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What is Cryptology?

Cryptology is the science of secrecy.
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Paradigms of Cryptography

Figure: Public-key cryptography (RSA, El-Gamal, Diffie-Hellman)

Figure: Symmetric-key cryptography (AES, DES, CBC, OCB)
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Computational Assumption on the Security of
Cryptographic Scheme

Security of almost all cryptographic schemes are based on
mathematical problems that are computationally difficult for
classical computers to solve.

For example, security of RSA is based on the hardness of
factoring large integers.

Security of OCB is based on the assumption that the
underlying block cipher is secure.

Quantum computers can solve some of this mathemat-
ical hard problem efficiently
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Quantum Algorithms

Shor’s Algorithm: Solve prime factors of a large integer in
polynomial time.

Grover’s Search Algorithm: Searching an unsorted list of N
items, providing a quadratic speedup.

Simon’s Algorithm: Period finding algorithm.

We require cryptographic schemes which are secure in
the presence of quantum algorithms.

Lattice Based Cryptography is one of the possible candidates
which are believed to be secure against quantum adversaries.
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What is Lattice?

A lattice can be thought of as any regularly spaced grid of
points stretching out to infinity.
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Definition of Lattice

Let B = [b⃗1, b⃗2, . . . , b⃗k ] be k linearly independent vectors in
Rn. Then,

Λ = L(B) :=
{ k∑

i=1

xi b⃗i : xi ∈ Z
}

is called lattice.

B is called the basis of the lattice L(B).
(n, k) is called the (dimension, rank) of the lattice

If n = k , then L(B) is called the full rank lattice.
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Example of Lattice

x

y

(0,1)

b2
(1,0)

b1
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Is a Lattice Basis Unique ?

x

y

(0,1)

b2
(1,0)

b1
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Another Basis of Z2

x

y

(1,0)
b1

(1,1)
b 2
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Does It Generate Z2 ?

x

y

(0,1)

b2

(2,1)

b1
(1,

1)

What is the criteria that two basis generate the same lattice
?
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Transformation of Basis

swap (i , j), i.e., b⃗i ↔ b⃗j

invert (i), i.e., b⃗i ↔ −b⃗i
add (i , j , c), i.e., b⃗i ← b⃗i + cb⃗j for some non-zero c ∈ Z

(0, 0) (0, 0)
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Unimodular Matrix

swap (i , j), i.e., b⃗i ↔ b⃗j

invert (i), i.e., b⃗i ↔ −b⃗i
add (i , j , c), i.e., b⃗i ← b⃗i + cb⃗j for some non-zero c ∈ Z

GL(n,Z) be the set of all invertible integer matrix of
dimension n × n

It is easy to see that GL(n,Z) is a group w.r.t matrix
multiplication

A matrix U ∈ Zn×n is called a unimodular matrix if U ∈
GL(n,Z)
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Unimodular Matrix

swap (i , j), i.e., b⃗i ↔ b⃗j

invert (i), i.e., b⃗i ↔ −b⃗i
add (i , j , c), i.e., b⃗i ← b⃗i + cb⃗j for some non-zero c ∈ Z

Elementary Col operation leads to a unimodular matrix

(swap) B =

[
1 2
0 1

]
⇒

[
1 2
0 1

] [
0 1
1 0

]
︸ ︷︷ ︸

unimodular

=

[
2 1
1 0

]

(invert) B =

[
1 2
0 1

]
⇒

[
1 2
0 1

] [
−1 0
0 1

]
︸ ︷︷ ︸
unimodular

=

[
−2 1
−1 0

]
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Unimodular Matrix

swap (i , j), i.e., b⃗i ↔ b⃗j

invert (i), i.e., b⃗i ↔ −b⃗i
add (i , j , c), i.e., b⃗i ← b⃗i + cb⃗j for some non-zero c ∈ Z

Two Basis Generate the Same Lattice

Let B ∈ Rn×k ,C ∈ Rn×k . B ≡ C iff ∃U ∈ GL(k ,Z) such
that C = BU.
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Fundamental Region and Fundamental Parallelepiped

Let B ∈ Rn×k be a basis. We define fundamental par-
allelepiped corresponding to the lattice L(B) as P(B) :=
{B.x : x ∈ Rk , 0 ≤ xi < 1}.

Property: Fundamental parallelepiped tiles the span of B.

(0, 0)
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Examples of Fundamental Parallelepiped

x

y

(0,1)

b2
(1,0)

b1
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Fundamental Parallelepiped Changes with Basis

x

y

(1,0)
b1

(1,1)
b 2
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Fundamental Parallelepiped Changes with Basis

x

y

(0,1)

b2

(2,1)

b1
(1,

1)

Given a lattice Λ and a set of linearly independent lattice vectors
from Λ, when does it generate the same lattice ?
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Generator of Lattice

When do we say that a set of linearly independent lattice
vectors is the generator of the lattice ?

Given a full rank lattice Λ and a set of n linearly independent
lattice vectors B = (b1, b2, . . . , bn) ∈ Λ, L(B) = Λ if and
only if Λ ∩ P(B) = {0}

(only if:) Λ is an integer linear combination and P(B) is
[0, 1) linear combination. Intersection must be a null vector

(if:) Let v ∈ Λ. v = y1x⃗1 + y2x⃗2 + . . .+ ynx⃗n, yi ∈ R.
v ′ := (y1 − ⌊y1⌋)x⃗1 + (y2 − ⌊y2⌋)x⃗2 + (yn − ⌊yn⌋)x⃗n ∈ Λ

By hypothesis,
v ′ = 0⇒ (y1 − ⌊y1⌋)x⃗1 + (y2 − ⌊y2⌋)x⃗2 + (yn − ⌊yn⌋)x⃗n = 0

∵ x⃗1, . . . , x⃗n are linearly independent,
yi − ⌊yi⌋ = 0 ⇐⇒ yi = ⌊yi⌋.
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Determinant of a Lattice

Determinant of a lattice Λ = L(B) is the volume of the
fundamental parallelepiped P(B)
volume of the fundamental parallelepiped P(B) is√

det(BTB)

Lemma

If B ≡ C , then vol(P(B)) = vol(P(C ))

Algebraic proof is routine calculation

volume of an object remains unaffected with respect to
elementary column operation

Note: det(Λ) ∝ 1
density(Λ) .
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volume of an object remains unaffected with respect to
elementary column operation

Note: det(Λ) ∝ 1
density(Λ) .
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Gram Schmidt Orthogonalization

Let B = b1, b2, . . . , bn that generates a finite dimensional
vector space V .

We define πi : Rn → span(b1, . . . , bi−1) defined as

πi (x) = x −
i−1∑
j=1

⟨x , b∗j ⟩
⟨b∗j , b∗j ⟩

b∗j

Note that πi (x) = x ⊥ span(b1, b2, . . . , bi−1).

The GSO of a sequence of vectors B = (b1, b2, . . . , bn) is the
sequence B∗ = (π1(b1), π2(b2), . . . , πn(bn)).
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Example of GSO

(0, 0)

(1, 1)

(0, 0)

(0, 1)

Both the basis generate the same lattice
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Example of GSO

(0, 0)

(1, 1)

(0.5,−0.5)

These two basis do not generate the same lattice.

However they span the same vector space R2

In general, L(B) ̸= L(B∗)
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Determinant of a Lattice and Gram-Schmidt Vectors

Lemma

Ler B be a basis and B∗ be its GSO. Then, vol(P(B)) =
n∏

i=1
∥b∗i ∥

Consider n = 2. Let B = (b1, b2).

P(B) is a parallelogram with sides b1 and b2

The area of the parallelogram is ∥b1∥ × ∥b∗2∥
Let it be true for dimension n − 1

For n-dimension, vol(P(B)) = vol of n − 1 dimensional
fundamental parallelopiped ×∥b∗n∥.

Since ∥b∗i ∥ ≤ ∥bi∥, we have vol(P(B)) ≤
∏
i
∥bi∥.
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Minimum Distance of a Lattice

For any lattice Λ, the minimum distance of Λ is the smallest
distance between any two lattice points, i.e.,

λ1(Λ) := inf{∥x⃗ − y⃗∥ : x⃗ , y⃗ ∈ Λ, x⃗ ̸= y⃗ .}

Since, Λ is a discrete additive subgroup of Rn, we can alternatively
defined it the minimum norm of a non-zero lattice vector, i.e.,

λ1(Λ) := inf{∥x⃗∥ : x⃗ ∈ Λ \ 0⃗.}
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Minimum Distance of a Lattice

Lemma

For every lattice basis B and its Gram-Schmidt orthogonalization
B∗, λ1(L(B)) ≥ mini ∥b⃗∗i ∥.

(0, 0)

(1, 1)

(0, 0)

(1, 1)

Any discrete subgroup of Rn is a lattice
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Minimum Distance of a Lattice

Lemma

For every lattice basis B, there is always a non-zero lattice vector
x ∈ L(B) such that ∥x∥ = λ1(L(B)).

A ball centered at 0 and of some radius k contains only
finitely many balls of radius λ1 centered at lattice
points within the ball.

A consequence is that the ball centered at 0 and radius
k will contain finitely many lattice points.

Consider a closed ball B(0, 2λ1). This contains finitely
many lattice points. Then by definition of λ1 , there is
at least one lattice point of length λ1.
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Minkowski’s Bound on λ1

For any n-dimensional lattice Λ, λ1(Λ) ≤
√
ndet(Λ)1/n

Blitchfeldt Theorem: vol(S) > det(L(B)))⇒
∃z1, z2 ∈ S such that z1 − z2 ∈ L(B).

Convex Body Theorem: If S is a centrally symmetric
and convex body of vol(S) > 2ndet(Λ), then S
contains a non-zero lattice point.

(Tightness of the Bound:) Let D be a large integer.

B =

[
1 0
0 D

]
Note that, λ1(L(B)) = 1 but, the result says λ1(L(B)) ≤

√
2D
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Proof of Minkowski’s Bound

Volume of an n-dimensional ball of radius r is

(
2r√
n

)n

vol(B(0, λ1)) ≥
(

2λ1√
n

)n

vol(B(0, λ1)) ≤ 2ndet(L(B)) – (MCB Theorem)
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Proof of Minkowski’s Convex Body Theorem

Minkowski’s Convex Body Theorem

Let Λ be a full-rank lattice of dimension n. If S ⊆ Rn is a centrally
symmetric and convex body of volume vol(S) > 2ndet(Λ), then S
contains a non-zero lattice point.
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Proof of Blitchfeldt Theorem

Blitchfeldt Theorem

Let B be a basis and Λ be an n-dimensional full rank lattice. Let
S ⊆ span(Λ) be a measureable set such that vol(S) > det(Λ).
Then, there exists two points z1, z2 such that z1 − z2 ∈ Λ.
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Successive Minima of Lattice

For an n-dimensional lattice Λ and an integer k ≤ n, λk(Λ)
be the smallest r > 0 such that Λ contains at least k linearly
independent vectors of length at most r
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Successive Minima of Lattice

For an n-dimensional lattice Λ and an integer k ≤ n, λk(Λ)
be the smallest r > 0 such that Λ contains at least k linearly
independent vectors of length at most r

Minkowski’s Second Theorem

For an n-dimensional lattice Λ, (
∏

i (λi ))
1/n ≤ √γn(det(Λ))1/n,

where γn is the Hermite constant.
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Sublattice

Defn: Let Λ be a lattice of dimension n. We call Λ′ to be a
sublattice of Λ if (a) Λ′ ⊆ Λ and (b) Λ′ is itself a lattice

(0, 0)

(1, 1)

(0, 0)

(0, 2)
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Sublattice

(0, 0)

(1, 1)

(0, 0)

(0, 2)

B =

[
1 1
0 1

]
, C =

[
2 0
0 2

]
= B ·

[
2 −2
0 2

]
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Sublattice

Theorem

Let B and C be two basis. Then L(B) ⊆ L(C ) if and only if there
exists an integer matrix U such that B = CU

let v ∈ L(B). v can be written as integer linear
combination of B vectors

Since B = CU, v can also be expressed as an integer
linear combination of C vectors. Thus, v ∈ L(C )

On the other hand, each B vectors are expressed as an
integer linear combination of C vectors. Thus, each B
vectors ∈ L(C ). Thus, any v ∈ L(B)⇒ v ∈ L(C ).

Note that, det(L(B))
det(L(C)) should be an integer.
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Group Theoretic View of Lattice and Sublattice

Defn: An n-dimensional Lattice Λ is a discrete additive sub-
group of Rn

Discrete means there exists an ϵ > 0 such that for all x ̸= y ∈ Λ,
∥x − y∥ > ϵ

Since Λ is a additive subgroup, an alternative characterization
of discrete is as follows:

∃ϵ > 0 such that ∀x ∈ Λ \ {0}, ∥x∥ > ϵ.

It can be shown that the two definitions of lattice are
equivalent
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Group Theoretic View of Lattice and Sublattice

Defn: A sublattice Λ′ ⊆ Λ is a normal subgroup of Λ

Define an equivalence relation ≡Λ′ over Λ as x ≡Λ′ y iff
x − y ∈ Λ′

For x , x ′ ∈ [x ] and y , y ′ ∈ [y ], [x ] + [y ] = [x + y ] which is
defined as x + x ′ ≡Λ′ y + y ′

The collection of equivalence classes along with the operation
‘+′ constitute a group, called quotient group, denoted as
Λ/Λ′

Each equivalence class [x ] is a set x + Λ′ which is known as a
coset, where x + Λ = {v ∈ Λ : v − x ∈ Λ′}
Note that Λ =

⋃
x∈Λ/Λ′ x + Λ′
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Dual Lattice

Defn: A dual lattice Λ̂ of a given lattice Λ is the set of all
vectors x ∈ span(Λ) such that ⟨x , y⟩ is an integer for all
y ∈ Λ

(0, 0)

(1, 1)

(0, 0)

(1, 0)
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Properties of Dual Lattice

The dual of a lattice with basis B is a lattice with basis
D = B(BTB)−1

Let G = BTB.

Consider a vector Dy ∈ L(D)

Note that, Dy = B(BTB−1y) ∈ span(B)

Let Bx ∈ L(B) be any arbitrary vector.

Consider ⟨Dy ,Bx⟩ ∈ Z.

L(D) ⊆ L̂(B)
Let v ∈ L̂(B).
By definition, v ∈ span(B) and BTv ∈ Zk .

Therefore, v = Bw = B(BTB)−1(BTB)w = D(BTv) ∈ L(D)

L̂(B) ⊆ L(D)
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Properties of Dual Lattice

Dual of the dual lattice is the original lattice

D is the dual basis of B if and only if the
span(B) = span(D) and BTD = DTB = I

Determinant of a dual lattice is the inverse of the
determinant of its original lattice

You can prove all the above properties at home!
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Transference Theorem Related to Successive Minima

Goal: Consider Λ with successive minima λ1, . . . , λn and Λ̂ be the
dual lattice of Λ with successive minima λ̂1, . . . , λ̂n. Can we

transfer knowledge from λ1, . . . , λn to λ̂1, . . . , λ̂n ?
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What can we say about λ1

By Minkowski’s Theorem, we have

λ1 ≤
√
n · det(Λ)1/n.

Similarly, we have

λ̂1 ≤
√
n · det(Λ̂)1/n =

√
n · det(Λ̂)−1/n.

Therefore, we have
λ1 · λ̂1 ≤ n.

Consequence: if λ1 is large then λ̂1 is small.

Remark

Using the stronger version of Minkowski’s Theorem, one has

λ1 · λ̂1 ≤ γn.
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Another Transference Theorem

Transference Theorem

λ1 · λ̂n ≥ 1

Let v ∈ Λ such that ∥v∥ = λ1

Let x1, x2, . . . , xn ∈ Λ̂ such that ∥xn∥ = λ̂n and ∥xi∥ ≤ ∥xn∥
Observation: ∃j such that ⟨v , xj⟩ ∈ Z \ 0. (Why ?)

1 ≤ |⟨v , xj⟩| ≤ ∥v∥∥xj∥ ≤ λ1 · λ̂n

More generally, ∀1 ≤ k ≤ n

1 ≤ λk · λ̂n−k+1 ≤ n.

Banaszczyk Transference Theorem.
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SVP in Lattice

(Search version): Given a lattice basis B, find a
non-zero vector v ∈ L such that ∥v∥ = λ1.

(Optimized version): Given a lattice basis B, find
λ1(L(B)).

(Decision version): Given a lattice basis B and a real
number d > 0, output{

yes, if λ1(L(B)) ≤ d
no, if λ1(L(B)) > d
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What Makes SVP Hard

x

y

(3,1)

b1

(4,1)

b2
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What Makes SVP Hard
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(1,0)b1

(0,1)
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What Makes SVP Hard

Can we find an unimodular transformation that
transforms a given skewed basis to a orthogonal basis

of the lattice ?

Seems to be easy in lower dimension

Its fairly difficult in higher dimension

Seeks for Lattice Basis Reduction (LLL, BKZ)

Search-SVP ⇔ Optimized-SVP ⇔ Decisional-SVP
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CVP in Lattice

(Search version): Given a lattice basis B and a point
t (not in the lattice), find a vector v in the lattice such
that v is the closest vector to t. That is,

∥v − t∥ ≤ ∥v ′ − t∥, ∀v ′ ∈ L(B).

(Optimized version): Given a lattice basis B and a
point t, find distance(t,L(B)).

(Decision version): Given a lattice basis B ,a point t
and a real number d > 0, then output{

yes, if dist(t, L(B)) ≤ d
no, if dist(t, L(B)) > d
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What Makes CVP Hard

Similar to SVP, can we find an unimodular
transformation that transforms a given skewed basis to

a orthogonal basis of the lattice ?

Seems to be easy in lower dimension

Its fairly difficult in higher dimension

Seeks for Lattice Basis Reduction (LLL, BKZ) followed
by Babai Nearest Plane Algorithm.

Search-CVP ⇔ Optimized-CVP ⇔ Decisional-CVP
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Approximate Variants of SVP

Let γ be the approximation factor

(Search version:) Given a lattice basis B, find a
non-zero vector v ∈ L such that ∥v∥ ≤ γλ1.

(Optimized version:) Given a lattice basis B, find a
real number d such that λ1(L(B)) ≤ d ≤ γλ1(L(B)).

(Decision version:) Given a lattice basis B and a real
number d > 0, then output yes if λ1(L(B)) ≤ d and
no if λ1(L(B)) > γd .

Approximate variant of Decisional version of SVP is also
known as GapSVPγ problem.
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distance(t,L(B)) ≤ d and no, if distance(t,L(B))> γd .

Decisional-CVPγ ⇒ Optimized-CVPγ ⇒ Search-CVPγ

Optimized-CVPγ ⇒ Decisional-CVPγ (apply binary search)

Search-CVPγ ⇒ Optimized-CVPγ (still open)
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Approximate Variants of CVP

Let γ be the approximation factor

(Search version:) Given a lattice basis B and a point
t (not in the lattice), find a vector v in the lattice such
that ∥v − t∥ ≤ γ||v ′ − t||, ∀v ′ ∈ L.

(Optimized version:) Given a lattice basis B and a
point t, find a real number d such that
distance(t,L(B))≤ d ≤ γ distance(t,L(B)).

(Decision version:) Given a lattice basis B ,a point t
and a real number d > 0, then output yes, if
distance(t,L(B)) ≤ d and no, if distance(t,L(B))> γd .

Decisional-CVPγ ⇒ Optimized-CVPγ ⇒ Search-CVPγ

Optimized-CVPγ ⇒ Decisional-CVPγ (apply binary search)

Search-CVPγ ⇒ Optimized-CVPγ (still open)
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Thank You!
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