Lattice-Based Cryptography: LWE, SIS and Their Applications

Mriganka Dey

CREST Crypto Summer School

June 27, 2025

Recall: Lattices

• A Lattice is an additive subgroup of \mathbb{Z}^m (full rank).

Recall: Lattices

- A Lattice is an additive subgroup of \mathbb{Z}^m (full rank).
- Given a basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_m)$, the lattice is:

$$\Lambda = \mathcal{L}(B) = \left\{ \sum_{i=1}^{m} z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\}$$

Recall: Lattices

- A Lattice is an additive subgroup of \mathbb{Z}^m (full rank).
- Given a basis $B = (\mathbf{b}_1, \dots, \mathbf{b}_m)$, the lattice is:

$$\Lambda = \mathcal{L}(B) = \left\{ \sum_{i=1}^{m} z_i \mathbf{b}_i : z_i \in \mathbb{Z} \right\}$$

Lattices can have many different bases.

Examples of Lattice

Figure: Depicting $B_1 = \{(0,1), (1,0)\}$ (green) and $B_2 = \{(1,1), (2,1)\}$ (blue) generates \mathbb{Z}^2 .

Examples of Lattice

Figure: Depicting $B_3 = \{(1,1), (2,0)\}$ (red) does not generate \mathbb{Z}^2 .

Some Hard Problems

• SVP (Shortest Vector Problem)

• CVP (Closest Vector Problem)

• SIVP (Shortest Independent Vectors Problem)

Some Hard Problems

- SVP (Shortest Vector Problem)
- CVP (Closest Vector Problem)
- SIVP (Shortest Independent Vectors Problem)
- SIS (Shortest Integer Solution)
- LWE (Learning With Error)

• Introduced by Ajtai in 1996

• Problem.(Homogeneous) Given $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$, find $\mathbf{z} \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{z} \equiv \mathbf{0} \mod q$, where $\mathbf{z} \neq \mathbf{0}$ and $\mathbf{z} \in [-B, B]^m$ (and $B \ll \frac{q}{2}$).(SIS₂ problem is defined similarly except $\|\mathbf{z}\|_2 \leq \beta, \beta \ll \frac{q}{2}$)

SIS

SIS Lattice

SIS Lattice.
$$\Lambda_a^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} \equiv \mathbf{0} \mod q \}, \quad \mathbf{A} \xleftarrow{\$} \mathbb{Z}_a^{n \times m}$$

SIS Lattice

Claim. Suppose the first *n* columns of $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ are linearly independent over \mathbb{Z}_q . Then \mathbf{A} can be row-reduced to:

$$ilde{\mathbf{A}} = \left[\mathbf{I}_n \; \Big| \; ar{\mathbf{A}}
ight], \quad ext{where } ar{\mathbf{A}} \in \mathbb{Z}_q^{n imes (m-n)}.$$

Then the following matrix forms a basis for the SIS lattice:

$$\mathbf{C} = \begin{bmatrix} q \cdot \mathbf{I}_n & -\bar{\mathbf{A}} \\ \mathbf{0} & \mathbf{I}_{m-n} \end{bmatrix} \in \mathbb{Z}^{m \times m}$$

SIS Lattice

The matrix ${\bf C}$ above is a basis matrix for the SIS lattice:

$$\Lambda_q^{\perp}(\mathbf{A}) = \{ \mathbf{z} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} \equiv \mathbf{0} \mod q \}$$

• Result: SIS₂ is equivalent to solve SVP in an SIS lattice.

• Hardness: Finding a short $\mathbf{z} \in \Lambda_q^{\perp}(\mathbf{A})$ (i.e., $\|\mathbf{z}\|_2 \leq \beta$) for uniformly random $\mathbf{A} \in \mathbb{Z}_q^{n \times m}$ implies a solution to $\text{SIVP}_{\beta\sqrt{n}}$ on any *n*-dimensional lattices.

SIS Example

- Let n = 3, m = 5, q = 13, and B = 3.
- SIS instance: $\mathbf{A} = \begin{bmatrix} 1 & 0 & 7 & 12 & 4 \\ 2 & 11 & 3 & 6 & 12 \\ 9 & 8 & 10 & 5 & 1 \end{bmatrix}$
- We need to find nonzero $z = (z_1, z_2, z_3, z_4, z_5) \in [-3, 3]^5$ such that $Az = 0 \mod 13$.

SIS Example

- Let n = 3, m = 5, q = 13, and B = 3.
- SIS instance:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 7 & 12 & 4 \\ 2 & 11 & 3 & 6 & 12 \\ 9 & 8 & 10 & 5 & 1 \end{bmatrix}$$

- We need to find nonzero $z = (z_1, z_2, z_3, z_4, z_5) \in [-3, 3]^5$ such that $Az = 0 \mod 13$.
- Performing Gaussian elimination on A yields the reduced matrix:

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 0 & 0 & 5 & 10 \\ 0 & 1 & 0 & 10 & 12 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

• Among the $13^2 = 169$ total solutions $z \in \mathbb{Z}_{13}^5$, six are SIS solutions (i.e., in $[-3,3]^5$):

$$\mathbf{z} = \pm (3, 1, -1, 0, 1), \quad \pm (1, 0, -2, -1, 3), \quad \pm (2, 1, 1, 1, -2)$$

Problem.(Inhomogeneous) Given $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$, find $\mathbf{z} \in \mathbb{Z}^m$ such that $\mathbf{A}\mathbf{z} \equiv \mathbf{b} \mod q$, where $\mathbf{b} \neq \mathbf{0}$, $\mathbf{z} \neq \mathbf{0}$ and $\mathbf{z} \in [-B, B]^m$ (and $B \ll \frac{q}{2}$).(SIS₂ problem is defined similarly except $\|\mathbf{z}\|_2 \leq \beta, \beta \ll \frac{q}{2}$)

• Construction. Select $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$, where $m > n \log q$. Construct $\mathsf{H}_{\mathbf{A}} : \{0, 1\}^m \longrightarrow \mathbb{Z}_q^n, \quad \mathsf{H}_{\mathbf{A}}(\mathbf{z}) = \mathbf{A}\mathbf{z} \mod q$

• Construction. Select $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{n \times m}$, where $m > n \log q$. Construct

 $\mathsf{H}_{\mathbf{A}}: \{0,1\}^m \longrightarrow \mathbb{Z}_q^n, \quad \mathsf{H}_{\mathbf{A}}(\mathbf{z}) = \mathbf{A}\mathbf{z} \mod q$

• Collision Resistance. If \exists a probabilistic polynomial time (PPT) algorithm that can compute $\mathbf{z}_1 \neq \mathbf{z}_2$ such that $\mathbf{A}\mathbf{z}_1 = \mathbf{A}\mathbf{z}_2 \mod q$, then it can be used to solve SIS problem.

• $\mathbf{z}_1 - \mathbf{z}_2 \in [-1, 1]^m$ is a solution of the equation $\mathbf{A}\mathbf{z} = 0 \mod q$, for B = 1.

Introduced by Regev in 2005

• Problem. Let $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$ and $\mathbf{e} \stackrel{\$}{\leftarrow} [-B, B]^m$ (for more security measures $\mathbf{e} \stackrel{\$}{\leftarrow} \chi$, error distribution) where $B \ll \frac{q}{2}$. Given $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$ and $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e} \mod q \in \mathbb{Z}_q^m$, find \mathbf{s} . LWE

Decisional LWE(DLWE)

Problem. Let $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{e} \stackrel{\$}{\leftarrow} [-B, B]^m$ (for more security measures $\mathbf{e} \stackrel{\$}{\leftarrow} \chi$, error distribution), where $B \ll \frac{q}{2}$, and $\mathbf{b} = \mathbf{As} + \mathbf{e}$. Let $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^m$. Let $\mathbf{c} = \mathbf{b}$ with probability $\frac{1}{2}$ and $\mathbf{c} = \mathbf{r}$ with probability $\frac{1}{2}$. Given (\mathbf{A}, \mathbf{c}) , the problem is to decide (with success probability significantly greater than $\frac{1}{2}$) whether $\mathbf{c} = \mathbf{b}$ or $\mathbf{c} = \mathbf{r}$.

Decisional LWE(DLWE)

Problem. Let $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$, $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{e} \stackrel{\$}{\leftarrow} [-B, B]^m$ (for more security measures $\mathbf{e} \stackrel{\$}{\leftarrow} \chi$, error distribution), where $B \ll \frac{q}{2}$, and $\mathbf{b} = \mathbf{As} + \mathbf{e}$. Let $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^m$. Let $\mathbf{c} = \mathbf{b}$ with probability $\frac{1}{2}$ and $\mathbf{c} = \mathbf{r}$ with probability $\frac{1}{2}$. Given (\mathbf{A}, \mathbf{c}) , the problem is to decide (with success probability significantly greater than $\frac{1}{2}$) whether $\mathbf{c} = \mathbf{b}$ or $\mathbf{c} = \mathbf{r}$.

Result. LWE is as hard as DLWE.

LWE Lattice

LWE Lattice. $\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{y} \mod q \text{ for some } \mathbf{z} \in \mathbb{Z}^n \}$

LWE Lattice

Claim. Let
$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$$
, $\mathbf{A}_1 \in \mathbb{Z}_q^{n \times n}$, $\mathbf{A}_2 \in \mathbb{Z}_q^{(m-n) \times n}$ and suppose that \mathbf{A}_1 is invertible modulo q .

Define

$$\mathbf{D}_2 = \mathbf{A}_2 \mathbf{A}_1^{-1} \mod q, \quad \mathbf{D} = \begin{bmatrix} \mathbf{I}_n & \mathbf{0} \\ \mathbf{D}_2 & q \cdot \mathbf{I}_{m-n} \end{bmatrix} \in \mathbb{Z}^{m imes m}$$

Then ${\bf D}$ is a basis matrix for the LWE lattice:

$$\Lambda_q(\mathbf{A}) = \{\mathbf{y} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{y} \mod q \text{ for some } \mathbf{z} \in \mathbb{Z}^n\}$$

LWE Lattice

Claim. Let $\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix}$, $\mathbf{A}_1 \in \mathbb{Z}_q^{n \times n}$, $\mathbf{A}_2 \in \mathbb{Z}_q^{(m-n) \times n}$ and suppose that \mathbf{A}_1 is invertible modulo q.

Define

$$\mathbf{D}_2 = \mathbf{A}_2 \mathbf{A}_1^{-1} \mod q, \quad \mathbf{D} = \begin{bmatrix} \mathbf{I}_n & \mathbf{0} \\ \mathbf{D}_2 & q \cdot \mathbf{I}_{m-n} \end{bmatrix} \in \mathbb{Z}^{m \times m}$$

Then D is a basis matrix for the LWE lattice:

 $\Lambda_q(\mathbf{A}) = \{ \mathbf{y} \in \mathbb{Z}^m : \mathbf{A}\mathbf{z} = \mathbf{y} \mod q \text{ for some } \mathbf{z} \in \mathbb{Z}^n \}$ Try to prove it!!

LWE Example

• Let
$$m = 5, n = 3, q = 31, B = 2$$
.

• LWE instance:

$$\mathbf{A} = \begin{bmatrix} 11 & 3 & 27\\ 12 & 21 & 7\\ 6 & 23 & 30\\ 5 & 6 & 2\\ 21 & 0 & 14 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 25\\ 25\\ 12\\ 29\\ 17 \end{bmatrix}$$

• We need to find $\mathbf{s} \in \mathbb{Z}_q^3$ and $\mathbf{e} \in [-2,2]^5$ such that $\mathbf{As} + \mathbf{e} = \mathbf{b} \mod 31$.

LWE Example

- Let m = 5, n = 3, q = 31, B = 2.
- LWE instance:

$$\mathbf{A} = \begin{bmatrix} 11 & 3 & 27\\ 12 & 21 & 7\\ 6 & 23 & 30\\ 5 & 6 & 2\\ 21 & 0 & 14 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 25\\ 25\\ 12\\ 29\\ 17 \end{bmatrix}$$

- We need to find $\mathbf{s} \in \mathbb{Z}_q^3$ and $\mathbf{e} \in [-2,2]^5$ such that $\mathbf{As} + \mathbf{e} = \mathbf{b} \mod 31$.
- There are three LWE solutions:

$$\begin{aligned} \mathbf{s} &= (2, 11, 7)^T, \qquad \mathbf{e} &= (-2, 0, 2, 1, 1)^T \\ \mathbf{s} &= (27, 13, 16)^T, \qquad \mathbf{e} &= (1, -2, 1, 1, 1)^T \\ \mathbf{s} &= (30, 9, 5)^T, \qquad \mathbf{e} &= (-2, -1, 2, 1, -1)^T \end{aligned}$$

• Key Genereation:

• Private Key: Choose
$$\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$$
.
sk: \mathbf{s}

- Public key: for $i = 1, 2, \dots, m$
 - Choose $\mathbf{a}_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n$ Choose $\mathbf{e}_i \stackrel{\$}{\leftarrow} \chi$ where $\chi : \mathbb{Z}_q \to \mathbb{R}^+$. $pk: (\mathbf{a}_i, b_i)_{i=1}^m$ where $b_i = \langle \mathbf{a}_i, \mathbf{s} \rangle + \mathbf{e}_i$.

• Encryption: To encrypt a "bit" do the following.

- Choose a random subset $S \subseteq [m] \stackrel{\Delta}{=} \{1, 2, \dots, m\}.$
- For the encryption of 0 sets

$$(\mathbf{a}, b) \equiv \left(\sum_{i \in S} \mathbf{a}_i, \sum_{i \in S} b_i\right)$$

• For the encryption of 1 sets

$$(\mathbf{a}, b) \equiv \left(\sum_{i \in S} \mathbf{a}_i, \left\lfloor \frac{q}{2} \right\rfloor + \sum_{i \in S} b_i \right)$$

• **Decryption:** The decryption of of a pair (\mathbf{a}, b) is

• 0 if $b - \langle \mathbf{a}, \mathbf{s} \rangle$ is "closer" to 0 than $\lfloor \frac{q}{2} \rfloor$

• 1 otherwise

• **Decryption:** The decryption of of a pair (\mathbf{a}, b) is

• 0 if $b - \langle \mathbf{a}, \mathbf{s} \rangle$ is "closer" to 0 than $\lfloor \frac{q}{2} \rfloor$

• 1 otherwise

Result. The encryption scheme is CPA secure under DLWE assumption.

• Miklos Ajtai: Generating Hard Instances of Lattice Problems (Extended Abstract (STOC' 96)

• Oded Regev: On lattices, learning with errors, random linear codes, and cryptography (STOC' 05)

Thank You

Questions!!