Krystal-Kyber
Rana Barua, IAI, TCG CREST, Kolkata

1 Introduction

Kyber is a quantam-safe Key Encapsulation Mechnism(KEM) that has been
standardized by NIST in FIPS 203. There it is called Module-Lattice-based
Key Encapsulation Mechanism (ML-KEM)

2 Preliminaries

We denote by B the set {0, 1,...,255} | i.e., the set of 8-bit unsigned integers
(bytes). For two byte arrays a and b we denote by a||b the concatenation of
a and b. For a byte array a we denote by a + k the byte array starting at
byte k of a ,with indexing starting at zero. BytesToBits is a function that
takes as input an array of £ bytes and produces as output an array of 8/ bits.

2.1 Modular Reduction

Given an even(odd) positive integer «, let 7’ be the unique integer in the range
—a/2 <1’ < a/2(resp.(a —1)/2 <7’ < (a+ 1)/2) such that 7 = r mod a.
In this case we write

7" = r mod *a.

We call it a centred reduction modulo «.

2.2 Norm

For an element a € Z,, ||a||s denotes |a mod F¢|. The £, and ¢, norms of
an element w = wy + w1 X + ... +w,_1 X" ! € R are as follows.

lwlloe = Maz;|[willoos [Jwll = v/lwol % + - .. + [[wa-1][%
For a vector w = (wy,...,w) € RF the norms are similarly defined. We
define S, by

Sy ={w e R [[w]l <7}
We also define S’n by
S, = {wmod 25 : w € R}.

1

2.3 Compression and Decompression
For d < [logq], define a function
Compress,(.,d) : Z; — {0,1,..., 27 — 1}
as follows
Compress,(z,d) = [(2?/q)z] mod 2°.
We also define Decompress, (7, d) by

Decompress,(z,d) = [(q/2%).].
One can check that if
2’ = Decompress, (Compress,(z,d), d),

then
" — & mod Fq| < [(g/2")].

2.4 Symmetric primitives

Kyber uses a pseudorandom function PRF : B3?x B — B* and an extendable
output function XOF : B* x B x B — B* . Kyber also uses two hash
functions H : B* — B* and G : B* — B* x B* and a key-derivation
function KDF : B* — B*.

2.5 Uniform sampling in R,.

Kyber uses a deterministic algorithm to sample elements in R, that are
statistically close to a uniformly random distribution. Kyber uses a function
Parse : B* — R, which receives as input a byte stream B = byb;b, ... and
outputs the NTT-representation & = ag + a1.X + ... + 4,1 X" € R, of
acR,

2.6 Sampling from a binomial distribution.

Kyber uses a central binomial distribution (CBD) B,, for n =2 or n = 3, as
follows.
Choose uniformly at random (as,...,a,,bi,...,b,) € {0,1}*" and output

c=3Y_"(a;—b;). One can check that ¢ € [—n, n] and that for any j € [—n, 7],

_ 2n 2n
Problc = j] = (0+)/2 .

We say that an element f € R, is sampled according to B,, we mean
that each coefficient is sampled according to B,,.

Kyber also defines a function CBD,, : B — R, which takes as input a
64n length byte array and output a polynomial in R,. This is done as follows.
Convert the byte array, using BytesToBits, into a bit array of length 512n,
say fo, - - -, Bs12n—1. Take the first 2 bits fy, . . ., f2,—1 and apply B, to obtain
fo. Takes the next 2n bits B, ..., B1,—1 and apply B, to obtain f; and so
on . Finally, output the polynomial f = fo + f1X + ...+ fos5 X*° € R,.

2.7 Encoding and decoding

The function Decode, takes as input an array of 32¢ bytes and outputs a
polynomial fo + F1 X + ...+ fo55X? € R,, where each f; € {0,...,2°—1}.
Using BytesToBits, obtain a bit array of length 256¢ viz. By, ..., Basee_1-
The first ¢ bits [y, ..., Be_1 represents fo. The next ¢ bits By, ..., Bar_1 rep-
resents f; and so on. This yields a polynomial

f=fo+ fiX+. .. + frss X € Ry,

where each f; € {0,...,2° — 1}.
Encode, is just the inverse of Decode,.

3 NTT and Inverse NTT

We will be considering multiplication in the ring R, = Z,[X]/(X"+1), where
n = 2F is a power of 2 and ¢ is a prime such that ¢ = 1 mod n. This ensures
that a primitive n-th root of unity exists in Z, i.e. an element ¢ € Z, such
that (" = 1 mod ¢ but for 0 < k < n,(* # 1 mod ¢q. Note that a typical
element a € R, is a polynomial of degree at most n — 1. If

n—1
a = (liXZ,
=0
then we identify a with the vector of coefficients (ag, ay,...,a,-1) € Zy and
we write a = (ag, ..., a,-1)(X). Recall that multiplication in R, is defined

3

as follows. '

XA if i+ 1<n

-1 ifi+1=n"

In Kyber n = 2% = 256 and ¢ = 3329 so that ¢ — 1 = 2%.13. Hence
256|¢ — 1 but 512 does not divide ¢ — 1. These are fixed throughout
the notes. Fix a 256th root of unity ¢ modulo ¢q. Concretely, let (= 17 be

XX = {

the smallest primitive root of unity.. Then ¢, (3,¢?,...,(? are all the roots
of X'?8 + 1 Hence, X'?® + 1 completely splits as
127
X128 + 1 = H(X - C2i+1)'
i=0
Consequently,
127
X256 +1= H(X2 _ <2i+1)-
i=0

We now show
Lemma 3.1. For every 4,0 <14 < 127, (X? — ¢**1) is irreducible over Z,.
Proof. If not, then X? — (**! has a root ¢ € Z,. Hence, in Z,,
()18 = ((128)2+1 = (_1)%i+l = 1,
Hence the order of ¢ € Z, does not divide 256. On the other hand
(220 = ((26)2i+1 = 12+ — .

Hence the order of ¢ divides 512. Hence the order of ¢ is 512. This is not
possible, since 512 does not divide ¢ — 1. 0
Now let ¢; = ¢?"+! where br(i) denotes the bit reversal of the unsigned
7-bit integer i. From above, we have

127 127
X256 41 — H(XZ _ §2i+1) _ H<X2 _ Q) (31>

=0 i=0

Definition 3.1. Define Qz = Zq[X]/(X2 —CZ) and Tq = Q() X Q1 X... X Q127.
Then the Number-Theoretic Transform is the map NTT:R, — T, given by

a= NTT(a) = (amod (X* —(y),amod (X? —(y),....amod (X* — (i27))

(3.2)
One can check that NTT is a ring isomorphism and hence its inverse NTT !
exists.

3.1 Multiplication in R,
Let a(X),b(X) € R,. Let ¢(X) = a(X).b(X) mod (X" +1). Then
c(X) = a(X).b(X) + p(X)(X" +1).

Hence
c(X) mod (X? —) = a(X).b(X) mod (X% - (),

2br(i)+1)

since X" + 1 mod (X2 — ¢;) = (V2 +1=(—1)2O+1 4 1 = 0. Thus

¢=a0b,

where © is component-wise multiplication in 7j,. Consequently

c=NTT '(a®b).

3.2 Multiplication in O,
. Let ag + alX, bo + b1X € Ql Then

(a0+b1X)(b0+b1X) mod (X2_<z) = a0b0+(aobl+a1b0>X+a1b1 mod (X2—<1>

= (aobo + (llblg) + (a0b1 + (llbg)X.

3.3 Computing Kyber NTTs

Recall that ¢ = 3328 and ¢ — 1 = 28.13 Hence a primitive 256th root of unity
exists but 512th root does not exist. Fix ¢ = 17 a primitive 256th root of
unity Let f(X) = 322 £;X? be an element of R,. We identify f with the
vector of coefficients (fy, ..., foss) € 2256. Define O = (fo, fo, ..., fos4) and
fl = (f17 fg, ey f255). Then

f(X) = £(X?) + X1 (X?).
Consequently
f mod (X2 — ¢;) = () + £1(G) X.

Now define
127

foi = Z fszij (3.3)
=0

5

127

fair1 Y foiadl

=0
Then from (3.2) we have

f=(fot+ hX, fot f3X, ..., fasa + fass X).
Let A be the following 128 x 128 matrix over Z,.

1 G ¢ ... ¢
1 G ¢ ..
A=l & & ... @7
1 C127 C1227 te 1122';

Then (3.3) and (3.4) can be re-written as
()" = A(E)",
()7 = A",

Hence

We now show that

1 1 U |

Co_; Cf; g; Cf%

At =1/128| G~ G G o G
<6127 <;127 <;127 o ;21727

Denote the matrix on RHS by C. Then the (i,j)th entry of A x C is

127 127

1/128) " ¢F.(h =1/128) " (2Or=rODk,
k=0 k=0

When ¢ = j this sum is 1. When i # j the sum is

1 CQ(br(i)—br(j))lQS -1 1-1
— _ —1/128—— -
128 (2o — | o) — 1

=0,

since (is a primitive 256th root of unity. Thus C is the inverse of A. Thus
(3.8) and (3.9) yield

127

o = 1/128 3 fo; (7 (3.10)
=0
127
Jair1 = 1/1282f2j+1C;l- (3.11)
=0

3.4 Faster NTT(Cooley-Tukey)

Let n = 27 = 128 and ¢ = 3329. Recall that (is a primitive 2nth root of
unity in Z, and ¢" = —1. Let ¢’ = ¢?. Then ¢’ is a primitive nth root of
unity. Fro m (3.3) we have

n—1 n—1
Fir =Y foll =)
=0 =0
n/2—1 n/2—1

= Z fQOjCin+ Z f%HijH
Jj=0 j=0

Thus
n/2—1 n/2—1

Fri=) G+ il 0<i<n/2. (3.12)
j=0 j=0

Replacing ¢ by n/2 + i, we have

n/2—1 n/2—1

7=0 7=0

Now, observe that

C2§2+¢ _ C(Qbr(n/2+i)+1)(2j) _ C(n+2br(i)+1)(2j) _ C(zbr(i)ﬂ)(?j) _ ij7 |
since ("% = 1. Also, since ("D = —1, we have Ci%jz = —¢7*'. Hence,

it follows that

n/2—1 n/2—1

¢ 0 ~2j 0 2j+1 .
Jrt2i = Z foiG7 — Z foiaG7, 0<i<n/2,
j=0 =0

which we write as

n/2—1 n/2—1

Frgai = Z fngz{j —Gi Z fgj+1¢£ja 0<i<n/2 (3.13)
=0 =0

Equations (3.12) and (3.13) yield two sub-problems over a smaller ring
Z[X]/(x"/* 4 1). This will give rise to a recursive algorithm.. Similar expre-
sions can be obtained for fo;.1.

3.5 Parameter sets for Kyber

Kyber is parameterized by integers n, k, q,n1, 12, d,, and d, as given below.

Kyber 512 256 2 3329 3 2 (10,4) 27139
Kyber768 256 3 3329 2 2 (10,4) 2764
Kyber1024 256 4 3329 2 2 (115 2™

Here ¢ denotes the failure probability.

3.6 Instantiation of PRF, XOF, H,G and KDF

Tese primitives are instatiated with functions from the FIPS-202 standard
as follows:

e Instantiate XOF with SHAKE-128;

e instantiate H with SHA 3-256;

e instantiate G with SHA3-512;

e instantiate PRF(s,b) with SHAKE-256(s||b); and
e instantiate KDF with SHAKE-256

4

Kyber CPA-PKE

Kyber CPA-PKE is parametrized by n, k, ¢, n1, 12, d,, and d,,. As stated above
n is always 256 and q is alwya 3329.

Output: Secret key sk € B'2F7/8; Public key pk € B'2+Fn/8+32

21

d « B*
(p,0) = G(d)
N =0
fori=0to k—1do
for j=0tok—1do
A[i][j] := Parse(XOF(p, j, 1) O generate matrix A € RExk
in NTT domain
end for
end for
fori=0to k—1do
sli] :== CBD,,(PRF(o,N)) O sample s € R from By,
N+ N+1
end for
fortv=0tok—1do
eli] .= CBD,,(PRF(o,N)) ¢ sample e € R} from B,
N+ N+1
end for
= NTT(s)
.= NTT(e)
—AOs+eé
pk := Encode;,(t mod ¢)||p O pk:=As+e
sk := Encode;,(8 mod q) O sk:=s
Return(pk, sk).

> D> U

INPUT: Publik Key pk € B'2#7/8+32 ‘message m € B%?;
random coins r € B3
OUTPUT: ciphertext ¢ € Bhukn/8+dv.n/8

1. N<+0

2.t := Decode,(pk)

3. p:=pk+12.kn/8 { extract the seed p from pk
4. forir=0to k—1do

D. for j=0to k—1do

6. ATi][j] := PARSE(XOF(p,i,j)) ¢ genetrate the matrix

) A e ’R’;Xk in NTT domain
7. end for

8. end for

9. fori=0tok—1do

10. ri] :== CBD,,(PRF(r,N)) ¢ sample r € R according to By,
11. N+ N+1

12 end for

13. fori=0tok—1do
14. ei[i] ;== CBD,,(PRF(r,N)) ¢ sample e; € R} according to B,,
15. N+ N+1

16. end for

17. ey :=CBD,,(PRF(r,N)) ¢ sample e; € R, according to B,,
18. #:= NTT(r)

19. u:=NTT AT OF) +e Ou:=Alr + e

20. v:=NTT '(t" ®t) + e, + Decompress,(Decode;(m), 1)

: Qv :=t"r + e + Decompress,(m, 1)
21. ¢ := Encode,,(Compress, (u,d,))
22. ¢y := Encodey, (Compress,(v,d,))

23. return c:= ¢l|c Oc = (Compress,(u,d,), Compress, (v, d,))

Remark: Note that in Line 20 of the encryption algorithm, for each bit
b of the message m, the decompression function adds. b.[q/2] .

10

The decryption algorithm is given below.

INPUT: secret key sk € B2F7/8 ciphertext ¢ € Bdwkn/8+dvn/8
OUTPUT: message m € B3

u := Deccompress, (Decodey,(c), d,)

v := Deccompress, (Decodey, (c + d,.k.n/8),d,)

S := Decode;s(sk)

m := Encode;(Compress, (v — NTT (8" © NTT(u)),1))

Om := Compress, (v —s'u, 1)

=N =

5. return m

Correctness: In line 4 of the decryption algorithm, the compression func-
tion decrypts to a 1 if v — sTu is closer to [¢/2] than to 0, and decrypts
to 0 otherwise. Now, let us compute v — s’u. By line 19 of the encryption
algorithm

u:=A’r+e,

and by line 20 we have
vi=tlr +ey + [q/2|m.
Also we have t = As + e. Hence
v—stu=tlr +es+[q/2)m —s"ATr —s'e,

= (s"AT +el)r+ey+ [q/2] —sTATr —sTe!
=e'r+ey —sle + [q/2]m.

Now, iif ||e’r + e3 — sTe || < ¢/4, then we can write
v—stu=w-+[q/2]m,
where, ||w||w < q/4. Let m' = Compressq(v —sTu,1). Then we know that
q/4 2 |lv —s"u— [q/2)m']|
= [lw+ [q/2](m — m)[|.

11

Hence
[q/2][(m —m[|c = [lw+ [g/2](m —m/) — w]|o <

[lw+Tq/2](m —m')l|ee + [lwlloe < 2(g/4) = q/2.

For odd ¢, this is possible only when m = m/. O
Remark: One can show that |[e’r + ey — sTe;||o < ¢/4 with overwhelm-
ing probability. Hence, decryption will almost certainly yield the correct
message.

4.1 Security

: By M-LWE, adversary A can not distinguish t = As + e from random.
Again by M-LWE, A can not distinguish t’r 4 e, from random. Thus to an
adversary, v appears to be a sum of a random element in R, and [¢/2|m.
Thus adversary A can learn nothing about the message m. U

5 Kyber CCAKEM

One constructs IND-CCA2- secure Kyber CCAKEM, from the IND-CPA -
secure public- key encryption scheme Kyber CPAPKE via a tweaked Fujisali-

Okamoto transform. Key generation, encapsulation, and decapsulation of
Kyber. CCAKEM are described below.

Output: Public key pk € B2#7/8+32. socret key sk € B24kn/8+96
1. z+« B*

2. (pk,sk') < Kyber.CPAPKE.KeyGen()

3. sk := (sk'||pk|[H(pk)||2)

6. return (pk,sk)

12

INPUT: Public key pk € B'2kn/8+32
OUTPUT: Ciphertext ¢ € Blukn/8+dvn/8: shared key K € B*

1. m<+ B

2. m <« H(m)

3. (K,r) = G(m||H(pk))

4. c¢:= Enc.CPAPKE.Enc(pk,m,r)
5. K :=KDF(K|H(c))

6. return(c, K).

INPUT: Ciphertext ¢ € Bdukn/8+dvn/8. qocret key sk € B*4HFn/8+96
OUTPUT: Shared key K € B*

pk = sk +12.k.n/8
h := sk +24.k.n/8 + 32 € B*
2= sk +24.k.n/8 + 64
m' = Kyber.CPAPKE.Dec(sk, c)
(K',r") := G(m/| |)
¢ := Kyber.CPAPKE.Enc(pk, m’, ')
If ¢ = ¢ then
return K := KDF(K'||[H(c))

XN DO WD

9. else

10. return K := KDF(z||H(c))
11. end if

12. return K

13

References

[CD] L.Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J.M. Schanck, P.
Schwabe, G. Seiler and D. Stehlé. CRYSTALS- Kyber: a CCA-secure
module-lattice-based KEM,
https://eprint.iacr.org/2017/634.pdf

[CK3.02] R. Avanzi, J. Bos, L.Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J.M. Schanck, P. Schwabe, G. Seiler and D. Stehlé. CRYSTALS-
Kyber(version 3.02)
https://pg-crystals.org/kyber/

[AM] A. Menezes: Cryptographyl101 with Alfred Menezes
https://cryptography101.ca/kyber-dilithium/

14

