
Diffie-Hellman Key Exchange Protocol and
RSA-FDH

Subhabrata Samajder

CREST CRYPTO SUMMER SCHOOL (CCSS), 2025

24th June, 2025

0/36

Symmetric-Key Encryption (Recap)

Encryption

K

Decryption

K

P Insecure Channel : C P

Secure Channel : Key Exchange

Figure: Symmetric-key Setup

1/36

The Discrete-Logarithm Problem (DLog)

1/36

Assumptions

G(1n): Denotes a generic, ppt group generations algorithm.

Outputs a description of a cyclic group G of order q (with ||q|| ∆
=

dlog2 qe = n), and a generator g ∈ G.

The description of a cyclic group specifies how elements of the
group are represented as bit-strings.

Each group element is represented by a unique bit-string.

There are efficient algorithms for computing the following.

The group operation ◦ in G.
Testing whether a given bit-string represents an element of G.

Efficient computation of the group operation:

Efficient algorithms for exponentiation in G
Sampling a uniform element h ∈ G .

Choose x
$←− Zq.

Set h := g x .

2/36

Discrete Logarithm

If G = 〈g〉 with ◦(G) = q, then G = {g0, g1, . . . , gq−1}.

Equivalently, for every h ∈ G there is a unique x ∈ Zq, s.t.,

g x = h.

Discrete logarithm of h with respect to g: logg h = x .

Note: If g x ′ = h for some x ′ ∈ Z, then x ′ mod q ≡ logg h.

Some Properties:
logg 1 = 0.
logg h

r ≡ (r · logg h) mod q.
logg (h1h2) ≡ (logg h1 + logg h2) mod q.

3/36

The Discrete-Logarithm Experiment: DLogA,G(n)

Challenger (C) Adversary (A)

4/36

The Discrete-Logarithm Experiment: DLogA,G(n)

Challenger (C) Adversary (A)

(G, q, g)← G(1n)

Choose h
$←− G.

4/36

The Discrete-Logarithm Experiment: DLogA,G(n)

Challenger (C) Adversary (A)

(G, q, g)← G(1n)

Choose h
$←− G.

(G, q, g , h)

4/36

The Discrete-Logarithm Experiment: DLogA,G(n)

Challenger (C) Adversary (A)

(G, q, g)← G(1n)

Choose h
$←− G.

(G, q, g , h)

x

4/36

The Discrete-Logarithm Experiment: DLogA,G(n)

Challenger (C) Adversary (A)

(G, q, g)← G(1n)

Choose h
$←− G.

(G, q, g , h)

x

Output 1 if g x = h;
Otherwise, output 0

4/36

The Discrete-Logarithm Experiment: DLogA,G(n)

Challenger (C) Adversary (A)

(G, q, g)← G(1n)

Choose h
$←− G.

(G, q, g , h)

x

Output 1 if g x = h;
Otherwise, output 0

Definition (Discrete-Logarithm Assumption)

We say that the discrete-logarithm problem is hard relative to G if
for all ppt algorithms A there exists a negligible function negl, s.t.,

Pr[DLogA,G(n) = 1] ≤ negl(n).

4/36

The Diffie-Hellman Key-exchange Protocol

4/36

Using Asymmetry for Key Exchange

Until 1976, it was generally believed that secure communica-
tion could not be achieved without first sharing some secret
information using a private channel.

Whitfield Diffie and Martin Hellman. IEEE-IT (1976), “New
Directions in Cryptography”.

Observed that there is often asymmetry in the world.

Certain actions can be performed easily but cannot be easily
reversed.

Example:

Padlocks can be locked without a key, but then cannot be re-
opened.
It is easy to shatter a glass vase but extremely difficult to put
it back together again.
Factorization Problem: It is easy to multiply two large primes
but difficult to recover those primes from their product.

5/36

The Setting

Alice and Bob: Both runs a probabilistic protocol Π in order to
generate a shared, secret key.

Π: The set of instructions for Alice and Bob in the protocol.

Alice and Bob begin by holding the security parameter 1n.

They then run Π using independent random bits.

At the end of the protocol, Alice and Bob output keys kA, kB ∈
{0, 1}n, respectively.

Correctness: kA = kB = k (say).

6/36

Definition of Security

Intuitive: A key-exchange protocol is secure if the key output
by Alice and Bob is completely unguessable by an eavesdropping
adversary.

Formally: An adversary eavesdropping on an execution of the
protocol should be unable to distinguish the key k generated
by Π from a uniform key of length n.

7/36

Definition of Security

Note:
This is much stronger than simply requiring that the adversary
be unable to compute k exactly.

But it is necessary since the parties will subsequently use k for
some cryptographic application (e.g., as a key for a private-key
encryption scheme).

7/36

The key-exchange experiment KEeav
A,Π(n)

1 Two parties holding 1n execute protocol Π. This results in the
following outputs.

trans: Contains all the messages sent by the parties.
k : Output of each of the parties.

2 Choose b
$←− {0, 1}.

If b = 0 set k̂ := k .
If b = 1 then choose k̂

$←− {0, 1}n.

3 A is given trans and k̂ , and outputs a bit b′.

4 Output 1 if b′ = b, and 0 otherwise.

In case KEeav
A,Π(n) = 1, we say that A succeeds.

8/36

The key-exchange experiment KEeav
A,Π(n)

Definition (EAV-secure Key-exchange Protocol)

A key-exchange protocol Π is secure in the presence of an eaves-
dropper if for all ppt adversaries A there is a negligible function
negl such that

Pr[KEeav
A,Π(n) = 1] ≤ 1

2
+ negl(n).

8/36

The Diffie-Hellman Key-exchange Protocol

G: Is a ppt algorithm that, on input 1n, outputs a description of a
cyclic group G of order q (with ||q|| = n), and a generator g ∈ G.

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

(G, q, g , hA)

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

(G, q, g , hA)

y
$← Zq

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

(G, q, g , hA)

y
$← Zq

hB := g y

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

(G, q, g , hA)

y
$← Zq

hB := g y

hB

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

(G, q, g , hA)

y
$← Zq

hB := g y

hB

kB := hyA

9/36

The Diffie-Hellman Key-exchange Protocol

Alice Bob

x
$←− Zq

hA := g x

(G, q, g , hA)

y
$← Zq

hB := g y

hB

kB := hyAkA := hxB

9/36

Assumptions Needed to Prove Security

Minimal security requirement: Discrete-logarithm problem
(DLog) should be hard relative to G.

If not, then A given trans (which, includes hA) can compute
logg hA = logg g

x = x , the secret value of Alice.

Then the shared key = hxB .

Hardness of the DLog is necessary for the protocol to be secure.

It is however, not sufficient.

10/36

Assumptions Needed to Prove Security

Note:
There could be other ways of computing the shared key k with-
out explicitly computing x or y .

Computational Diffie-Hellman (CDH) assumption: Guarantees
that the key g xy is hard to compute in its entirety from trans.

But CDH does not suffice either.

What is required is that the shared key g xy should be indistin-
guishable from uniform for any adversary given g , g x , and g y -
decisional Diffie-Hellman (DDH) assumption.

10/36

The Diffie-Hellman Problems

10/36

Diffie-Hellman Problems and DLog

The Diffie-Hellman problems are related, but not known to be
equivalent to DLog.

There are two important variants:

Computational Diffie-Hellman (CDH) problem
Decisional Diffie-Hellman (DDH) problem

11/36

Computational Diffie-Hellman (CDH) Problem

Fix a cyclic group G and a generator g ∈ G.

Given elements h1, h2 ∈ G, define

DHg (h1, h2)
∆
= g (logg h1)·(logg h2).

That is, if h1 = g x1 and h2 = g x2 then

DHg (h1, h2) = g x1·x2 = hx2
1 = hx1

2 .

CDH problem: Compute DHg (h1, h2) for uniform h1 and h2.

12/36

Decisional Diffie-Hellman (DDH) Problem

Definition

We say that the DDH problem is hard relative to G if for all ppt
algorithms A there is a negligible function negl, s.t.,

|Pr[A(G, q, g , g x , g y , g z) = 1]− Pr[A(G, q, g , g x , g y , g xy) = 1]|
≤ negl(n),

where in each case the probabilities are taken over the experiment
in which G(1n) outputs (G, q, g), and then uniform x , y , z ∈ Zq

are chosen.

Recall that when z
$←− Zq, then g z is uniformly distributed in G.

13/36

Security Proof of Diffie-Hellman Key-Exchange Protocol

13/36

Theorem 1

Theorem

If the decisional Diffie-Hellman (DDH) problem is hard relative to
G, then the Diffie-Hellman key-exchange protocol Π is secure in the
presence of an eavesdropper .

14/36

Proof of Theorem 1

Let A be a ppt adversary.

Since Pr[b = 0] = Pr[b = 1] = 1/2, we have

Pr[K̂E
eav

A,Π(n) = 1]

=
1

2
· Pr[K̂E

eav

A,Π(n) = 1|b = 0] +
1

2
· Pr[K̂E

eav

A,Π(n) = 1|b = 1]

Recall that A receives (G, q, g , hA, hB︸ ︷︷ ︸
trans

, k̂), where k̂ is either the

actual key computed by the parties (if b = 0) or a uniform group
element (if b = 1).

15/36

Proof of Theorem 1

Now, distinguishing between these two cases is exactly equivalent to
solving the DDH, i.e.,

Pr[K̂E
eav

A,Π(n) = 1]

=
1

2

(
Pr[K̂E

eav

A,Π(n) = 1|b = 0] + Pr[K̂E
eav

A,Π(n) = 1|b = 1]
)

=
1

2
(Pr[A(G, g , q, g x , g y , g xy) = 0]+

Pr[A(G, g , q, g x , g y , g z) = 1])

=
1

2
(1− Pr[A(trans, g xy) = 1]) +

1

2
· Pr[A(trans, g z) = 1]

=
1

2
+

1

2
· (Pr[A(trans, g z) = 1]− Pr[A(trans, g xy) = 1])

15/36

Proof of Theorem 1

Now, distinguishing between these two cases is exactly equivalent to
solving the DDH, i.e.,

Pr[K̂E
eav

A,Π(n) = 1]

≤ 1

2
+

1

2
· |Pr[A(trans, g z) = 1]− Pr[A(trans, g xy) = 1]|

[By triangle inequality], (1)

where the probabilities are all taken over (G, q, g) output by G(1n),
and uniform choice of x , y , z ∈ Zq.

15/36

Proof of Theorem 1

Now DDH is hard relative to G, implies that

|Pr[A(trans, g z) = 1]− Pr[A(trans, g xy) = 1]| ≤ negl(n).

Then from (1), we get

Pr[K̂E
eav

A,Π(n) = 1] ≤ 1

2
+

1

2
· negl(n),

completing the proof.

15/36

Why Authentication?

15/36

Meet-in-the-Middle Attack (MITM)

Alice Bob

Mallory

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Hi Bob, it’s Alice.
Give me your key.

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Hi Bob, it’s Alice.
Give me your key.

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

[Bob’s Public Key]

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

[Mallory’s Public Key]

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Meet me at the bus stop.
[Ecncrypted with Mallory’s Key.]

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

Bob:

Thinks the message is a secure communication from Alice.

Goes to the van down by the river.

Gets robbed by Mallory.

Alice:

Does not know that Bob was robbed by Mallory.

Thinks Bob will not come.

Therefore goes home.

16/36

Meet-in-the-Middle Attack (MITM)

Alice BobMallory

Meet me at the van down by the river.
[Ecncrypted with Bob’s Key.]

Bob:

Thinks the message is a secure communication from Alice.

Goes to the van down by the river.

Gets robbed by Mallory.

Alice:

Does not know that Bob was robbed by Mallory.

Thinks Bob will not come.

Therefore goes home.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:

Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication:

Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.

Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection:

Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.

Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis:

Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Meet-in-the-Middle Attack (MITM)

Alice and Bob needs some way to ensure that they are truly
using each other’s public keys.

And not the public key of an attacker.

Otherwise, such attacks are generally possible.

Defense and detection:
Authentication: Provides some degree of certainty that a given
message has come from a legitimate source.
Tamper Detection: Latency examination can potentially de-
tect the attack in certain situations.
Forensic analysis: Captured network traffic from what is sus-
pected to be an attack are analyzed.

16/36

Public-Key Encryption (Recap)

Alice Bob

Public Key Repository

Enc
m

pkB :

Dec
ciphertext m

skB :

17/36

Public-Key Encryption (Recap)

Alice Bob

Gen: K = (pkB , skB)

Public Key Repository

Enc
m

pkB :

Dec
ciphertext m

skB :

17/36

Public-Key Encryption (Recap)

Alice Bob

Gen: K = (pkB , skB)

Public Key Repository

pkB :

Public Key Repository

Enc
m

pkB :

Dec
ciphertext m

skB :

17/36

Public-Key Encryption (Recap)

Alice Bob

Public Key Repository

Enc
m

pkB :

Dec
ciphertext m

skB :

17/36

Public-Key Encryption (Recap)

Alice Bob

Public Key Repository

Enc
m

pkB :

ciphertext

Dec
ciphertext m

skB :

17/36

Public-Key Encryption (Recap)

Alice Bob

Public Key Repository

Enc
m

pkB :

Dec
ciphertext m

skB :

17/36

Digital Signatures

17/36

Digital Signatures

Public-key encryption: Achieves secrecy in the PK setting.

Digital signature: Provides Integrity (or authenticity) in the PK
setting.

They are the Public-key analogue of the MACs.

18/36

Digital Signatures

Note: The owner of the public key acts as the sender.

19/36

Digital Signatures

Note: The owner of the public key acts as the sender.

19/36

An Example: Software Distribution

Scenario:

A software company that wants to disseminate software updates
in an authenticated manner.

Mallory: Should not be able to fool a client into accepting an
update that was not actually released by the company.

20/36

An Example: Software Distribution

Digital Signature Solution:

Company:

Generates (pk, sk).
Distributes pk in some reliable manner to its clients.

Example: Bundle pk with the original software purchased by a
client.

Keeps sk secret.

20/36

An Example: Software Distribution

Digital Signature Solution:

Company:

Generates (pk, sk).
Distributes pk in some reliable manner to its clients.

Example: Bundle pk with the original software purchased by a
client.

Keeps sk secret.

Release of a software update m:

Computes a digital signature σ on m using its private key sk .
Sends (m, σ) to every client.

20/36

An Example: Software Distribution

Digital Signature Solution:

Company:

Generates (pk, sk).
Distributes pk in some reliable manner to its clients.

Example: Bundle pk with the original software purchased by a
client.

Keeps sk secret.

Release of a software update m:

Computes a digital signature σ on m using its private key sk .
Sends (m, σ) to every client.

Each Client:

Uses pk to verify that σ is a valid signature on m.

20/36

An Example: Software Distribution

Digital Signature Solution:

Mallory: Might try to issue a fraudulent update by sending
(m′, σ′) to a client, where m′ 6= m - forgery.

20/36

An Example: Software Distribution

Digital Signature Solution:

Mallory: Might try to issue a fraudulent update by sending
(m′, σ′) to a client, where m′ 6= m - forgery.

“Secure”:
If client’s attempts to verify the signature σ′ on m′ fails w.r.t.
pk - invalid signature.

Rejects the signature and therefore the message m′.

20/36

Definition

Definition (Digital Signature Scheme)

A (digital) signature scheme consists of three ppt algorithms
(Gen, Sign,Vrfy) such that:

1 Gen: (pk, sk)← Gen(1n).

2 Sign: σ ← Signsk(m).

3 Vrfy: b := Vrfypk(m, σ).
Valid if b = 1, else invalid.

It is required that except with negligible probability over (pk, sk), it
holds that

Vrfypk(m, Signsk(m)) = 1

for every (legal) message m.

21/36

Digital Signature Model

Signer (S) Verifier (V)

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

Signer (S) Verifier (V)

Gen(1n): pkS , skS

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

Signer (S) Verifier (V)

Gen(1n): pkS , skS

Public Key Repository

pkS :

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

Signer (S) Verifier (V)

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

Signer (S) Verifier (V)

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

Signer (S) Verifier (V)

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

Signer (S) Verifier (V)

Public Key Repository

Sign Vrfy
m

skS :

(m, σ)

pkS :

Vrfypk (m, σ)
?
= 1

m

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
If one then why not all?
In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
If one then why not all?
In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
If one then why not all?
In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
If one then why not all?
In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.

If one then why not all?
In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
If one then why not all?

In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

This establishes that

S has sent m, and
that m was not modified in transit.

Unlike MAC, it does not say anything about when m was sent.

Therefore replay attacks are still possible.

Assumption: The parties are able to obtain a legitimate copy
of S ’s public key.

Implies that S is able to transmit at least one message (namely,
pk itself) in a reliable and authenticated manner.
If one then why not all?
In other words, why do we need a signature scheme at all?

22/36

Digital Signature Model

Answer:

Reliable distribution of pk is a difficult and expensive task.

Signatures ensures that this needs be carried out only once.

After that an unlimited number of messages can subsequently
be sent in a reliable manner.

Also, signature schemes are used to ensure the reliable distri-
bution of other public keys.

They thus serve as a central tool for setting up a “public-key
infrastructure (PKI)” to address the key-distribution problem.

22/36

Digital Signature Model

Answer:

Reliable distribution of pk is a difficult and expensive task.

Signatures ensures that this needs be carried out only once.

After that an unlimited number of messages can subsequently
be sent in a reliable manner.

Also, signature schemes are used to ensure the reliable distri-
bution of other public keys.

They thus serve as a central tool for setting up a “public-key
infrastructure (PKI)” to address the key-distribution problem.

22/36

Digital Signature Model

Answer:

Reliable distribution of pk is a difficult and expensive task.

Signatures ensures that this needs be carried out only once.

After that an unlimited number of messages can subsequently
be sent in a reliable manner.

Also, signature schemes are used to ensure the reliable distri-
bution of other public keys.

They thus serve as a central tool for setting up a “public-key
infrastructure (PKI)” to address the key-distribution problem.

22/36

Digital Signature Model

Answer:

Reliable distribution of pk is a difficult and expensive task.

Signatures ensures that this needs be carried out only once.

After that an unlimited number of messages can subsequently
be sent in a reliable manner.

Also, signature schemes are used to ensure the reliable distri-
bution of other public keys.

They thus serve as a central tool for setting up a “public-key
infrastructure (PKI)” to address the key-distribution problem.

22/36

Digital Signature Model

Answer:

Reliable distribution of pk is a difficult and expensive task.

Signatures ensures that this needs be carried out only once.

After that an unlimited number of messages can subsequently
be sent in a reliable manner.

Also, signature schemes are used to ensure the reliable distri-
bution of other public keys.

They thus serve as a central tool for setting up a “public-key
infrastructure (PKI)” to address the key-distribution problem.

22/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

(m, σ)

23/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

(m, σ)

23/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

Gen(1n): pk, sk

(m, σ)

23/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

Gen(1n): pk, sk

pk

(m, σ)

23/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

Signsk

Q

(m, σ)

23/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

(m, σ)

23/36

The Signature Experiment Sig-forgeA,Π(n)

For a fixed public key pk generated by a signer S , a forgery is a
message m along with a valid signature σ, where m was not
previously signed by S .

Adversary (A) Verifier (V)

(m, σ)

A wins if:

1 Vrfypk(m, σ) = 1 and

2 m /∈ Q.

23/36

The Signature Experiment Sig-forgeA,Π(n)

Let Π = (Gen,Sign,Vrfy) be a signature scheme.

1 Run (pk, sk)← Gen(1n).
2 Adversary A is given pk and access to an oracle Signsk(·). The

adversary then outputs (m, σ). Let Q denote the set of all
queries that A asked its oracle.

3 A succeeds if and only if
1 Vrfypk(m, σ) = 1 and
2 m /∈ Q.

In this case, output 1.

Definition

A signature scheme Π = (Gen,Sign,Vrfy) is existentially unforge-
able under an adaptive chosen-message attack, or just secure,
if for all ppt adversaries A, there is a negligible function negl, s.t.,

Pr[Sig-forgeA,Π(n) = 1] ≤ negl(n).

23/36

The Signature Experiment Sig-forgeA,Π(n)

Let Π = (Gen,Sign,Vrfy) be a signature scheme.

1 Run (pk, sk)← Gen(1n).
2 Adversary A is given pk and access to an oracle Signsk(·). The

adversary then outputs (m, σ). Let Q denote the set of all
queries that A asked its oracle.

3 A succeeds if and only if
1 Vrfypk(m, σ) = 1 and
2 m /∈ Q.

In this case, output 1.

Definition

A signature scheme Π = (Gen, Sign,Vrfy) is existentially unforge-
able under an adaptive chosen-message attack, or just secure,
if for all ppt adversaries A, there is a negligible function negl, s.t.,

Pr[Sig-forgeA,Π(n) = 1] ≤ negl(n).

23/36

Plain RSA Signature

23/36

Plain RSA Signature

Gen: (N, e, d) ← GenRSA(1n), where N = pq and ed ≡ 1
mod φ(N).

pk: (N, e)
sk : (N, p, q, d).

Sign: On input sk = (N, d) and m ∈ Z∗N , compute

σ := md mod N.

Vrfy: On input pk = (N, e), m ∈ Z∗N , and a σ ∈ Z∗N , output 1
if and only if

m
?
= σe mod N.

Correctness: σe = (md)e = med mod φ(N) = m1 = m mod N.

24/36

Plain RSA Signature

Gen: (N, e, d) ← GenRSA(1n), where N = pq and ed ≡ 1
mod φ(N).

pk: (N, e)
sk : (N, p, q, d).

Sign: On input sk = (N, d) and m ∈ Z∗N , compute

σ := md mod N.

Vrfy: On input pk = (N, e), m ∈ Z∗N , and a σ ∈ Z∗N , output 1
if and only if

m
?
= σe mod N.

Correctness: σe = (md)e = med mod φ(N) = m1 = m mod N.

24/36

Secure?

Consider an adversary knowing only the public key (N, e).

Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

Unfortunately, this reasoning is incorrect.

The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an eth root) of a uniform message m.

Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.

25/36

Secure?

Consider an adversary knowing only the public key (N, e).

Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

Unfortunately, this reasoning is incorrect.

The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an eth root) of a uniform message m.

Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.

25/36

Secure?

Consider an adversary knowing only the public key (N, e).

Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

Unfortunately, this reasoning is incorrect.

The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an eth root) of a uniform message m.

Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.

25/36

Secure?

Consider an adversary knowing only the public key (N, e).

Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

Unfortunately, this reasoning is incorrect.

The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an eth root) of a uniform message m.

Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.

25/36

Secure?

Consider an adversary knowing only the public key (N, e).

Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

Unfortunately, this reasoning is incorrect.

The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an eth root) of a uniform message m.

Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.

25/36

Secure?

Consider an adversary knowing only the public key (N, e).

Then computing a valid signature on a message m seems to
require solving the RSA problem (since the signature is exactly
the eth root of m).

Unfortunately, this reasoning is incorrect.

The RSA assumption only implies hardness of computing a sig-
nature (i.e., computing an eth root) of a uniform message m.

Says nothing about hardness of computing a signature on a
non-uniform m or on some message m of the attacker’s choice.

The RSA assumption says nothing about what an attacker might
be able to do once it learns signatures on other messages.

25/36

Attacks

A no-message attack:

Given a pk = (N, e), choose σ
$←− Z∗N .

Compute m := σe mod N.

Then output the forgery (m, σ).

26/36

Attacks

Forging a signature on an arbitrary message:

Say the adversary wants to forge a signature on the message
m ∈ Z∗N with respect to the public key pk = (N, e).

A:

Chooses arbitrary m1,m2 ∈ Z∗N distinct from m such that

m = m1 ·m2 mod N.

Obtains signatures σ1, σ2 on m1,m2, respectively.

Outputs
σ := σ1 · σ2 mod N

as a valid signature on m.

Can be extended to n arbitrary messages.

26/36

Attacks

Forging a signature on an arbitrary message:

Say the adversary wants to forge a signature on the message
m ∈ Z∗N with respect to the public key pk = (N, e).

A:

Chooses arbitrary m1,m2 ∈ Z∗N distinct from m such that

m = m1 ·m2 mod N.

Obtains signatures σ1, σ2 on m1,m2, respectively.

Outputs
σ := σ1 · σ2 mod N

as a valid signature on m.

Can be extended to n arbitrary messages.

26/36

RSA-FDH

26/36

How to prevent these trivial attacks?

Idea: Apply some transformation to messages before signing
them.

That is, the signer now specifies as part of its public key a
(deterministic) function H with certain cryptographic properties
mapping messages to Z∗N .

Sign: σ := H(m)d mod N.

Vrfy: σe
?
= H(m) mod N.

27/36

The RSA-FDH signature scheme

Gen: (N, e, d)← GenRSA(1n)

pk: (N, e)
sk : (N, d)

As part of key generation, a function H : {0, 1}∗ → Z∗N is
specified, but we leave this implicit.

Sign: On input a sk = (N, d) and a m ∈ {0, 1}∗, compute

σ := H(m)d mod N.

Vrfy: On input a pk = (N, e), a message m, and a signature
σ, output 1 if and only if

σe
?
= H(m) mod N.

28/36

Properties H Require

Prevent the no-message attack:
It should be infeasible for an attacker to start with σ,

compute m̂ := σe mod N, and
then find a message m such that H(m) = m̂.

Thus, H should be hard to invert in some sense.

To prevent the second attack:
H must not admit “multiplicative relations”.
It should be hard to find three messages m,m1,m2 with

H(m) = H(m1) · H(m2) mod N.

It must be hard to find collisions in H:
If H(m1) = H(m2), then m1 and m2 have the same signature.
That is forgery becomes trivial.

29/36

Choice of H

There is no known way to choose H so that the scheme can be
proven to be secure.

Theorem: The signature scheme is security under random or-
acle model, i.e., if H is modeled as a random oracle that maps
its inputs uniformly onto Z∗N .

The scheme in this case is called the RSA full-domain hash
(RSA-FDH) signature scheme.

Note: A random function of this sort satisfies the requirements
discussed previously.

A random function (with large range) is hard to invert.
Does not have any easy-to-find multiplicative relations.
Is collision resistant.

30/36

Security Against No-message Attack

Note:

The adversary A cannot request any signatures.

The adversary is limited to making queries to the random oracle.

Wlog, we assume that A always makes exactly q (distinct)
queries to H.

If the adversary outputs a forgery (m, σ) then it had previously
queried m to H.

31/36

Security Against No-message Attack

Assumption:

A is an efficient adversary that carries out a no-message attack.

A makes exactly q queries to H.

Construct an efficient algorithm A′ for solving the RSA problem
relative to GenRSA.

Given input (N, e, y), algorithm A′

runs A on the public key pk = (N, e).

Let m1, . . . ,mq denote the q (distinct) queries that A makes
to H.

A′ answers these random-oracle queries of A with uniform el-
ements of Z∗N except for one query

say, the i th query, chosen uniformly from the oracle queries of
A

This i th query is answered with y itself.

31/36

Security Against No-message Attack

From the point of view of A, all its random-oracle queries are an-
swered with uniform elements of Z∗N .

Recall that y is uniform as well, although it is not chosen by A′, and
so A has no information about i .

Moreover, the view of A when run as a subroutine by A′ is identically
distributed to the view of A when attacking the original signature
scheme.

31/36

Security Against No-message Attack

If A outputs a forgery (m, σ) then, because m ∈ {m1, . . . ,mq}, with
probability 1/q we will have m = mi .

In that case,

σe = H(m) = H(mi) = y mod N

and A′ can output σ as the solution to its given RSA instance
(N, e, y).

Conclusion:

If A outputs a forgery with probability ε, then A′ solves the
RSA problem with probability ε/q.

Since q is polynomial, we conclude that ε must be negligible if
the RSA problem is hard relative to GenRSA.

31/36

Security: Main Result

Theorem

If the RSA problem is hard relative to GenRSA and H is modeled
as a random oracle, then RSA-FDH is secure.

32/36

The Hash-and-Sign Paradigm

32/36

Motivation

Public-key signature schemes are less efficient than MACs.

But it is possible to obtain the functionality of digital signatures
at the asymptotic cost of a private-key operation, at least for
sufficiently long messages.

This can be done using the hash-and-sign paradigm.

33/36

Main Idea

Suppose we have a signature scheme for messages of length `.

But we wish to sign a (longer) message m ∈ {0, 1}∗.

Rather than sign m itself, one can instead use a hash function
H : {0, 1}∗ → {0, 1}` and then sign the resulting digest.

This is exactly analogous to the hash-and-MAC approach.

34/36

Construction 1: The Hash-and-Sign Paradigm

Let Π = (Gen,Sign,Vrfy) be a signature scheme for messages of
length `(n), and let ΠH = (GenH ,H) be a hash function with
output length `(n). Construct a signature scheme Π′ = (Gen′,
Sign′, Vrfy′) as follows:

Gen′: On input 1n, run Gen(1n) to obtain (pk, sk) and run
GenH(1n) to obtain k . The public key is (pk, k) and the private
key is (sk, k).

Sign′: On input a private key (sk , k) and a message m ∈
{0, 1}∗, output

σ ← Signsk(Hk(m)).

Vrfy′: On input a public key (pk, k), a message m ∈ {0, 1}∗,
and a signature σ, output 1 if and only if

Vrfypk(Hk(m), σ)
?
= 1.

35/36

Theorem

Theorem

If Π is a secure signature scheme for messages of length `(n) and
ΠH is collision resistant, then Construction 1 is a secure signature
scheme (for arbitrary-length messages).

36/36

Books Consulted

1 Introduction to Modern Cryptography by Jonathan Katz and
Yehuda Lindell, 2nd Edition, Chapman & Hall/CRC.

36/36

Thank You for your kind attention!

36/36

Questions!!

36/36

