Krystal-Kyber

Rana Barua, IAI, TCG CREST, Kolkata

1 Introduction

Kyber is a quantam-safe Key Encapsulation Mechnism(KEM) that has been standardized by NIST in FIPS 203. There it is called Module-Lattice-based Key Encapsulation Mechanism (ML-KEM)

2 Preliminaries

We denote by \mathcal{B} the set $\{0, 1, \ldots, 255\}$, i.e., the set of 8-bit unsigned integers (bytes). For two byte arrays a and b we denote by a||b the concatenation of a and b. For a byte array a we denote by a + k the byte array starting at byte k of a ,with indexing starting at zero. **BytesToBits** is a function that takes as input an array of ℓ bytes and produces as output an array of 8ℓ bits.

2.1 Modular Reduction

Given an even(odd) positive integer α , let r' be the unique integer in the range $-\alpha/2 < r' \leq \alpha/2(\text{resp.}(\alpha - 1)/2 \leq r' \leq (\alpha + 1)/2)$ such that $r' \equiv r \mod \alpha$. In this case we write

$$r' = r \mod {\pm \alpha}.$$

We call it a centred reduction modulo α .

2.2 Norm

For an element $a \in \mathbb{Z}_q$, $||a||_{\infty}$ denotes $|a \mod {\pm q}|$. The ℓ_{∞} and ℓ_2 norms of an element $w = w_0 + w_1 X + \ldots + w_{n-1} X^{n-1} \in \mathcal{R}$ are as follows.

$$||w||_{\infty} = Max_i||w_i||_{\infty}; ||w|| = \sqrt{||w_0||_{\infty}^2 + \ldots + ||w_{n-1}||_{\infty}^2}.$$

For a vector $\mathbf{w} = (w_1, \ldots, w_k) \in \mathcal{R}^k$ the norms are similarly defined. We define S_{η} by

$$S_{\eta} = \{ w \in \mathcal{R} : ||w||_{\infty} \le \eta \}.$$

We also define \tilde{S}_{η} by

$$\tilde{S}_{\eta} = \{ w \bmod {\pm 2\eta} : w \in \mathcal{R} \}$$

2.3 Compression and Decompression

For $d < \lceil \log q \rceil$, define a function

$$\operatorname{Compress}_{a}(.,d): \mathbb{Z}_{q} \to \{0,1,\ldots,2^{d}-1\}$$

as follows

$$\mathbf{Compress}_{q}(x,d) = \lceil (2^d/q)x \rceil \mod 2^d$$

We also define $\mathbf{Decompress}_q(x, d)$ by

$$\mathbf{Decompress}_q(x,d) = \lceil (q/2^d).x \rfloor.$$

One can check that if

$$x' = \mathbf{Decompress}_q(\mathbf{Compress}_q(x, d), d),$$

then

$$|x' - x \mod {\pm q}| \le \left\lceil (q/2^{d+1}) \right\rfloor.$$

2.4 Symmetric primitives

Kyber uses a pseudorandom function **PRF** : $\mathcal{B}^{32} \times \mathcal{B} \to \mathcal{B}^*$ and an extendable output function **XOF** : $\mathcal{B}^* \times \mathcal{B} \times \mathcal{B} \to \mathcal{B}^*$. Kyber also uses two hash functions **H** : $\mathcal{B}^* \to \mathcal{B}^{32}$ and **G** : $\mathcal{B}^* \to \mathcal{B}^{32} \times \mathcal{B}^{32}$ and a key-derivation function **KDF** : $\mathcal{B}^* \to \mathcal{B}^*$.

2.5 Uniform sampling in \mathcal{R}_q .

Kyber uses a deterministic algorithm to sample elements in \mathcal{R}_q that are statistically close to a uniformly random distribution. Kyber uses a function **Parse** : $\mathcal{B}^* \to \mathcal{R}_q$ which receives as input a byte stream $B = b_0 b_1 b_2 \dots$ and outputs the NTT-representation $\hat{\mathbf{a}} = \hat{a}_0 + \hat{a}_1 X + \dots + \hat{a}_{n-1} X^{n-1} \in \mathcal{R}_q$ of $\mathbf{a} \in \mathcal{R}_q$.

2.6 Sampling from a binomial distribution.

Kyber uses a central binomial distribution (CBD) B_{η} , for $\eta = 2$ or $\eta = 3$, as follows.

Choose uniformly at random $(a_1, \ldots, a_\eta, b_1, \ldots, b_\eta) \in \{0, 1\}^{2\eta}$ and output

 $c = \sum_{i=1}^{\eta} (a_i - b_i)$. One can check that $c \in [-\eta, \eta]$ and that for any $j \in [-\eta, \eta]$, $\operatorname{Prob}[c = j] = \binom{2\eta}{\eta + j}/2^{2\eta}$.

We say that an element $f \in \mathcal{R}_q$ is sampled according to B_η , we mean that each coefficient is sampled according to B_η .

Kyber also defines a function $CBD_{\eta}: \mathcal{B}^{64\eta} \to \mathcal{R}_q$, which takes as input a 64 η length byte array and output a polynomial in \mathcal{R}_q . This is done as follows. Convert the byte array, using **BytesToBits**, into a bit array of length 512 η , say $\beta_0, \ldots, \beta_{512\eta-1}$. Take the first 2η bits $\beta_0, \ldots, \beta_{2\eta-1}$ and apply B_η to obtain f_0 . Takes the next 2η bits $\beta_{2\eta}, \ldots, \beta_{4\eta-1}$ and apply B_η to obtain f_1 and so on . Finally, output the polynomial $\mathbf{f} = f_0 + f_1 X + \ldots + f_{255} X^{255} \in \mathcal{R}_q$.

2.7 Encoding and decoding

The function \mathbf{Decode}_{ℓ} takes as input an array of 32ℓ bytes and outputs a polynomial $f_0 + F_1X + \ldots + f_{255}X^{255} \in \mathcal{R}_q$, where each $f_i \in \{0, \ldots, 2^{\ell} - 1\}$. Using **BytesToBits**, obtain a bit array of length 256ℓ viz. $\beta_0, \ldots, \beta_{256\ell-1}$. The first ℓ bits $\beta_0, \ldots, \beta_{\ell-1}$ represents f_0 . The next ℓ bits $\beta_\ell, \ldots, \beta_{2\ell-1}$ represents f_1 and so on. This yields a polynomial

$$\mathbf{f} = f_0 + f_1 X + \ldots + f_{255} X^{255} \in \mathcal{R}_q$$

where each $f_i \in \{0, ..., 2^{\ell} - 1\}$.

 \mathbf{Encode}_{ℓ} is just the inverse of \mathbf{Decode}_{ℓ} .

3 NTT and Inverse NTT

We will be considering multiplication in the ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n+1)$, where $n = 2^k$ is a power of 2 and q is a prime such that $q \equiv 1 \mod n$. This ensures that a primitive *n*-th root of unity exists in \mathbb{Z}_q i.e. an element $\zeta \in \mathbb{Z}_q$ such that $\zeta^n = 1 \mod q$ but for $0 < k < n, \zeta^k \neq 1 \mod q$. Note that a typical element $\mathbf{a} \in \mathcal{R}_q$ is a polynomial of degree at most n - 1. If

$$\mathbf{a} = \sum_{i=0}^{n-1} a_i X^i,$$

then we identify **a** with the vector of coefficients $(a_0, a_1, \ldots, a_{n-1}) \in \mathbb{Z}_q^n$ and we write $\mathbf{a} = (a_0, \ldots, a_{n-1})(X)$. Recall that multiplication in \mathcal{R}_q is defined as follows.

$$X.X^{i} = \begin{cases} X^{i+1} & \text{if } i+1 < n \\ -1 & \text{if } i+1 = n \end{cases}$$

In Kyber $n = 2^8 = 256$ and q = 3329 so that $q - 1 = 2^8.13$. Hence 256|q - 1 but 512 does not divide q - 1. These are fixed throughout the notes. Fix a 256th root of unity ζ modulo q. Concretely, let $\zeta = 17$ be the smallest primitive root of unity.. Then $\zeta, \zeta^3, \zeta^5, \ldots, \zeta^{255}$ are all the roots of $X^{128} + 1$ Hence, $X^{128} + 1$ completely splits as

$$X^{128} + 1 = \prod_{i=0}^{127} (X - \zeta^{2i+1}).$$

Consequently,

$$X^{256} + 1 = \prod_{i=0}^{127} (X^2 - \zeta^{2i+1}).$$

We now show

Lemma 3.1. For every $i, 0 \leq i \leq 127, (X^2 - \zeta^{2i+1})$ is irreducible over \mathbb{Z}_q . *Proof.* If not, then $X^2 - \zeta^{2i+1}$ has a root $c \in \mathbb{Z}_q$. Hence, in \mathbb{Z}_q ,

$$(c^2)^{128} = (\zeta^{128})^{2i+1} = (-1)^{2i+1} = -1.$$

Hence the order of $c \in \mathbb{Z}_q$ does not divide 256. On the other hand

$$(c^2)^{256} = (\zeta^{256})^{2i+1} = 1^{2i+1} = 1.$$

Hence the order of c divides 512. Hence the order of c is 512. This is not possible, since 512 does not divide q - 1. \Box Now let $\zeta_i = \zeta^{2br(i)+1}$, where br(i) denotes the bit reversal of the unsigned 7-bit integer i. From above, we have

$$X^{256} + 1 = \prod_{i=0}^{127} (X^2 - \zeta^{2i+1}) = \prod_{i=0}^{127} (X^2 - \zeta_i).$$
(3.1)

Definition 3.1. Define $Q_i = \mathbb{Z}_q[X]/(X^2 - \zeta_i)$ and $T_q = Q_0 \times Q_1 \times \ldots \times Q_{127}$. Then the Number-Theoretic Transform is the map NTT: $\mathcal{R}_q \to T_q$ given by

$$\hat{\mathbf{a}} = NTT(\mathbf{a}) = (\mathbf{a} \mod (X^2 - \zeta_0), \mathbf{a} \mod (X^2 - \zeta_1), \dots, \mathbf{a} \mod (X^2 - \zeta_{127}))$$
(3.2)

One can check that NTT is a ring isomorphism and hence its inverse NTT^{-1} exists.

3.1 Multiplication in \mathcal{R}_q

Let $\mathbf{a}(X), \mathbf{b}(X) \in \mathcal{R}_q$. Let $\mathbf{c}(X) = \mathbf{a}(X).\mathbf{b}(X) \mod (X^n + 1)$. Then

$$\mathbf{c}(X) = \mathbf{a}(X).\mathbf{b}(X) + \mathbf{p}(X)(X^n + 1).$$

Hence

$$\mathbf{c}(X) \mod (X^2 - \zeta_i) = \mathbf{a}(X).\mathbf{b}(X) \mod (X^2 - \zeta_i),$$

since $X^n + 1 \mod (X^2 - \zeta_i) = \zeta^{n/2} (2br(i)+1) + 1 = (-1)^{2br(i)+1} + 1 = 0$. Thus

$$\hat{\mathbf{c}} = \hat{\mathbf{a}} \odot \mathbf{b}$$

where \odot is component-wise multiplication in T_q . Consequently

$$\mathbf{c} = NTT^{-1}(\hat{\mathbf{a}} \odot \hat{\mathbf{b}}).$$

3.2 Multiplication in Q_i

. Let $a_0 + a_1 X, b_0 + b_1 X \in \mathcal{Q}_i$. Then

$$(a_0+b_1X)(b_0+b_1X) \mod (X^2-\zeta_i) = a_0b_0 + (a_0b_1+a_1b_0)X + a_1b_1 \mod (X^2-\zeta_i)$$
$$= (a_0b_0+a_1b_1\zeta_i) + (a_0b_1+a_1b_0)X.$$

3.3 Computing Kyber NTTs

Recall that q = 3328 and $q - 1 = 2^8.13$ Hence a primitive 256th root of unity exists but 512th root does not exist. Fix $\zeta = 17$ a primitive 256th root of unity Let $\mathbf{f}(X) = \sum_{i=0}^{255} f_i X^i$ be an element of \mathcal{R}_q . We identify \mathbf{f} with the vector of coefficients $(f_0, \ldots, f_{255}) \in \mathbb{Z}_q^{256}$. Define $\mathbf{f}^0 = (f_0, f_2, \ldots, f_{254})$ and $\mathbf{f}^1 = (f_1, f_3, \ldots, f_{255})$. Then

$$\mathbf{f}(X) = \mathbf{f}^0(X^2) + X\mathbf{f}^1(X^2).$$

Consequently

$$\mathbf{f} \mod (X^2 - \zeta_i) = \mathbf{f}^0(\zeta_i) + \mathbf{f}^1(\zeta_i)X.$$

Now define

$$\hat{f}_{2i} = \sum_{j=0}^{127} f_{2j} \zeta_i^j \tag{3.3}$$

$$\hat{f}_{2i+1} \sum_{j=0}^{127} f_{2j+1} \zeta_i^j \tag{3.4}$$

Then from (3.2) we have

$$\hat{\mathbf{f}} = (\hat{f}_0 + \hat{f}_1 X, \hat{f}_2 + \hat{f}_3 X, \dots, \hat{f}_{254} + \hat{f}_{255} X).$$
 (3.5)

Let **A** be the following 128×128 matrix over \mathbb{Z}_q .

$$\mathbf{A} = \begin{pmatrix} 1 & \zeta_0 & \zeta_0^2 & \dots & \zeta_0^{127} \\ 1 & \zeta_1 & \zeta_1^2 & \dots & \zeta_1^{127} \\ 1 & \zeta_2 & \zeta_2^2 & \dots & \zeta_2^{127} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \zeta_{127} & \zeta_{127}^2 & \dots & \zeta_{127}^{127} \end{pmatrix}$$

Then (3.3) and (3.4) can be re-written as

$$(\hat{\mathbf{f}}^0)^T = \mathbf{A}(\mathbf{f}^0)^T, \tag{3.6}$$

$$(\hat{\mathbf{f}}^1)^T = \mathbf{A}(\mathbf{f}^1)^T, \tag{3.7}$$

Hence

$$(\mathbf{f}^0)^T = \mathbf{A}^{-1}(\hat{\mathbf{f}}^0)^T, \qquad (3.8)$$

$$(\mathbf{f}^1)^T = \mathbf{A}^{-1}(\hat{\mathbf{f}}^1)^T, \qquad (3.9)$$

We now show that

$$\mathbf{A}^{-1} = 1/128 \begin{pmatrix} 1 & 1 & 1 & \dots & 1\\ \zeta_0^{-1} & \zeta_1^{-1} & \zeta_2^{-1} & \dots & \zeta_{127}^{-1}\\ \zeta_0^{-2} & \zeta_1^{-2} & \zeta_2^{-2} & \dots & \zeta_{127}^{-2}\\ \vdots & \vdots & \vdots & \dots & \vdots\\ \zeta_0^{-127} & \zeta_1^{-127} & \zeta_2^{-127} & \dots & \zeta_{127}^{-127} \end{pmatrix}$$

Denote the matrix on RHS by **C**. Then the (i,j)th entry of $\mathbf{A} \times \mathbf{C}$ is

$$1/128\sum_{k=0}^{127}\zeta_i^k.\zeta_j^{-k} = 1/128\sum_{k=0}^{127}\zeta^{2(br(i)-br(j))k}.$$

When i = j this sum is 1. When $i \neq j$ the sum is

$$\frac{1}{128} \frac{\zeta^{2(br(i)-br(j))128} - 1}{\zeta^{2(br(i)-br(j))} - 1} = 1/128 \frac{1-1}{\zeta^{2(br(i)-br(j))} - 1} = 0,$$

since ζ is a primitive 256th root of unity. Thus **C** is the inverse of **A**. Thus (3.8) and (3.9) yield

$$f_{2i} = 1/128 \sum_{j=0}^{127} \hat{f}_{2j} \zeta_j^{-i}, \qquad (3.10)$$

$$f_{2i+1} = 1/128 \sum_{j=0}^{127} \hat{f}_{2j+1} \zeta_j^{-i}.$$
(3.11)

3.4 Faster NTT(Cooley-Tukey)

Let $n = 2^7 = 128$ and q = 3329. Recall that ζ is a primitive 2nth root of unity in \mathbb{Z}_q and $\zeta^n = -1$. Let $\zeta' = \zeta^2$. Then ζ' is a primitive nth root of unity. From (3.3) we have

$$\hat{f}_{2i} = \sum_{j=0}^{n-1} f_{2j} \zeta_i^j = \sum_{j=0}^{n-1} f_j^0 \zeta_i^j$$
$$= \sum_{j=0}^{n/2-1} f_{2j}^0 \zeta_i^{2j} + \sum_{j=0}^{n/2-1} f_{2j+1}^0 \zeta_i^{2j+1}$$

Thus

$$\hat{f}_{2i} = \sum_{j=0}^{n/2-1} f_{2j}^0 \zeta_i^{\prime j} + \zeta_i \sum_{j=0}^{n/2-1} f_{2j+1}^0 \zeta_i^{\prime j}, \ 0 \le i < n/2.$$
(3.12)

Replacing *i* by n/2 + i, we have

$$\hat{f}_{n+2i} = \sum_{j=0}^{n/2-1} f_{2j}^0 \zeta_{n/2+i}^{2j} + \sum_{j=0}^{n/2-1} f_{2j+1}^0 \zeta_{n/2+i}^{2j+1}, \ 0 \le i < n/2.$$

Now, observe that

 $\begin{aligned} \zeta_{n/2+i}^{2j} &= \zeta^{(2br(n/2+i)+1)(2j)} = \zeta^{(n+2br(i)+1)(2j)} = \zeta^{(2br(i)+1)(2j)} = \zeta_i^{2j}, \\ \text{since } \zeta^{n.2j} &= 1. \end{aligned}$ Also, since $\zeta^{n.(2j+1)} = -1$, we have $\zeta_{n/2+i}^{2j+1} = -\zeta_i^{2j+1}$. Hence, it follows that

$$\hat{f}_{n+2i} = \sum_{j=0}^{n/2-1} f_{2j}^0 \zeta_i^{2j} - \sum_{j=0}^{n/2-1} f_{2j+1}^0 \zeta_i^{2j+1}, \ 0 \le i < n/2,$$

which we write as

$$\hat{f}_{n+2i} = \sum_{j=0}^{n/2-1} f_{2j}^0 \zeta_i^{\prime j} - \zeta_i \sum_{j=0}^{n/2-1} f_{2j+1}^0 \zeta_i^{\prime j}, \ 0 \le i < n/2,$$
(3.13)

Equations (3.12) and (3.13) yield two sub-problems over a smaller ring $\mathbb{Z}[X]/(x^{n/2}+1)$. This will give rise to a recursive algorithm. Similar expresions can be obtained for \hat{f}_{2i+1} .

3.5 Parameter sets for Kyber

	n	k	q	η_1	η_2	(d_u, d_v)	δ
Kyber 512	256	2	3329	3	2	(10,4)	2^{-139}
Kyber768 Kyber1024	$\begin{array}{c} 256 \\ 256 \end{array}$	$\frac{3}{4}$	$3329 \\ 3329$	$\frac{2}{2}$	$\frac{2}{2}$	(10,4) (11,5)	2^{-164} 2^{-174}
		===:					

Kyber is parameterized by integers $n, k, q, \eta_1, \eta_2, d_u$ and d_v as given below.

Here δ denotes the failure probability.

3.6 Instantiation of PRF, XOF, H,G and KDF

Tese primitives are instatiated with functions from the FIPS-202 standard as follows:

- Instantiate **XOF** with **SHAKE**-128;
- instantiate **H** with **SHA**3-256;
- instantiate G with SHA3-512;
- instantiate $\mathbf{PRF}(s,b)$ with \mathbf{SHAKE} -256(s||b); and
- instantiate KDF with SHAKE-256

4 Kyber CPA-PKE

Kyber CPA-PKE is parametrized by $n, k, q, \eta_1, \eta_2, d_u$ and d_v . As stated above n is always 256 and q is always 3329.

Kyber.CPAPKE.KeyGen()

Output: Secret key $sk \in \mathcal{B}^{12.k.n/8}$; Public key $pk \in \mathcal{B}^{12.k.n/8+32}$

 $d \leftarrow \mathcal{B}^{32}$ 1. 2. $(\rho, \sigma) := \mathbf{G}(d)$ N := 03. for i = 0 to k - 1 do 4. 5.for j = 0 to k - 1 do \diamond generate matrix $\hat{\mathbf{A}} \in \mathcal{R}_q^{k \times k}$ $\hat{\mathbf{A}}[i][j] := \mathbf{Parse}(\mathbf{XOF}(\rho, j, i))$ 6 in NTT domain . 7. end for end for 8. 9. for i = 0 to k - 1 do \diamond sample $\mathbf{s} \in \mathcal{R}_q^k$ from B_{η_1} $s[i] := CBD_{\eta_1}(\mathbf{PRF}(\sigma, N))$ 10. 11. $N \leftarrow N + 1$ 12. end for for i = 0 to k - 1 do 13. \diamond sample $\mathbf{e} \in \mathcal{R}_q^k$ from B_{η_1} $e[i] := CBD_{\eta_1}(\mathbf{PRF}(\sigma, N))$ 14. 15. $N \leftarrow N + 1$ end for 16. $\hat{\mathbf{s}} := NTT(\mathbf{s})$ 17.18. $\hat{\mathbf{e}} := NTT(\mathbf{e})$ 19. $\hat{\mathbf{t}} := \mathbf{A} \odot \hat{\mathbf{s}} + \hat{\mathbf{e}}$ $pk := \mathbf{Encode}_{12}(\hat{\mathbf{t}} \mod q) || \rho$ 20. $\Diamond pk := \mathbf{As} + \mathbf{e}$ 21 $sk := \mathbf{Encode}_{12}(\hat{\mathbf{s}} \mod q)$ $\Diamond sk := \mathbf{s}$ 22. $\mathbf{Return}(pk, sk).$

Kyber.CPAPKE.Enc(pk, m, r)

INPUT: Publik Key $pk \in \mathcal{B}^{12.k.n/8+32}$, message $m \in \mathcal{B}^{32}$; random coins $r \in \mathcal{B}^{32}$ **OUTPUT**: ciphertext $c \in \mathcal{B}^{d_u \cdot k \cdot n/8 + d_v \cdot n/8}$ 1. $N \leftarrow 0$ $\hat{\mathbf{t}} := \mathbf{Decode}_{12}(pk)$ 2. $\rho := pk + 12.k.n/8$ \Diamond extract the seed ρ from pk3. $\mathbf{for}i = 0 \mathbf{to} k - 1 \mathbf{do}$ 4. 5.for j = 0 to k - 1 do $\mathbf{A}^{T}[i][j] := \mathbf{PARSE}(\mathbf{XOF}(\rho, i, j)) \diamondsuit$ genetrate the matrix 6. $\mathbf{A} \in \mathcal{R}_{a}^{k \times k}$ in NTT domain 7. end for 8. end for 9. for i = 0 to k - 1 do $\mathbf{r}[i] := CBD_{\eta_1}(\mathbf{PRF}(r, N))$ \diamond sample $\mathbf{r} \in \mathcal{R}_q^k$ according to B_{η_1} 10. 11. $N \leftarrow N + 1$ 12 end for for i = 0 to k - 1 do 13. \diamond sample $\mathbf{e}_1 \in \mathcal{R}_q^k$ according to B_{η_2} $\mathbf{e}_1[i] := CBD_{\eta_2}(\mathbf{PRF}(r, N))$ 14. $N \leftarrow N + 1$ 15.16. end for $e_2 := CBD_{\eta_2}(\mathbf{PRF}(r, N))$ \diamond sample $e_2 \in \mathcal{R}_q$ according to B_{η_2} 17. $\hat{\mathbf{r}} := NTT(\mathbf{r})$ 18. $\mathbf{u} := NTT^{-1}(\hat{\mathbf{A}}^T \odot \hat{\mathbf{r}}) + \mathbf{e}_1$ $\Diamond \mathbf{u} := \mathbf{A}^T \mathbf{r} + \mathbf{e}_1$ 19. $v := NTT^{-1}(\mathbf{\hat{t}}^T \odot \mathbf{\hat{r}}) + e_2 + \mathbf{Decompress}_q(\mathbf{Decode}_1(m), 1)$ 20. $\Diamond v := \mathbf{t}^T \mathbf{r} + e_2 + \mathbf{Decompress}_q(m, 1)$. 21. $c_1 := \mathbf{Encode}_{d_u}(\mathbf{Compress}_a(\mathbf{u}, d_u))$ 22. $c_2 := \mathbf{Encode}_{d_v}(\mathbf{Compress}_q(v, d_v))$ $\Diamond c = (\mathbf{Compress}_{a}(\mathbf{u}, d_{u}), \mathbf{Compress}_{a}(v, d_{v}))$ 23.return $c := c_1 || c_2$

Remark: Note that in Line 20 of the encryption algorithm, for each bit b of the message m, the decompression function adds. $b \lfloor q/2 \rfloor$.

The decryption algorithm is given below.

Kyber.CPAPKE.Dec(sk, c)

INPUT: secret key $sk \in \mathcal{B}^{12.k.n/8}$, ciphertext $c \in \mathcal{B}^{d_u.k.n/8+d_v.n/8}$ **OUTPUT**: message $m \in \mathcal{B}^{32}$

- $\mathbf{u} := \mathbf{Deccompress}_{a}(\mathbf{Decode}_{d_{u}}(c), d_{u})$ 1. $v := \mathbf{Deccompress}_q(\mathbf{Decode}_{d_v}(c + d_u.k.n/8), d_v)$ 2.
- 3. $\hat{\mathbf{s}} := \mathbf{Decode}_{12}(sk)$
- $m := \mathbf{Encode}_1(\mathbf{Compress}_q(v NTT^{-1}(\hat{\mathbf{s}}^T \odot NTT(\mathbf{u})), 1))$ 4.

$$\Diamond m := \mathbf{Compress}_q(v - \mathbf{s}^T \mathbf{u}, 1)$$

5. return m

=:

Correctness: In line 4 of the decryption algorithm, the compression function decrypts to a 1 if $v - \mathbf{s}^T \mathbf{u}$ is closer to $\lceil q/2 \rceil$ than to 0, and decrypts to 0 otherwise. Now, let us compute $v - \mathbf{s}^T \mathbf{u}$. By line 19 of the encryption algorithm

$$\mathbf{u} := \mathbf{A}^T \mathbf{r} + \mathbf{e}_1,$$

and by line 20 we have

$$v := \mathbf{t}^T \mathbf{r} + e_2 + \lceil q/2 \rfloor m.$$

Also we have $\mathbf{t} = \mathbf{As} + \mathbf{e}$. Hence

$$v - \mathbf{s}^T \mathbf{u} = \mathbf{t}^T \mathbf{r} + e_2 + \lceil q/2 \rfloor m - \mathbf{s}^T \mathbf{A}^T \mathbf{r} - \mathbf{s}^T \mathbf{e}_1$$
$$= (\mathbf{s}^T \mathbf{A}^T + \mathbf{e}^T)\mathbf{r} + e_2 + \lceil q/2 \rfloor - \mathbf{s}^T \mathbf{A}^T \mathbf{r} - \mathbf{s}^T \mathbf{e}^1$$
$$= \mathbf{e}^T \mathbf{r} + e_2 - \mathbf{s}^T \mathbf{e}_1 + \lceil q/2 \rfloor m.$$

Now, iif $||\mathbf{e}^T\mathbf{r} + e_2 - \mathbf{s}^T\mathbf{e}_1||_{\infty} < q/4$, then we can write

$$v - \mathbf{s}^T \mathbf{u} = w + \lceil q/2 \rfloor m,$$

where, $||w||_{\infty} < q/4$. Let $m' = \mathbf{Compress}_{a}(v - \mathbf{s}^{T}\mathbf{u}, 1)$. Then we know that

$$q/4 \ge ||v - \mathbf{s}^T \mathbf{u} - \lceil q/2 \rfloor m'||_{\infty}$$
$$= ||w + \lceil q/2 \rfloor (m - m')||_{\infty}.$$

Hence

$$\lceil q/2 \rfloor ||(m - m')|_{\infty} = ||w + \lceil q/2 \rfloor (m - m') - w||_{\infty} \le ||w + \lceil q/2 \rfloor (m - m')||_{\infty} + ||w||_{\infty} < 2(q/4) = q/2.$$

For odd q, this is possible only when m = m'. **Remark:** One can show that $||\mathbf{e}^T\mathbf{r} + e_2 - \mathbf{s}^T\mathbf{e}_1||_{\infty} < q/4$ with overwhelming probability. Hence, decryption will almost certainly yield the correct message.

4.1 Security

: By M-LWE, adversary \mathcal{A} can not distinguish $\mathbf{t} = \mathbf{As} + \mathbf{e}$ from random. Again by M-LWE, \mathcal{A} can not distinguish $\mathbf{t}^T \mathbf{r} + e_2$ from random. Thus to an adversary, v appears to be a sum of a random element in \mathcal{R}_q and $\lceil q/2 \rfloor m$. Thus adversary \mathcal{A} can learn nothing about the message m.

5 Kyber CCAKEM

One constructs IND-CCA2- secure Kyber CCAKEM, from the IND-CPA secure public- key encryption scheme Kyber CPAPKE via a tweaked Fujisali-Okamoto transform. Key generation, encapsulation, and decapsulation of Kyber.CCAKEM are described below.

Kyber.CCAKEM.KeyGen()

Output: Public key $pk \in \mathcal{B}^{12.k.n/8+32}$; secret key $sk \in \mathcal{B}^{24.k.n/8+96}$

- 1. $z \leftarrow \mathcal{B}^{32}$
- 2. $(pk, sk') \leftarrow Kyber.CPAPKE.KeyGen()$
- 3. $sk := (sk'||pk||\mathbf{H}(pk)||z)$
- 6. return (pk, sk)

INPUT: Public key $pk \in \mathcal{B}^{12.k.n/8+32}$ **OUTPUT**: Ciphertext $c \in \mathcal{B}^{d_u.k.n/8+d_v.n/8}$; shared key $K \in \mathcal{B}^*$

- 1. $m \leftarrow \mathcal{B}^{32}$
- 2. $m \leftarrow \mathbf{H}(m)$
- 3. $(\bar{K}, r) := \mathbf{G}(m||\mathbf{H}(pk))$
- 4. c := Enc.CPAPKE.Enc(pk, m, r)

- 5. $K := \mathbf{KDF}(\bar{K}||\mathbf{H}(c))$
- 6. return(c, K).

Kyber.CCAKEM.Dec(c, sk)

INPUT: Ciphertext $c \in \mathcal{B}^{d_u.k.n/8+d_v.n/8}$; secret key $sk \in \mathcal{B}^{24.k.n/8+96}$ **OUTPUT**: Shared key $K \in \mathcal{B}^*$

- 1. pk := sk + 12.k.n/8
- 2. $h := sk + 24.k.n/8 + 32 \in \mathcal{B}^{32}$
- 3. z := sk + 24.k.n/8 + 64
- 4. m' := Kyber.CPAPKE.Dec(sk, c)
- 5. $(\bar{K}', r') := \mathbf{G}(m'||h)$
- 6. c' := Kyber.CPAPKE.Enc(pk, m', r')
- 7. If c = c' then
- 8. **return** $K := \mathbf{KDF}(\overline{K}'||\mathbf{H}(c))$
- 9. else
- 10. return $K := \mathbf{KDF}(z||\mathbf{H}(c))$
- 11. end if
- 12. return K

References

- [CD] L.Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck, P. Schwabe, G. Seiler and D. Stehlé. CRYSTALS- Kyber: a CCA-secure module-lattice-based KEM, https://eprint.iacr.org/2017/634.pdf
- [CK3.02] R. Avanzi, J. Bos, L.Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck, P. Schwabe, G. Seiler and D. Stehlé. CRYSTALS-Kyber(version 3.02) https://pq-crystals.org/kyber/
- [AM] A. Menezes: Cryptography101 with Alfred Menezes https://cryptography101.ca/kyber-dilithium/