in order to
generate a shared, secret key.

e [1: The set of instructions for Alice and Bob in the protocol.
e Alice and Bob begin by holding the security parameter 1”.
o They then run 1 using independent random bits.

o At the end of the protocol, Alice and Bob output keys ka, kg €
{0,1}", respectively.

o Correctness: ky = kg = k (say).
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Definition of Security

o Intuitive: A key-exchange protocol is secure if the key output
by Alice and Bob is completely unguessable by an eavesdropping
adversary.

e Formally: An adversary eavesdropping on an execution of the
protocol should be unable to distinguish the key k generated
by 1 from a uniform key of length n.
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Definition of Security

o Note:

e This is much stronger than simply requiring that the adversary
be unable to compute k exactly.

e But it is necessary since the parties will subsequently use k for
some cryptographic application (e.g., as a key for a private-key
encryption scheme).
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eav

The key-exchange experiment KE'r(n)

@ Two parties holding 1" execute protocol 1. This results in the
following outputs.

e trans: Contains all the messages sent by the parties.
e k: Output of each of the parties.

@ Choose b <> {0,1}.

o Ifb=0setk:=k
o If b =1 then choose k «— {0,1}".

© A is given trans and k, and outputs a bit b'.

Q@ Output 1 if b/ = b, and 0 otherwise.
eav

In case KEZ17(n) = 1, we say that A succeeds.
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eav

The key-exchange experiment KE'r(n)

Definition (EAV-secure Key-exchange Protocol)

A key-exchange protocol [T is secure in the presence of an eaves-
dropper if for all PPT adversaries A there is a negligible function
negl such that

Pr[KEZh(n) =1] < % + negl(n).
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The Diffie-Hellman Key-exchange Protocol

G: Is a PPT algorithm that, on input 17, outputs a description of a
cyclic group G of order g (with ||g|| = n), and a generator g € G.
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The Diffie-Hellman Key-exchange Protocol
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The Diffie-Hellman Key-exchange Protocol
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The Diffie-Hellman Key-exchange Protocol
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Assumptions Needed to Prove Security

@ Minimal security requirement: Discrete-logarithm problem
(DLog) should be hard relative to G.

o If not, then A given trans (which, includes ha) can compute
log, ha = log, g* = x, the secret value of Alice.

o Then the shared key = h%.

e Hardness of the DLog is necessary for the protocol to be secure.

e It is however, not sufficient.
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Assumptions Needed to Prove Security

o Note:
e There could be other ways of computing the shared key k with-
out explicitly computing x or y.

o Computational Diffie-Hellman (CDH) assumption: Guarantees
that the key g’ is hard to compute in its entirety from trans.

o But CDH does not suffice either.

o What is required is that the shared key g’ should be indistin-
guishable from uniform for any adversary given g, g*, and g¥ -
decisional Diffie-Hellman (DDH) assumption.
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The Diffie-Hellman Problems
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Diffie-Hellman Problems and DLog

@ The Diffie-Hellman problems are related, but not known to be
equivalent to DLog.

@ There are two important variants:

o Computational Diffie-Hellman (CDH) problem
o Decisional Diffie-Hellman (DDH) problem

11/36



Computational Diffie-Hellman (CDH) Problem

Fix a cyclic group G and a generator g € G.

@ Given elements hy, hy € G, define

DHg(hy, h2) 2 g('°gg hy)-(logg h2)

That is, if hy = g** and h, = g*2 then

DHg(h1, hp) = g2 = h}* = h3'.

CDH problem: Compute DHg(hy, h2) for uniform hy and ho.
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Decisional Diffie-Hellman (DDH) Problem

Definition
We say that the DDH problem is hard relative to G if for all PPT
algorithms A there is a negligible function negl, s.t.,

|Pr[A(G7 q7g7nggy7gz) = 1] - Pr[A(Ga q7g7nggy7gxy) = 1]|
< negl(n),

where in each case the probabilities are taken over the experiment
in which G(1") outputs (G, g, g), and then uniform x, y,z € Zq
are chosen.

Recall that when z - Zgq, then gZ is uniformly distributed in G.
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Security Proof of Diffie-Hellman Key-Exchange Protocol

DA

13/36



Theorem 1

Theorem

If the decisional Diffie-Hellman (DDH) problem is hard relative to
G, then the Diffie-Hellman key-exchange protocol I is secure in the
presence of an eavesdropper .
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Proof of Theorem 1

Let A be a PPT adversary.

Since Pr[b = 0] = Pr[b = 1] = 1/2, we have

PHKE n(n) =1]

—~e€av

1 1 —~~=e€av
= 35 Pr[KE4n(n) = 1|b=0] + 5 Pr[KE 4 n(n) = 1|b = 1]

Recall that A receives (G, g, g, hA,hB,/?), where k is either the
—_————

trans

actual key computed by the parties (if b = 0) or a uniform group
element (if b=1).
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Proof of Theorem 1

Now, distinguishing between these two cases is exactly equivalent to
solving the DDH, i.e.,

—~eav

Pr[KEA’n(n) =1]
1 — eav reeav
= 5 (PrKEX () = 1]b = 0] + PrKE n(n) = 1/b = 1])

1

= S (PrlAG.g.9.8%. 8", 8¥) = 0+
PrlA(G,g,9,8",8”,8%) = 1])

= % (1 — Pr[A(trans, g¥) =1]) + % - Pr[A(trans, g*) = 1]

% + 1 - (Pr[A(trans, g%) = 1] — Pr[A(trans, g¥) = 1])

N
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Proof of Theorem 1

Now, distinguishing between these two cases is exactly equivalent to
solving the DDH, i.e.,

PHKE n(n) =1]
1 1
< 5 + 5 |Pr[A(trans, g%) = 1] — Pr[A(trans, g¥) = 1]|
[By triangle inequality], (1)

where the probabilities are all taken over (G, g, g) output by G(1"),
and uniform choice of x,y,z € Z;.
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Proof of Theorem 1

Now DDH is hard relative to G, implies that

|Pr[A(trans, g%) = 1] — Pr[A(trans, g*) = 1]| < negl(n).

Then from (1), we get

—~eav

1 1
Pr[KEA’n(n) =1] < 5 + 5 negl(n),

completing the proof.
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Why Authentication?
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Hi Bob, it's Alice.

Q Give me your key. a g
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Hi Bob, it's Alice.

Q a Give me your key. g
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Q a [Bob's Public Key] g

Alice Mallory Bob



Q [Mallory's Public Key] a g

Alice Mallory Bob



Meet-in-the-Middle Attack (MITM)

Meet me at the bus stop.

[Ecncrypted with Mallory’s Key.] [ o\
2 Y.
A\

Alice Mallory Bob




Meet-in-the-Middle Attack (MITM)

eet me at the van down by the river.

(1 T00\  [Ecncrypted with Bob's Key.]
2 v g
A\

Alice Mallory Bob
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Meet-in-the-Middle Attack (MITM)

eet me at the van down by the river.
. o [Ecncrypted with Bob's Key.]
Alice Mallory Bob

Bob:

@ Thinks the message is a secure communication from Alice.
@ Goes to the van down by the river.

o Gets robbed by Mallory.
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Meet-in-the-Middle Attack (MITM)

eet me at the van down by the river.

0 ap | [Ecncrypted with Bob's Key.] z
) >

Alice Mallory Bob

Bob:

@ Thinks the message is a secure communication from Alice.
@ Goes to the van down by the river.
o Gets robbed by Mallory.

Alice:
@ Does not know that Bob was robbed by Mallory.

@ Thinks Bob will not come.
@ Therefore goes home.
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Meet-in-the-Middle Attack (MITM)

@ Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

@ And not the public key of an attacker.

@ Otherwise, such attacks are generally possible.
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Public-Key Encryption (Recap)
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Digital Signatures

@ Public-key encryption: Achieves secrecy in the PK setting.

e Digital signature: Provides Integrity (or authenticity) in the PK
setting.

@ They are the Public-key analogue of the MACs.
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Digital Signatures
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Digital Signatures

ﬂ Create
o Digital Signature
' Bobs Private Key .
u > < i \
- 2 Send Over Internet
Bob AN

i

Digital Signature
~ g
by Bobs Public Key
= < (|
T
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Verify

Note: The owner of the public key acts as the sender.

19/36



An Example: Software Distribution

Scenario:

@ A software company that wants to disseminate software updates
in an authenticated manner.

@ Mallory: Should not be able to fool a client into accepting an
update that was not actually released by the company.
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An Example: Software Distribution

Digital Signature Solution:
e Company:

o Generates (pk, sk).
o Distributes pk in some reliable manner to its clients.

o Example: Bundle pk with the original software purchased by a
client.

o Keeps sk secret.
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An Example: Software Distribution

Digital Signature Solution:
o Company:

o Generates (pk, sk).
e Distributes pk in some reliable manner to its clients.

o Example: Bundle pk with the original software purchased by a
client.

o Keeps sk secret.

@ Release of a software update m:

o Computes a digital signature ¢ on m using its private key sk.
e Sends (m, o) to every client.

e Each Client:
o Uses pk to verify that o is a valid signature on m.
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An Example: Software Distribution

Digital Signature Solution:

o Mallory: Might try to issue a fraudulent update by sending
(m',c’) to a client, where m’" # m - forgery.
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An Example: Software Distribution

Digital Signature Solution:

e Mallory: Might try to issue a fraudulent update by sending
(m',o’) to a client, where m’ # m - forgery.

e “Secure”:

o If client's attempts to verify the signature ¢’ on m’ fails w.r.t.
pk - invalid signature.

o Rejects the signature and therefore the message m’.
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Definition

Definition (Digital Signature Scheme)
A (digital) signature scheme consists of three PPT algorithms
(Gen, Sign, Vrfy) such that:

@ Gen: (pk, sk) < Gen(1").

@ Sign: o < Signg(m).

Q Vrfy: b:= Vrfy,(m, o).

Valid if b =1, else invalid.
It is required that except with negligible probability over (pk, sk), it
holds that
Vrfy o, (m, Signg(m)) = 1

for every (legal) message m.
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@ This establishes that

o S has sent m, and

o that m was not modified in transit.
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Digital Signature Model
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@ Unlike MAC, it does not say anything about when m was sent.
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Digital Signature Model

@ This establishes that

e S has sent m, and
e that m was not modified in transit.

@ Unlike MAC, it does not say anything about when m was sent.

@ Therefore replay attacks are still possible.

@ Assumption: The parties are able to obtain a legitimate copy
of S's public key.
o Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
e If one then why not all?
e In other words, why do we need a signature scheme at all?
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Answer:

@ Reliable distribution of pk is a difficult and expensive task.
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Digital Signature Model
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Digital Signature Model

Answer:

@ Reliable distribution of pk is a difficult and expensive task.
@ Signatures ensures that this needs be carried out only once.

@ After that an unlimited number of messages can subsequently
be sent in a reliable manner.

@ Also, signature schemes are used to ensure the reliable distri-
bution of other public keys.

@ They thus serve as a central tool for setting up a “public-key
infrastructure (PKI)" to address the key-distribution problem.
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The Signature Experiment Sig-forge 4 n(n)

For a fixed public key pk generated by a signer S, a forgery is a
message m along with a valid signature o, where m was not
previously signed by S.
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The Signature Experiment Sig-forge 4 n(n)

For a fixed public key pk generated by a signer S, a forgery is a
message m along with a valid signature o, where m was not
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The Signature Experiment Sig-forge 4 n(n)

For a fixed public key pk generated by a signer S, a forgery is a
message m along with a valid signature o, where m was not
previously signed by S.

. (m,o)
& -8
Adversary (A) Verifier (V)
A wins if:
Q@ Vrfyy(m,0) =1 and
Q@ m¢ Q.
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The Signature Experiment Sig-forge 4 n(n)

Let M = (Gen, Sign, Vrfy) be a signature scheme.

@ Run (pk, sk) < Gen(1").

@ Adversary A is given pk and access to an oracle Signg(-). The
adversary then outputs (m, o). Let Q denote the set of all
queries that A asked its oracle.

© A succeeds if and only if

0 Vrfy,(m,o) =1 and
@ m¢ Q.
In this case, output 1.
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The Signature Experiment Sig-forge 4 n(n)

Let M = (Gen, Sign, Vrfy) be a signature scheme.

@ Run (pk, sk) < Gen(1").

@ Adversary A is given pk and access to an oracle Signg(-). The
adversary then outputs (m, o). Let Q denote the set of all
queries that A asked its oracle.

© A succeeds if and only if

0 Vrfy,(m,o) =1 and
@ m¢ Q.
In this case, output 1.

Definition
A signature scheme N = (Gen, Sign, Vrfy) is existentially unforge-

able under an adaptive chosen-message attack, or just secure,
if for all PPT adversaries A, there is a negligible function negl, s.t.,

Pr[Sig-forge 4 n(n) = 1] < negl(n).
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Plain RSA Signature
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Plain RSA Signature

e Gen: (N,e,d) < GenRSA(1"), where N = pg and ed =1
mod ¢(N).
o pk: (N,e)
e sk: (N,p,q,d).

@ Sign: On input sk = (N, d) and m € Z},, compute

o:=m mod N.

e Vrfy: On input pk = (N,e), m € Z},, and a o € Z},;, output 1
if and only if

2

m=o0° mod N.
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Plain RSA Signature

e Gen: (N,e,d) < GenRSA(1"), where N = pg and ed =1
mod ¢(N).
o pk: (N,e)
e sk: (N,p,q,d).

@ Sign: On input sk = (N, d) and m € Z},, compute

o:=m mod N.

e Vrfy: On input pk = (N,e), m € Z},, and a o € Z},;, output 1
if and only if
m=o° mod N.

med mod ¢(N) 1

Correctness: 0¢ = (m9)¢ = =m!=m mod N.
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Secure?

e Consider an adversary knowing only the public key (N, e).
@ Then computing a valid signature on a message m seems to

require solving the RSA problem (since the signature is exactly
the eth root of m).

25/36



Secure?

e Consider an adversary knowing only the public key (N, e).
@ Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly

the eth root of m).

@ Unfortunately, this reasoning is incorrect.

25/36



Secure?

e Consider an adversary knowing only the public key (N, e).

@ Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

@ Unfortunately, this reasoning is incorrect.

e The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an e" root) of a uniform message m.

25/36



Secure?

e Consider an adversary knowing only the public key (N, e).

@ Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

@ Unfortunately, this reasoning is incorrect.

e The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an e" root) of a uniform message m.

e Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

25/36



Secure?

e Consider an adversary knowing only the public key (N, e).

@ Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

@ Unfortunately, this reasoning is incorrect.

e The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an e" root) of a uniform message m.

e Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

e The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.
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Attacks

A no-message attack:
e Given a pk = (N, e), choose o & Zy.
o Compute m:=0€ mod N.

@ Then output the forgery (m, o).
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Attacks

Forging a signature on an arbitrary message:

@ Say the adversary wants to forge a signature on the message
m € Zj, with respect to the public key pk = (N, e).

o A:

o Chooses arbitrary my, mp € Zj, distinct from m such that

m=m;-my mod N.

o Obtains signatures 01,02 on my, my, respectively.

o Outputs
og:=01-00 modN

as a valid signature on m.
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Attacks

Forging a signature on an arbitrary message:

@ Say the adversary wants to forge a signature on the message
m € Zj, with respect to the public key pk = (N, e).

o A:

o Chooses arbitrary my, mp € Zj, distinct from m such that

m=m;-my mod N.

o Obtains signatures 01,02 on my, my, respectively.

o Outputs
og:=01-00 modN

as a valid signature on m.

@ Can be extended to n arbitrary messages.

26/36



RSA-FDH

cos g <

4

<

>

Da

26/36



How to prevent these trivial attacks?

o Idea: Apply some transformation to messages before signing
them.

@ That is, the signer now specifies as part of its public key a
(deterministic) function H with certain cryptographic properties
mapping messages to Zj,.

e Sign: 0 := H(m)? mod N.

o Vrfy: o€ L H(m) mod N.
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The RSA-FDH signature scheme

e Gen: (N, e, d) < GenRSA(1")
o pk: (N,e)
o sk: (N,d)
As part of key generation, a function H : {0,1}* — Zj is
specified, but we leave this implicit.

@ Sign: On input a sk = (N, d) and a m € {0,1}*, compute
o= H(m)? mod N.
e Vrfy: On input a pk = (N, e), a message m, and a signature
o, output 1 if and only if

e

?
g =

H(m) mod N.
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Properties H Require

@ Prevent the no-message attack:
o It should be infeasible for an attacker to start with o,
e compute M := 0 mod N, and
o then find a message m such that H(m) = .

e Thus, H should be hard to invert in some sense.

o To prevent the second attack:

e H must not admit “multiplicative relations”.
e It should be hard to find three messages m, my, my with

H(m) = H(my) - H(mp) mod N.

o It must be hard to find collisions in H:

o If H(my) = H(m,), then my and my have the same signature.
e That is forgery becomes trivial.
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Choice of H

@ There is no known way to choose H so that the scheme can be
proven to be secure.

@ Theorem: The signature scheme is security under random or-
acle model, i.e., if H is modeled as a random oracle that maps
its inputs uniformly onto Zj,.

@ The scheme in this case is called the RSA full-domain hash
(RSA-FDH) signature scheme.

@ Note: A random function of this sort satisfies the requirements
discussed previously.
e A random function (with large range) is hard to invert.
e Does not have any easy-to-find multiplicative relations.
e Is collision resistant.
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Security Against No-message Attack

Note:

@ The adversary A cannot request any signatures.

@ The adversary is limited to making queries to the random oracle.

e Wlog, we assume that A always makes exactly g (distinct)
queries to H.

@ If the adversary outputs a forgery (m, o) then it had previously
queried m to H.
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Security Against No-message Attack

Assumption:
e A is an efficient adversary that carries out a no-message attack.

o A makes exactly g queries to H.

Construct an efficient algorithm A’ for solving the RSA problem
relative to GenRSA.

Given input (N, e,y), algorithm A’
e runs A on the public key pk = (N, e).

@ Let my,..., mq denote the g (distinct) queries that A makes
to H.

o A’ answers these random-oracle queries of A with uniform el-
ements of Zj, except for one query

e say, the /™" query, chosen uniformly from the oracle queries of

A
@ This it" query is answered with y itself.
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Security Against No-message Attack

From the point of view of A, all its random-oracle queries are an-
swered with uniform elements of Zj,.

Recall that y is uniform as well, although it is not chosen by A’, and
so A has no information about /.

Moreover, the view of A when run as a subroutine by A’ is identically
distributed to the view of A when attacking the original signature
scheme.
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Security Against No-message Attack

If A outputs a forgery (m, o) then, because m € {my, ..., mg}, with
probability 1/q we will have m = m;.

In that case,

0 =H(m)=H(mj)=y mod N
and A’ can output o as the solution to its given RSA instance
(N, e y).

Conclusion:

o If A outputs a forgery with probability ¢, then A’ solves the
RSA problem with probability €/q.

@ Since g is polynomial, we conclude that € must be negligible if
the RSA problem is hard relative to GenRSA.
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Security: Main Result

Theorem

If the RSA problem is hard relative to GenRSA and H is modeled
as a random oracle, then RSA-FDH is secure.
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The Hash-and-Sign Paradigm
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Motivation

@ Public-key signature schemes are less efficient than MACs.

@ But it is possible to obtain the functionality of digital signatures
at the asymptotic cost of a private-key operation, at least for
sufficiently long messages.

@ This can be done using the hash-and-sign paradigm.
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Main ldea

@ Suppose we have a signature scheme for messages of length /.

@ But we wish to sign a (longer) message m € {0, 1}*.

@ Rather than sign m itself, one can instead use a hash function
H:{0,1}* — {0,1}* and then sign the resulting digest.

@ This is exactly analogous to the hash-and-MAC approach.
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Construction 1: The Hash-and-Sign Paradigm

Let M = (Gen, Sign, Vrfy) be a signature scheme for messages of
length ¢(n), and let My = (Geny, H) be a hash function with
output length £(n). Construct a signature scheme " = (Gen’,
Sign’, Vrfy') as follows:

@ Gen”: On input 17, run Gen(1") to obtain (pk,sk) and run
Genpy(1™) to obtain k. The public key is (pk, k) and the private
key is (sk, k).

@ Sign’: On input a private key (sk,k) and a message m €
{0,1}*, output

o Signay(Hi(m).

e Vrfy’: On input a public key (pk, k), a message m € {0,1}*,
and a signature o, output 1 if and only if

Vrfy oy (Hic(m), o) = 1.
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Theorem

Theorem

If N is a secure signature scheme for messages of length ¢(n) and
My is collision resistant, then Construction 1 is a secure signature
scheme (for arbitrary-length messages).

36/36



Books Consulted

@ Introduction to Modern Cryptography by Jonathan Katz and
Yehuda Lindell, 2" Edition, Chapman & Hall/CRC.
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Thank You for your kind attention!
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Questions!!

36/36



