Elementary Number Theory for Public Key Cryptography

Rana Barua

IAI, TCG CREST, Kolkata

1 Modular Arithmetic, Elementary Properties

Let \mathbb{Z} denote the set of all integers and \mathbb{N} the set of natural numbers. For $a, b \in \mathbb{Z}$ we write a|b if a divides b.

We now state a result that is fundamental and useful and is known as the Division Algorithm.

Lemma 1. Let a be an integer and b a positive integer. Then there exist unique integers q, r such that $0 \le r < b$ and

$$a = qb + r$$
.

Proof. First assume that $a \ge 0$. If a = 0, then set q = 0 and r = 0. So assume that a > 0. If a < b then set q = 0 and r = a. So assume a > b. Now the set of positive integers i such that $ib \le a$ is non-empty and finite. Let q be the largest such integer. Set r = a - qb. By our choice of q, $0 \le r < q$. The case when a < 0 is left as an exercise. The uniqueness is not hard to see.

Remark 1. q is called the quotient and r the remainder. We denote r by a mod b.

Definition 1. Let n be a fixed positive integer. For two integers $a, b \in \mathbb{Z}$, we say that a is congruent to b modulo n, and we write

$$a \equiv b \bmod n$$

if n|(a-b).

Exercise 1. Show that \equiv is an equivalence relation on \mathbb{Z} .

Consequently, The equivalence classes $[0], [1], [2], \dots, [n-1]$ form a partition of \mathbb{Z} .

Exercise 2. Suppose $a \equiv b \mod n$ and $c \equiv d \mod n$. Then show that $(a+c) \equiv (b+d) \mod n$, $(a-c) \equiv (b-d) \mod n$ and $ac \equiv bd \mod n$.

Exercise 3. Let $p(x) \in \mathbb{Z}[x]$ be a polynomial with integer coefficients. Show that if $a \equiv b \mod n$, then $p(a) \equiv p(b) \mod n$.

Hence show that an m digit number is divisible by 3 iff the sum of the digits is divisible by 3. Obtain a similar result for 11.

We know that when an integer $a \in \mathbb{Z}$ is divided by n it leaves a remainder r where $0 \le r \le n-1$. Let \mathbb{Z}_n denote the set of these remainders i.e. $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. Clearly, for any integer $a \in \mathbb{Z}$, there exists a unique integer $r \in \mathbb{Z}_n$ such that $a \equiv r \mod n$ and $a \equiv b \mod n$ iff their remainders are the same on dividing by n.

On \mathbb{Z}_n we shall define two binary operations + and \times or . as follows.

For $a, b \in \mathbb{Z}_n$ let $c \in \mathbb{Z}_n$ be the unique integer such that $a + b \equiv c \mod n$. Then we define

$$a + b = c$$

in \mathbb{Z}_n .

Similarly, let $d \in \mathbb{Z}_n$ be the unique integer such that $ab \equiv d \mod n$. Then in \mathbb{Z}_n we define

$$a.b = d.$$

Clearly, in \mathbb{Z}_n , a+b=c iff $a+b\equiv c \bmod n$ and a.b=d iff $ab\equiv d \bmod n$.

Exercise 4. Write down the addition and multiplication tables for \mathbb{Z}_7 and \mathbb{Z}_8 .

Exercise 5. Show that \mathbb{Z}_n with the binary operations + and \times defined above forms a commutative ring with identity 1.

1.1 Euclidean Algorithm

We now define

Definition 2. Let $a, b \in \mathbb{Z}$. The greatest common divisor of a and b, denoted by GCD(a, b), is the largest of all common divisors of a and b. In other words, GCD(a, b) = d if d|a and d|b, and if c|a and c|b, then c|d. We define GCD(0,0) = 0.

We now present one of the most celebrated algorithms in Number Theory called the Euclidean Algorithm. It computes the GCD of two integers a, b.

Since GCD(a,b) = GCD(|a|,|b|), we assume without loss of generality that a and b are non-negative. If one of them, say a is 0, then GCD(a,b) = b. So assume both a and b are positive. Without loss of generality assume that a > b. Let GCD(a,b) = d and set $r_0 = a$ and $r_1 = b$. By the **division algorithm** we have for some integers q_1 (quotient), r_2 (remainder),

$$r_0 = q_1 r_1 + r_2$$
 with $0 \le r_2 < r_1$.

Repeating this process until the remainder becomes 0, we have

$$r_1 = q_2 r_2 + r_3$$
 with $0 \le r_3 < r_2$;
 $r_2 = q_3 r_3 + r_4$ with $0 \le r_4 < r_3$;
 \vdots
 $r_{n-1} = q_n r_n$.

Claim: For all $i, 0 \le i < n$,

$$d = GCD(r_i, r_{i+1}).$$

First note that $d = GCD(a, b) = GCD(r_0, r_1)$. Let $d' = GCD(r_1, r_2)$. Since $d'|r_1$ and $d'|r_2$, from the first equation it follows that $d'|r_0$. Hence, $d'|GCD(r_0, r_1)$ i.e. d'|d. On the other hand, from the first equation, it follows that $d|r_2$. Since $d|r_1$ also we have $d|GCD(r_1, r_2)$ i.e. d|d'. Thus d = d'.

Proceeding as above, one can show (exercise) by induction on $i, 0 \le i < n$ that $d = GCD(r_i, r_{i+1})$. Thus we have $d = GCD(r_{n-1}, r_n) = r_n$.

This yields the following algorithm of Euclid. The inputs a and b are arbitrary non-negative integers.

EUCLID(a, b)

- 1. **If** b := 0
- 2. then return a
- 3. **else return** $EUCLID(b, a \mod b)$

Correctness and Complexity

The correctness follows from the arguments above. For the complexity, one can prove by induction on k the following.

• Suppose $a > b \ge 1$ and EUCLID(a, b) preforms k recursive calls. Then $a \ge F_{k+2}$ and $b \ge F_{k+1}$, where F_k is the kth Fibonacci number.

Recall that the kth Fibonacci number $F_k = \frac{1}{\sqrt{5}} \left((\frac{1+\sqrt{5}}{2})^k - (\frac{1-\sqrt{5}}{2})^k \right)$.

We may improve the complexity by observing the following.

Lemma 2. Suppose $a > b \ge 1$. Then there exist integers q, r such that $0 \le |r| \le b/2$ satisfying a = bq + r.

Proof. By the division algorithm we have for some integers q, r

$$a = qb + r$$
.

If $r \le b/2$ then we are done. So a sume that r > b/2. Then b-r < b/2 and a = bq + r = b(q+1) - (b-r). Let r' = -(b-r) and q' = q+1. Then a = bq' + r', where |r'| = (q-r) < b/2.

Next we observe that

Theorem 1. Let $a, b \in \mathbb{Z}$. Suppose GCD(a, b) = d. Then there exist integers $\lambda, \mu \in \mathbb{Z}$ such that

$$a\lambda + b\mu = d. (1)$$

Proof. Without loss of generality, assume that a, b are non-negative integers. Arguing as above we have for some integers $r_i, 0 \le r_i < r_{i+1}$,

$$\begin{split} r_0 &= q_1 r_1 + r_2 & \text{ with } \ 0 \leq \mathbf{r}_2 < \mathbf{r}_1. \\ r_1 &= q_2 r_2 + r_3 & \text{ with } \ 0 \leq \mathbf{r}_3 < \mathbf{r}_2; \\ r_2 &= q_3 r_3 + r_4 & \text{ with } \ 0 \leq \mathbf{r}_4 < \mathbf{r}_3; \\ &\vdots \\ r_{n-1} &= q_n r_n, \end{split}$$

where $r_0 = a, r_1 = b$ and $r_n = GCD(a, b)$.

Now we have the following

Claim: For every $i, 0 \le i \le n, r_i$ is a linear combination of a and b. In other words, for each i there exist integers $\lambda_i, \mu_i \in \mathbb{Z}$ such that

$$r_i = a\lambda_i + b\mu_i$$
.

Clearly true for i = 0, 1. So assume that the claim holds for integers $\leq i$. We shall show that it holds for i + 1. Now from the *i*th equation we have

$$r_{i-1} = r_i q_i + r_{i+1}$$
.

Hence we have

$$r_{i+1}$$

$$= -q_i r_i + r_{i-1}$$

 $= -q_i(a\lambda_i + b\mu_i) + (a\lambda_{i-1} + b\mu_{i-1}),$ by induction hypothesis

$$= a(\lambda_{i-1} - \lambda_i q_i) + b(\mu_{i-1} - \mu_i q_i).$$

Set $\lambda_{i+1} = \lambda_{i-1} - \lambda_i q_i$ and $\mu_{i+1} = \mu_{i-1} - \mu_i q_i$ and we are done. Thus we have $d = r_n = a\lambda_n + b\mu_n$. This completes the proof.

Remark 2. The above proof shows that $\{\lambda_i\}$ and $\{\mu_i\}$ can be defined recursively. Set $\lambda_0 = 1, \mu_0 = 0$ and $\lambda_1 = 0, \mu_1 = 1$. Define

$$\lambda_{i+1} = \lambda_{i-1} - \lambda_i q_i,$$

$$\mu_{i+1} = \mu_{i-1} - \mu_i q_i$$

We now obtain the **Extended Euclidean Algorithm** that expresses the GCD of a, b as a linear combination.

EXTENDED-EUCLID(a, b)

Input: A pair of non-negative integers.

return (d, λ, μ)

Output: A triplet of the form (d, λ, μ) such that $d = GCD(a, b) = a\lambda + b\mu$.

1 If b := 02 then return (a, 1, 0)3 else $(d', \lambda', \mu') = \text{EXTENDED-EUCLID}(b, a \text{ mod } b)$ 4 $(d, \lambda, \mu) = (d', \mu', \lambda' - \lfloor a/b \rfloor \mu')$

Correctness and Complexity

5

If b=0 then we have GCD(a,b)=a=1.a+0.b and the algorithm correctly returns (a,1,0). So assume $b\neq 0$. The algorithm returns (d',λ',μ') such that, by induction hypothesis, $d'=GCD(b,a \bmod b)$ and

$$d' = b\lambda' + (a \bmod b)\mu' \tag{2}$$

Since $GCD(a, b) = GCD(b, a \mod b)$ we have d = d'. Hence, by (2), we have

$$d = d' = b\lambda' + (a \bmod b)\mu'$$

$$=b\lambda'+(a-|a/b|b)\mu'$$

$$= a\mu' + (\lambda' - |a/b|\mu')b = a\lambda + b\mu.$$

Since the number of recursive calls in EXTENDED-EUCLID is the same as in EUCLID, the procedure makes $O(\log n)$ recursive calls.

As an immediate corollary to Theorem 1 we have

Corollary 1. Let $a, n \in \mathbb{Z}$ such that GCD(a, n) = 1. Then there exists an integer $b \in \mathbb{Z}$ such that

$$ab \equiv 1 \bmod n.$$
 (3)

In other words, for every integer a co-prime to n, there is an integer b such that $ab \equiv 1 \mod n$.

Proof. By Theorem 1 we have integers λ and μ such that

$$a\lambda + n\mu = 1.$$

This clearly implies that $a\lambda \equiv 1 \mod n$. Set $b = \lambda$ and we are done.

Remark 3. The integer b is called a multiplicative inverse of a modulo n.

The following important result is an immediate consequence

Theorem 2. Let p be a prime number. Then \mathbb{Z}_p with + and \times defined above is a field. In fact, \mathbb{Z}_n is a field iff n is prime.

Proof. It is enough to show that $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$ is a commutative group with respect to \times i.e. multiplication modulo n. The only non-trivial axiom is to show that every element of of \mathbb{Z}_p^* has an inverse. So fix $a \in \mathbb{Z}_p^*$. Since GCD(a,p) = 1 by Corollary 1, there is an integer $b \in \mathbb{Z}$ such that $ab \equiv 1 \mod p$. Clearly $b \not\equiv 0 \mod p$. Let $b' \in \mathbb{Z}_p^*$ be the unique integer such that $b \equiv b' \mod p$. Then $ab' \equiv ab \equiv 1 \mod p$. By definition, $b' \in \mathbb{Z}_p^*$ is the inverse of a in (\mathbb{Z}_p^*, \times) . \square . As a nice application we have **Wilson's Theorem.**

Theorem 3. Let n be a positive integer. Then n is prime iff n divides (n-1)! + 1.

Proof. Suppose n is prime. Then $\mathbb{Z}_n^* = \{1, 2, \dots, n-1\}$ is a multiplicative group. The product of all the elements in \mathbb{Z}_n^* is (n-1)!. We now show that, in \mathbb{Z}_n^* , the product of all the elements is -1 i.e. the element $(n-1) \in \mathbb{Z}_n^*$.

First note that the equation $X^2 = 1$ has two solutions in \mathbb{Z}_n^* viz + 1 and -1 (Why?) Thus in the multiplicative group \mathbb{Z}_n^* , the only elements which are inverse of itself are +1 and -1. Hence in the product (n-1)!, each element $a \neq \pm 1$ cancels out with its inverse. This means that the product

$$2.3.4...(n-2) \equiv 1 \mod n$$
.

Consequently

$$1.2.3.4....(n-2).(n-1) \equiv 1.1.(-1) \equiv -1 \mod n.$$

Hence n divides (n-1)! + 1. The converse is easy and is left as an exercise.

1.2 The Chinese Remainder Theorem

We now state a result that is useful not only in Number Theory but also in Cryptography. It is known as the Chinese Remainder Theorem (CRT).

Theorem 4. Let n_1, n_2, \ldots, n_k be positive integers that are pairwise relatively co-prime. Set $N = n_1 \ldots n_k$. Then the following system of congruence relations

$$X \equiv a_1 \bmod n_1$$

$$X \equiv a_2 \bmod n_2$$
.

:

$$X \equiv a_k \bmod n_k$$

has a unique solution modulo N for the unknown X.

.

Proof. Uniqueness. Let Y be another solution. Then $X \equiv Y \mod n_i$, for i = 1, ..., k. Hence $n_i|(X - Y)$ for i = 1, ..., k. Since n_i 's are pairwise co-prime, this implies that N|(X - Y) and so $X \equiv Y \mod N$.

Existence. We shall prove it for k=2. The general solution is left as an exercise. Since $GCD(n_1, n_2)=1$ by Corollary 1, there exists an integer $\bar{n}_1 \in \mathbb{Z}$ such that $n_1\bar{n}_1 \equiv 1 \mod n_2$. Similarly, there exists an integer $\bar{n}_2 \in \mathbb{Z}$ such that $n_2\bar{n}_2 \equiv 1 \mod n_1$. Now consider the integer $X=a_1n_2\bar{n}_2+a_2n_1\bar{n}_1$. Then $X \equiv a_1n_2\bar{n}_2 \equiv a_1.1 \equiv a_1 \mod n_1$. Also $X \equiv a_2n_1\bar{n}_1 \equiv a_2 \mod n_2$. Thus X is a solution.

Exercise 6. Prove the Chinese Remainder Theorem in its most general form. (Hints: Set $m_i = \frac{N}{n_i}$ and find integers \bar{m}_i such that $m_i \bar{m}_i \equiv 1 \mod n_i$.)

Exercise 7. Find all solutions of the following

$$x \equiv 4 \bmod 5$$
,

$$x \equiv 5 \mod 11$$
.

We now introduce a very important function known as Euler's **phi-function** or **totient-function**.

Definition 3. Let n be a positive integer. Define

$$\phi(n) = \begin{cases} 1 & \text{if } n = 1 \\ |\{r : 0 < r < n \land GCD(r, n) = 1\}| & \text{if } n > 1 \end{cases}.$$

Thus for n > 1, $\phi(n)$ denotes the number of positive integers less that n that are co-prime to n. Before we enumerate some properties of the phi-function in the following theorem we introduce the following set that will play an important role later.

Definition 4. Let n be a positive integer. Define

$$\mathbb{Z}_n^* \stackrel{\text{def}}{=} \{ a \in \mathbb{Z}_n : GCD(a, n) = 1 \}.$$

Clearly, by definition of ϕ , the cardinality $|\mathbb{Z}_n^*| = \phi(n)$. Also for a prime p, $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$.

Theorem 5. 1. For any prime p and a positive integer α ,

$$\phi(p^{\alpha}) = p^{\alpha}(1 - \frac{1}{p}).$$

2. Let m, n be two positive integers such that GCD(m,n) = 1. Then

$$\phi(mn) = \phi(m)\phi(n)$$
.

In other words, ϕ is multiplicative for relatively prime integers.

3. Let $n = p_1^{e_1} \dots p_k^{e_k}$ be a prime factorisation of n, where p_1, \dots, p_k are distinct prime divisors of n. Then

$$\phi(n) = n(1 - \frac{1}{n_1}) \dots (1 - \frac{1}{n_k}).$$

Proof. 1. First observe that an integer $a \in [1, p^{\alpha}]$ is **not** co-prime to p^{α} iff a is a multiple of p. Thus the number of integers $a \in [1, p^{\alpha}]$ that are nor co-prime to p^{α} is $p^{\alpha-1}$. Consequently, $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1} = p^{\alpha}(1 - \frac{1}{p})$

2. Set N=mn. First observe that $|\mathbb{Z}_N^*| = \phi(N)$ and $|\mathbb{Z}_m^* \times \mathbb{Z}_n^*| = \phi(m)\phi(n)$. We shall now define a bijection between these two sets and that will prove (2). Define $F: \mathbb{Z}_N^* \longrightarrow \mathbb{Z}_m^* \times \mathbb{Z}_n^*$ as follows. For $x \in \mathbb{Z}_N^*$ define

$$F(x) = (x \bmod m, x \bmod n),$$

where $x \mod m$ denotes the remainder when x is divided by m. First note that F is well-defined and moreover, by the Chinese remainder Theorem it is onto and one-one. Thus F is a bijection and we are done.

3. By repeatedly applying (2) we have

$$\phi(n) = \phi(p_1^{e_1}) \dots \phi(p_k^{e_k})$$

$$= p_1^{e_1} (1 - \frac{1}{p_1}) \dots p_k^{e_k} (1 - \frac{1}{p_k})$$

$$= n(1 - \frac{1}{p_1}) \dots (1 - \frac{1}{p_k}).$$

We now obtain a useful result of Algebra.

Theorem 6. Let n be a positive integer. Consider the binary operation \times defined on \mathbb{Z}_n restricted to \mathbb{Z}_n^* . Then (\mathbb{Z}_n^*, \times) is a commutative group of order $\phi(n)$.

6

Proof. Clearly $|\mathbb{Z}_n^*| = \phi(n)$. We now show closure property. So fix $a, b \in \mathbb{Z}_n^*$. Let $c \in \mathbb{Z}_n$ be such that $ab \equiv c \mod n$. Suppose p is a prime divisor of both c and n. Then since n|(ab-c) it follows that p|(ab-c) and hence p|ab, This implies that p|a or p|b. In either case we obtain a contradiction. This shows that GCD(c,n)=1. So $ab=c\in\mathbb{Z}_n^*$. Associativity is immediate and 1 is the multiplicative identity of \mathbb{Z}_n^* . It remains to show that each element of \mathbb{Z}_n^* has a multiplicative inverse. So fix $a\in\mathbb{Z}_n^*$, By Corollary 1, there is an integer $b\in\mathbb{Z}$ such that $ab\equiv 1 \mod n$. Let c be the unique integer in \mathbb{Z}_n such that $b\equiv c \mod n$. Clearly, ab=1+kn for some $k\in\mathbb{Z}$. If p is a prime divisor of both b and n the p|(ab-kn) i.e. p divides 1. This contradiction shows that GCD(b,n)=1.. Since $b\equiv c \mod n$, it is not hard to see that c is co-prime to n. Thus $ac\equiv ab\equiv 1 \mod n$. This shows that $c\in\mathbb{Z}_n^*$ is the multiplicative inverse of $a\in\mathbb{Z}_n^*$. This completes the proof.

Remark 4. Suppose $n=p^k$ is a prime power. Then one can show that \mathbb{Z}_n^* is a cyclic group.

We now state(without proof) a result in Algebra that is a consequence of Lagrange's Theorem.

Theorem 7. Let (G, .) be a finite group of order n with identity e. Then for $a \in G$

$$a^n = e$$
.

The following is known as **Euler's Theorem**

Theorem 8. Let a be an integer that is co-prime to n. Then

$$a^{\phi(n)} \equiv 1 \bmod n$$
.

Proof. Since GCD(a,n)=1, there is an $x\in\mathbb{Z}_n^*$ such that $a\equiv x \bmod n$. By Theorem 7, $x^{\phi(n)}=1$ in \mathbb{Z}_n^* and hence $x^{\phi(n)}\equiv 1 \bmod n$. Thus we have

$$a^{\phi(n)} \equiv x^{\phi(n)} \equiv 1 \mod n$$
.

This completes the proof.

As an immediate consequence we have **Fermat's Theorem**.

Theorem 9. Let p be a prime. For any integer $a \not\equiv 0 \mod p$

$$a^{p-1} \equiv 1 \bmod p$$
.

Proof. In Theorem 8, take n=p so that $\phi(n)=\phi(p)=p-1$. Thus we have

$$a^{p-1} \equiv 1 \bmod p$$
.

2 Quadratic Residues, Legendre and Jacobi Symbols

We now introduce a concept that has played an important role in Public Key Cryptography.

Definition 5. Let p be an odd prime. An integer $a \not\equiv 0 \mod p$ is said to be a quadratic residue modulo p if the exist an integer $x \in \mathbb{Z}$ such that

$$x^2 \equiv a \bmod p$$
.

Otherwise, a is said to be a quadratic non-residue modulo p.

Remark 5. For any positive integer m and a co-prime to m one can define quadratic residuocity of a modulo m.

Since a and a+p are both quadratic residue or non-residue modulo p, we usually confine ourselves to \mathbb{Z}_p^* . Thus $a \in \mathbb{Z}_p^*$ is a quadratic residue modulo p iff it has a square root in \mathbb{Z}_p iff it is a square modulo p. We denote the set of quadratic residues modulo p in \mathbb{Z}_p^* by \mathbf{QR}_p . The set of quadratic non-residues is denoted by \mathbf{QNR}_p . Thus in \mathbb{Z}_p we have

$$1^2 = 1$$
; $2^2 = 4$; $3^2 = 2$; $4^2 = 2$; $5^2 = 4$; $6^2 = 1$.

Hence 1, 2, 4 are the 3 quadratic residues modulo 7. The number of quadratic residues is given by the following

Proposition 1. Let p be an odd prime. Then the number of quadratic residues modulo p is $\frac{(p-1)}{2}$.

Proof. Consider the function $f: \mathbb{Z}_p^* \longrightarrow \mathbb{Z}_p^*$ defined as follows. For $x \in \mathbb{Z}_p^*$,

$$f(x) \equiv x^2 \bmod p$$
.

Clear the function $x \longmapsto x^2$ is well-defined whose range is the set of quadratic residues \mathbf{QR}_p . Also if f(x) = a i.e. $x^2 \equiv a \bmod p$, then $(p-x)^2 \equiv (-x)^2 \equiv a \bmod p$ and hence f(p-x) = a. Thus the function f is a 2-1 function and so $|Range(f)| = |\mathbf{QR}_p| = \frac{(p-1)}{2}$.

Testing whether a given integer is a quadratic residue or non-residue modulo p is given by the following Euler's Criterion

Theorem 10. Let p be an odd prime. An integer a is a quadratic residue modulo p iff

$$a^{\frac{p-1}{2}} \equiv 1 \bmod p. \tag{4}$$

Proof. Suppose a is a quadratic residue modulo p. Then for integer x, we have $x^2 \equiv a \mod p$. First note that $x \not\equiv 0 \mod p$. Thus $a^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \mod p$ by Fermat's Theorem. (Theorem 9)

Conversely, suppose a satisfies equation (4). It is well-know \mathbb{Z}_p^* is a cyclic group with respect to multiplication modulo p. Hence there exits $\alpha \in \mathbb{Z}_p^*$ that generates \mathbb{Z}_p^* . Thus we have

$$\mathbb{Z}_p^* = \{1, \alpha, \alpha^2, \dots, \alpha^{p-2}\}.$$

Suppose $a \equiv \alpha^i \mod p$ for some $i, 0 \le i \le (p-2)$. Then

$$a^{\frac{p-1}{2}} \equiv \alpha^{i\frac{(p-1)}{2}} \bmod p.$$

Thus $\alpha^{\frac{i}{2}(p-1)} \equiv 1 \mod p$. Since the order of α is p-1, it follows that $\frac{i}{2}(p-1)$ is a multiple of (p-1) and hence 2|i. Set i=2j. Hence

$$(\alpha^j)^2 \equiv a \bmod p.$$

This shows that a is a quadratic residue modulo p. As a corollary we have

Corollary 2. An integer a is a quadratic non-residue iff

$$a^{\frac{p-1}{2}} \equiv -1 \mod p$$
.

Proof. By Fermat's Theorem we have

$$a^{p-1} \equiv 1 \bmod p$$
.

This implies

$$a^{p-1} - 1 \equiv 0 \mod p$$
or, $\left(a^{\frac{p-1}{2}} - 1\right) \left(a^{\frac{p-1}{2}} + 1\right) \equiv 0 \mod p$.

The result now follows from Theorem 10.

Exercise 8. (a) Write a program for testing whether an integer a is a quadratic residue modulo p or not. Check whether 3 is a quadratic residue modulo 7/ modulo 13.

(b) Show that if a, b are quadratic residues (or, non-residues) modulo p, then ab is also a quadratic

Thus \mathbf{QR}_p is a subgroup of \mathbb{Z}_p^* . (c) Let N=pq, where p,q are odd primes. Show that the following equation has 4 solutions.

$$x^2 \equiv 1 \mod N$$
.

(Hint: Use CRT)

Two of the solutions are +1 and -1. These are called the trivial square roots of 1 and the remaining two are the **non-trivial square roots** of 1 modulo N.

Definition 6. For an odd prime p we now define **Legendre symbol** $\left(\frac{a}{p}\right)$ as follows.

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{if } a \equiv 0 \bmod p \\ +1 & \text{if } a \text{ is a quadratic residue mod } p \\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p \end{cases}.$$

From Theorem 10 and Corollary 2 we have

Theorem 11. Let p be an odd prime. Then

$$a^{\frac{p-1}{2}} \equiv \left(\frac{a}{p}\right) \bmod p. \tag{5}$$

The following lists some properties of the Legendre symbol. They follow easily from Theorem 11.

Theorem 12. Let p be an odd prime. Then

1.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$
,

2.
$$a \equiv b \mod p$$
 implies that $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$,

3.
$$\left(\frac{1}{p}\right) = 1; \quad \left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}.$$

We now compute the value of $\left(\frac{2}{p}\right)$

Theorem 13. Let p be an odd prime. Then

$$\begin{pmatrix} \frac{2}{p} \end{pmatrix} \equiv \begin{cases} (-1)^{\frac{p-1}{4}} \mod p & \text{if } p \equiv 1 \mod 4\\ (-1)^{\frac{p+1}{4}} \mod p & \text{if } p \equiv 3 \mod 4 \end{cases}$$
(6)

Proof. Let p = 4n + 1. We shall compute $((p - 1)!) \mod p$ as follows

$$1.2.3.4.5....(4n)$$

$$\equiv (1.3.5....(4n-1)).(2.4....4n) \bmod p$$

$$\equiv (1.3.5....(4n-1)).((2n)!).2^{2n} \bmod p$$

$$\equiv (1.3....(2n-1)).((2n+1)....(4n-1)).((2n)!).2^{2n} \bmod p$$

$$\equiv ((-1)(-3)...(-2n+1))(-1)^n.((2n+1)...(4n-1)).((2n)!)2^{2n} \bmod p$$

$$\equiv ((4n)(4n-2)...(2n+2)).(-1)^n.((2n+1)...(4n-1))((2n)!)2^{2n} \bmod p$$

$$\equiv ((2n+1)(2n+2)...(4n)).(-1)^n.((2n)!).2^{2n} \bmod p$$

$$\equiv (1.2.3....(4n)).(-1)^n.2^{2n} \mod p.$$

Here we have used the fact that $-1 \equiv 4n$; $-3 \equiv 4n - 2$ etc. On cancellation we have,

$$1 \equiv (-1)^n 2^{2n} \equiv (-1)^{\frac{p-1}{4}} 2^{\frac{p-1}{2}} \bmod p.$$

i.e.
$$2^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{4}} \mod p$$
.

Thus

$$\left(\frac{2}{p}\right) \equiv (-1)^{\frac{p-1}{4}} \bmod p.$$

By a similar argument (exercise) one can show that

$$\left(\frac{2}{p}\right) \equiv (-1)^{\frac{p+1}{4}} \bmod p,$$

when $p \equiv 3 \mod 4$.

Exercise 9. 1. Show that $\left(\frac{2}{p}\right) = 1$ iff $p \equiv \pm 1 \mod 8$.

2. Show that

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2 - 1}{8}}.\tag{7}$$

We now state (without proof) the celebrated Law of Quadratic Reciprocity due to Gauss.

Theorem 14. If p and q are distinct odd primes, then

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$$
(8)

Exercise 10. 1. Show that

$$\left(\frac{p}{q}\right) = \begin{cases}
-\left(\frac{q}{p}\right) & \text{if } p, q \equiv 3 \mod 4 \\
+\left(\frac{q}{p}\right) & \text{otherwise}
\end{cases}$$
(9)

2. Compute $\left(\frac{37}{59}\right)$, $\left(\frac{-42}{61}\right)$.

2.1 Jacobi Symbol

The Legendre symbol can be extended to any odd positive integer a follows.

Definition 7. Let Q be an odd positive integer. Suppose $Q = \prod_{i=1}^k q_i$, be a prime factorisation, where the primes q_i are odd and not necessarily distinct. Then the **Jacobi Symbol** $\left(\frac{P}{Q}\right)$ is defined by

$$\left(\frac{P}{Q}\right) = \prod_{i=1}^{k} \left(\frac{P}{q_i}\right),\,$$

where each $\left(\frac{P}{q_i}\right)$ is the Legendre symbol.

Remark 6. Clearly, if GCD(P,Q) > 1, then $\left(\frac{P}{Q}\right) = 0$ while if GCD(P,Q) = 1 then $\left(\frac{P}{Q}\right) = \pm 1$.

The following follows from definition.

Theorem 15. Suppose P, Q are odd positive integers. Then

1.
$$\left(\frac{P}{Q}\right)\left(\frac{P}{Q'}\right) = \left(\frac{P}{QQ'}\right)$$
.
2. $\left(\frac{P}{Q}\right)\left(\frac{P'}{Q}\right) = \left(\frac{PP'}{Q}\right)$.

$$2. \left(\frac{P}{Q}\right)\left(\frac{P'}{Q}\right) = \left(\frac{PP'}{Q}\right).$$

3.
$$P \equiv P' \mod Q \text{ implies that } \left(\frac{P}{Q}\right) = \left(\frac{P'}{Q}\right).$$

Exercise 11. Let Q be an odd positive integer. Then show that

1.

$$\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}},\tag{10}$$

2.

$$\left(\frac{2}{Q}\right) = (-1)^{\frac{Q^2 - 1}{8}}. (11)$$

Hints: For (1) use the fact that $\frac{a-1}{2} + \frac{b-1}{2} \equiv \frac{ab-1}{2} \mod 2$ and for (2) note that $\frac{a^2-1}{8} + \frac{b^2-1}{8} \equiv \frac{a^2b^2-1}{2} \mod 2$ $\frac{a^2b^2-1}{8} \bmod 2.$ The Gaussian Reciprocity Law gives us the following

Theorem 16. Let P, Q be odd positive integers. Then

$$\left(\frac{P}{Q}\right)\left(\frac{Q}{P}\right) = (-1)^{\frac{P-1}{2}\frac{Q-1}{2}}.$$
(12)

Proof. Let $P = \prod_{i=1}^r p_i$ and $Q = \prod_{j=1}^s q_j$. Then

$$\left(\frac{P}{Q}\right) = \prod_{j=1}^{s} \left(\frac{P}{q_j}\right)$$

$$\begin{split} &= \prod_{j=1}^s \prod_{i=1}^r \left(\frac{p_i}{q_j}\right) = \prod_{j=1}^s \prod_{i=1}^r \left(\frac{q_j}{p_i}\right) (-1)^{\frac{p_i-1}{2}\frac{q_j-1}{2}} \\ &= \left(\frac{Q}{P}\right) (-1)^{\sum_{j=1}^s \sum_{i=1}^r \frac{p_i-1}{2}\frac{q_j-1}{2}}. \end{split}$$

Note that

$$\sum_{j=1}^{s} \sum_{i=1}^{r} \frac{p_i - 1}{2} \frac{q_j - 1}{2} = \sum_{i=1}^{r} \frac{p_i - 1}{2} \sum_{j=1}^{s} \frac{q_j - 1}{2}$$
$$\equiv \frac{P - 1}{2} \frac{Q - 1}{2} \mod 2.$$

Therefore we have

$$\left(\frac{P}{Q}\right) = \left(\frac{Q}{P}\right) (-1)^{\frac{P-1}{2}\frac{Q-1}{2}}.$$

This completes the proof

Exercise 12. 1. Evaluate $\left(\frac{-35}{97}\right)$; $\left(\frac{7411}{9283}\right)$; $\left(\frac{12345}{111111}\right)$.

2. Write an algorithm for computing the Jacobi symbol without factorisation.

2.2 Primality Tests

1. Miller-Rabin Primality Test

We have already seen that if n is a prime, then by Fermat's little theorem, $a^{n-1} \equiv 1 \mod n$, for any $a \in [1, n-1]$. The Miller-Rabin test tries to find a "witness" to the compositeness of n by choosing a random $a, 1 \leq a \leq n-1$ such that $a^{n-1} \not\equiv 1 \mod n$. The pseudo-code for Miller-Rabin is given below.

Miller-Rabin(n, s)

We now show

Theorem 17. The Miller-Rabin algorithm for composites is a Yes-baised Monte Carlo algorithm.

Proof. Assume that Miller-Rabin returns "n is composite". Then we claim that n must be composite. Assume that n is prime. Observe that in the **for** loop we are testing for the values $a^m, a^{2m}, \ldots, a^{2^{k-1}m}$. Since the algorithm returns "n is composite", we have for all $i, 0 \le i \le k-1$

$$a^{2^i m} \not\equiv -1 \bmod n$$
.

Also, by Fermat's theorem, $a^{n-1} \equiv 1 \mod n$ i.e.

$$a^{2^k m} \equiv 1 \mod n$$
.

Thus $a^{2^{k-1}m}$ is a square root of 1 modulo n. Since, by our assumption, n is prime, 1 has exactly two square roots modulo nviz+1 and -1. But $a^{2^{k-1}m} \not\equiv -1 \bmod n$. So

$$a^{2^{k-1}m} = 1 \mod n$$
.

Repeating this argument we ultimately obtain

$$a^m \equiv 1 \bmod n$$
.

But this is a contradiction since, otherwise, Miller-Rabin would have retuned "n is prime". Thus n must be composite.

We have just shown that if n is prime, then Miller-Rabin algorithm would always return "n is prime". However, if Miller-Rabin returns "n is prime" then it is likely to make an error. We now compute the error probability.

Theorem 18. If n is an odd composite number, then the number of witnesses to the compositeness of n is at least (n-1)/2.

Proof. * It suffices to show that the number of non-witnesses is at most (n-1)/2. We first show that all non-witnesses are in \mathbb{Z}_n^* . Fix a non-witness a. Then we must have $a^{n-1} \equiv 1 \mod n$ and hence $a^{n-1} = 1 + tn$, for some integer t. Now $GCD(a, n)|a^{n-1}$ and GCD(a, n)|tn and so $GCD(a,n)|(a^{n-1}-tn)$ i.e. GCD(a,n)|1. Thus GCD(a,n)=1 and so $a\in\mathbb{Z}_n^*$. We now show that all non-witnesses are in a proper sub-group of \mathbb{Z}_n^* . We shall consider two cases.

Case 1: There exists $x \in \mathbb{Z}_n^*$ such that $x^{n-1} \not\equiv 1 \mod n$. Let $B = \{b \in \mathbb{Z}_n^* : b^{n-1} \equiv 1 \mod n\}$. Clearly, B is non-empty. Also B is closed under multiplication modulo n. Hence, B is a subgroup of \mathbb{Z}_n^* . Also all non-witnesses are in B and, by our assumption, $x \in \mathbb{Z}_n^* - B$. So B is a proper subgroup of \mathbb{Z}_n^* . Hence

number of non-witnesses
$$\leq |B| \leq |\mathbb{Z}_n^*|/2 \leq (n-1)/2$$
.

Case 2: For all $x \in \mathbb{Z}_n^*$, $x^{n-1} \equiv 1 \mod n$.

In other words, n is a Carmicheal Number.

We first show that n is not a prime power. Suppose $n = p^e$, where p is an odd prime and e > 1. Then \mathbb{Z}_n^* is a cyclic group. Suppose g is a generator of \mathbb{Z}_n^* . By our assumption $g^{n-1} \equiv 1 \mod n$. Hence, the order of g divides n-1. But, the order of $g=|\mathbb{Z}_n^*|=\phi(n)=p^{e-1}(p-1)$. So $p^{e-1}(p-1)|(p^e-1)$, a contradiction, since p^e-1 is not divisible by p. Hence $n=n_1.n_2$, where n_1, n_2 are odd primes greater than 1 and $GCD(n_1, n_2) = 1$.

Note that $n-1=2^k m$ and that on input $a\in\mathbb{Z}_n^*$ Miller-Rabin computes the sequence

$$X = (a^m, a^{2m}, a^{2^2m}, \dots, a^{2^k m}).$$

Now fix a pair (c, j) where $c \in \mathbb{Z}_n^*, 0 \le j \le k$ and

$$c^{2^j m} \equiv -1 \bmod n. \tag{13}$$

Such a pair exists, since for j=0, we have $(n-1)^m \equiv (-1)^m \equiv -1 \mod n$. Choose j as large as possible. Let

$$B = \{ x \in \mathbb{Z}_n^* : x^{2^j m} \equiv \pm 1 \bmod n \}.$$

Clearly, B is closed under multiplication modulo n. Hence, B is a sub-group of \mathbb{Z}_n^* . Also every non-witness must be in B, since for a non-witness a, the sequence X computed by the algorithm must all be 1 or for some $j' \leq j, a^{2^{j'}m} \equiv -1 \mod n$, by maximality of j.

We claim that B is a proper sub-group of \mathbb{Z}_n^* . To see this, by CRT, fix an integer w such that

$$w \equiv c \bmod n_1$$

$$w \equiv 1 \bmod n_2$$
.

Observe that, if $w \equiv +1 \mod n$, then $w \equiv +1 \mod n_1$. This would imply that $w^{2^j m} \equiv c^{2^j m} \mod n_1$. But by (13), $c^{2^j m} \equiv -1 \mod n_1$. So $w^{2^j m} \equiv -1 \mod n_1$, a contradiction. This contradiction shows that $w \not\equiv +1 \mod n$. Similarly, if $w \equiv -1 \mod n$ then $w \equiv -1 \mod n_2$, which is a contradiction again. Hence $w \notin B$. To complete the proof, we show that $w \in \mathbb{Z}_n^*$. Since $w \equiv$ $c \mod n_1$ and $GCD(c, n_1) = 1$ it follows that $GCD(w, n_1) = 1$. Further $w \equiv 1 \mod n_2$ and so $GCD(w, n_2) = 1$. Consequently $GCD(w, n_1 n_2) = GCD(w, n) = 1$. Hence $w \in \mathbb{Z}_n^* - B$ and so B is a proper sub-group of \mathbb{Z}_n^* . In this case also

number of non-witnesses
$$\leq |B| \leq |\mathbb{Z}_n^*|/2 \leq (n-1)/2$$
.

This completes the proof.

We now compute the probability of error.

Theorem 19. For any odd integer n > 2 and any positive integer s, the probability that Miller-Rabin(n,s) errs is at most $1/2^s$.

Proof. If n is composite, in each execution, Miller-Rabin is likely to err if it chooses a non-witness. Hence, Miller-Rabin will err with probability at most 1/2. Thus the probability of erring s times is at most $1/2^s$.

2 Solovay-Strassen Primality Test

Recall that for an odd integer n, $\left(\frac{a}{n}\right)$ denote the Jacobi symbol of a w.r.t. n.

SOLOVAY-STRASSEN(n)

```
choose an random integer a such that 1 \le a \le n-1 x \leftarrow \left(\frac{a}{n}\right) if x = 0 then return ("n is composite") y \leftarrow a^{\frac{n-1}{2}} \mod n if x \equiv y \mod n then return ("n is prime") else return ("n is composite)
```

We shall now show that the Solovay-Strassen algorithm is a yes-biased Monte Carlo algorithm for composite. To see this, note that if n is prime, then by Theorem 11, the condition " $x \equiv y \mod n$ " will always hold and hence the algorithm will return "n is prime". This means that if the algorithm returns "n is composite", then n must be composite with probability 1. Furthermore, observe that if n is composite and the algorithm returns "n is prime", then it must be the case that for some integer a with $1 \le a \le n-1$ we have

$$\left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \bmod n. \tag{14}$$

In this case n is called an **Euler pseudo-prime** to the base a. For example one can check that

$$\left(\frac{10}{91}\right) \equiv 10^{45} \bmod 91.$$

Thus, 91 is an Euler pseudo-prime to the base 10.

For an odd composite n, if n is an Euler pseudo-prime to the base a, then one may view a as a witness to the fact that n is an Euler pseudo-prime. If the number of witnesses is not too large, then the probability of error will not be large. In fact, the next theorem shows that the error probability is at most 1/2.

Theorem 20. Let n be an odd composite integer. Recall that \mathbb{Z}_n^* is a multiplicative group of order $\phi(n)$. Define

$$G(n) = \left\{ a \in \mathbb{Z}_n^* : \left(\frac{a}{n}\right) \equiv a^{\frac{n-1}{2}} \bmod n \right\}.$$

Then G(n) is a **proper** subgroup of \mathbb{Z}_n^* . Consequently, $|G(n)| \leq \frac{n-1}{2}$.

Proof. ¹ It is not hard to see that if $a, b \in G(n)$ then $a.b \in G(n)$. Since G(n) is finite, this shows that G(n) is a subgroup of \mathbb{Z}_n^* . We now show that it is a proper subgroup. We have two cases.

Case 1. n is not a product of distinct primes. In this case, for some prime p we have $n = p^k q$,

¹ May be omitted

where $k \geq 2$ and q is odd. Let $a = 1 + p^{k-1}q$. Now using Theorem 15, we see that

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)^k \left(\frac{a}{q}\right) = \left(\frac{1}{p}\right)^k \left(\frac{1}{q}\right) = 1,$$

since $a \equiv 1 \mod p$ and $a \equiv 1 \mod q$. On the other hand,

 $a^{\frac{n-1}{2}} = (1+p^{k-1}q)^{\frac{n-1}{2}} = 1 + \frac{n-1}{2}(p^{k-1}q) + \text{terms which are multiples of n.}$

Thus we have

$$a^{\frac{n-1}{2}} \equiv 1 + \frac{n-1}{2} p^{k-1} q \bmod n. \tag{15}$$

Now if $a^{\frac{n-1}{2}} \equiv 1 \mod n$, then from (15), we would have

$$\frac{n-1}{2}p^{k-1}q \equiv 0 \bmod n.$$

This would imply that $p|\frac{n-1}{2}$. This is easily seen to be false. Hence, we have

$$a^{\frac{n-1}{2}} \not\equiv 1 \bmod n$$
,

and so

$$\left(\frac{a}{n}\right) \not\equiv a^{\frac{n-1}{2}} \bmod n.$$

Thus $a \in \mathbb{Z}_n^* - G(n)$ and so G(n) is a proper subgroup of \mathbb{Z}_n^* .

Case 2. n is a product of distinct primes. Suppose

$$n = p_1 p_2 \dots p_k$$

where the p_i 's are distinct odd primes. Let u be a fixed quadratic non-residue modulo p_1 . By the Chinese remainder theorem, find an integer a such that

$$a \equiv u \bmod p_1$$

and

$$a \equiv 1 \bmod p_2 \dots p_k$$
.

Observe that

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)\left(\frac{a}{p_2\dots p_k}\right) = \left(\frac{u}{p_1}\right)\left(\frac{1}{p_2\dots p_k}\right) = (-1).1 = -1.$$

Also, trivially, we have

$$a^{\frac{n-1}{2}} \equiv 1 \bmod p_2 \dots p_k. \tag{16}$$

This implies that

$$a^{\frac{n-1}{2}} \not\equiv -1 \bmod n.$$

For, if this equation does not hold, then we would have

$$a^{\frac{n-1}{2}} \equiv -1 \bmod p_2 \dots p_k,$$

contradicting equation (16). Consequently, we have

$$a^{\frac{n-1}{2}} \not\equiv \left(\frac{a}{n}\right) \bmod n.$$

Therefore, $a \in \mathbb{Z}_n^* - G(n)$. So G(n) is a proper subgroup of \mathbb{Z}_n^* .

Hence, by Lagrange's theorem, |G(n)| is a proper divisor of $|\mathbb{Z}_n^*| = \phi(n)$. Therefore, $|G(n)| \le \frac{\phi(n)}{2} \le \frac{n-1}{2}$.

This completes the proof \Box

The above theorem tells us that, given that n is composite, the probability that the algorithm will return "n is prime" is at most 1/2. If the algorithm returns "n is prime" m times in succession, how sure can we be that n is indeed prime? To compute the required probability, consider the following two events.

A: "a random odd integer n of specified size is composite"

B: "the algorithm returns 'n is prime' m times in succession"

Clearly, $\Pr[\mathbf{B} \mid \mathbf{A}] \leq \frac{1}{2^m}$. By Bayes's theorem,

$$\mathbf{Pr}[\mathbf{A} \mid \mathbf{B}] = \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}]\mathbf{Pr}[\mathbf{A}]}{\mathbf{Pr}[\mathbf{B}]} = \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}]\mathbf{Pr}[\mathbf{A}]}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}]\mathbf{Pr}[\mathbf{A}] + \mathbf{Pr}[\mathbf{B} \mid \bar{A}]\mathbf{Pr}[\bar{A}]}$$
(17)

Now suppose $N \leq n \leq 2N$. Then by the Prime number theorem, the number of primes in the interval [N, 2N] is approximately

$$\frac{2N}{\log 2N} - \frac{N}{\log n} \approx \frac{N}{\log n} \approx \frac{n}{\log n},$$

where $\log x$ denotes $\log_e x$. Since there are $N/2 \approx n/2$ odd integers in the interval [N, 2N], we have the following estimate.

$$\mathbf{Pr}[\mathbf{A}] \approx 1 - \frac{2}{\log n}.$$

Thus from (17) we have

$$\begin{aligned} \mathbf{Pr}[\mathbf{A} \mid \mathbf{B}] &\approx \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n})}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n}) + \mathbf{Pr}[\mathbf{B} \mid \bar{A}]\frac{2}{\log n}} \\ &\approx \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n})}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](1 - \frac{2}{\log n}) + \frac{2}{\log n}} \\ &\approx \frac{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](\log n - 2)}{\mathbf{Pr}[\mathbf{B} \mid \mathbf{A}](\log n - 2)} \\ &\leq \frac{\frac{1}{2^m}(\log n - 2)}{\frac{1}{2^m}(\log n - 2) + 2} \leq \frac{\log n - 2}{(\log n - 2) + 2^{m+1}} \\ &\leq \frac{\log n}{\log n + 2^{m+1}}, \end{aligned}$$

which is very small for sufficiently large m. Thus if the algorithm returns "n is prime" m times in succession, then for sufficiently large m, n is prime with high probability.

Complexity: One can evaluate $a^{\frac{n-1}{2}} \mod n$ in time $O((\log n)^3)$. Also, it is not hard to show that the Jacobi symbol $(\frac{a}{n})$ can be computed in polynomial time. In fact, using the properties listed in Theorem 15 and Theorem 16, one can show that the Jacobi symbol can be computed in $O((\log n)^3)$ time. Thus the time complexity of the Solovay-Strassen algorithm is $O((\log n)^3)$.

References

- J.Stillwell, Elements of Number Theory, Springer.
 I. Niven, H.S. Zukerman and H.L. Montgomary, An Introduction to the Theory of Numbers, Wiley.