Cryptography - The Journey Begins

Nilanjan Datta

Institute for Advancing Intelligence, TCG CREST, Kolkata

CREST CRYPTO Summer School 2025, Kolkata

N.Datta (TCG CREST, Kolkata)

Cryptography - The Journey Begins

1/53

Cryptography

cryptography noun

/krɪp'tɒgrəfi/

🌒 / krɪp'taːgrəfi/

[uncountable]

★ the art of writing or solving codes

э

イロト 不得 トイヨト イヨト

Cryptography

cryptography noun

/krɪp'tɒgrəfi/

🌒 / krɪp'taːgrəfi/

[uncountable]

★ the art of writing or solving codes

Cryptology = Cryptography + Cryptanalysis

・ロト ・ 一下・ ・ 日下・

The Basic Set up

Bob

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへの

The Basic Set up

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

The Basic Set up

э

イロト 不得 トイヨト イヨト

Notion of An Adversary

- Passive Adversary: Observes the Message
- Active Adversary: Modifies the Message

< E

My Netflix password is ND180722

イロト 不得 トイヨト イヨト

э

We need Confidentiality

- Bob should read the message.
- Eve should not read the message.

Cryptography - The Journey Begins

э

イロト 不得 トイヨト イヨト

э

・ロ・・ 日本・ ・ 日本・ ・ 日本

We need Authentication/Integrity

Bob should be able to validate the authenticity of the message and the integrity of Alice.

N.Datta (TCG CREST, Kolkata)

(a) < (a) < (b) < (b)

- 22

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

We need Non-Repudiation

Alice can not deny a message that she sent to Bob.

イロト イボト イヨト イヨ

Real-Life Applications

<ロト < 同ト < 回ト < 回ト = 三日

Symmetric-Key Cryptography

Alice and Bob share a secret key.

э

イロト 不得 トイヨト イヨト

Symmetric-Key Cryptography

Alice and Bob share a secret key.

Public-Key Cryptography

Each User has a public key and a secret key.

N.Datta (TCG CREST, Kolkata)

Symmetric-Key Encryption

Message Space: \mathcal{M} , Ciphertext space: \mathcal{C} , Key-space \mathcal{K} .

- Keygen: $K \leftarrow_{\$} \mathcal{K}$.
- Encryption: $C \leftarrow Enc_{\mathcal{K}}(M)$.
- Decryption: $M := Dec_{\mathcal{K}}(C)$.

イロト 不得 トイヨト イヨト 二日

Symmetric-Key Encryption

Message Space: \mathcal{M} , Ciphertext space: \mathcal{C} , Key-space \mathcal{K} .

- Keygen: $K \leftarrow_{\$} \mathcal{K}$.
- Encryption: $C \leftarrow Enc_{\mathcal{K}}(M)$.
- Decryption: $M := Dec_{\mathcal{K}}(C)$.

Correctness: For any M, K, $Dec_K(Enc_K(M)) = M$.

イロト 不得 トイヨト イヨト 二日

Kerckhoffs' Principle

- The cryptosystem is known to the adversary.
- But the key is not known to the attacker.
- The secrecy of the cryptosystem lies in the key.

< A

Public-Key Encryption

Receiver's Key: (R.PK, R.SK)

- Encryption: $C \leftarrow Enc_{R.PK}(M)$.
- Decryption: $M := Dec_{R.SK}(C)$.

3

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Public-Key Encryption

Receiver's Key: (R.PK, R.SK)

- Encryption: $C \leftarrow Enc_{R.PK}(M)$.
- Decryption: $M := Dec_{R.SK}(C)$.

Correctness: For any M, (U.PK, U.SK), $Dec_{U.SK}(Enc_{U.PK}(M)) = M$.

イロト 不得 トイヨト イヨト 二日

Historic and Classical Ciphers

э

イロト 不得 トイヨト イヨト

э

イロト 不得 トイヨト イヨト

Ohw wkh Jdph Ehjlq..

イロト イヨト イヨト イヨ

Ohw wkh Jdph Ehjlq..

<u>፝ጜ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟</u>

N.Datta (TCG CREST, Kolkata)

Cryptography - The Journey Begins

16 / 53

4 / □ > < ∃</p>

▶ ∢ ⊒

"The Adventure of the Dancing Men"

イロト イヨト イヨト

э

Historic Ciphers: Enigma Machine

https://www.youtube.com/watch?v=ybkkiGtJmkM

(日)

Classical Ciphers

э

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Shift Cipher

 $\mathcal{M}=\mathcal{C}=\mathcal{K}=\mathbb{Z}_{26}.$

- Keygen: $K \leftarrow_{\$} \mathbb{Z}_{26}$.
- Encryption: $C := (K + M) \mod 26$.
- Decryption: $M := (K + C) \mod 26$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つへ⊙

Shift Cipher - Cryptanalysis

Can you decipher the following text?

JBCRCLQRWCRVNBJENBWRWN,

3

イロト 不得 トイヨト イヨト

Shift Cipher - Cryptanalysis

Can you decipher the following text?

JBCRCLQRWCRVNBJENBWRWN,

After applying brute force search:

jbcrclqrwcrvnbjenbwrwn iabqbkpqvbqumaidmavqvm hzapajopuaptlzhclzupul gyzozinotzoskygbkytotk fxynyhmnsynrjxfajxsnsj ewxmxglmrxmqiweziwrmri dvwlwfklqwlphvdyhvqlqh cuvkvejkpvkogucxgupkpg btujudijoujnftbwftojof astitchintimesavesnine

- 本語 ト イヨト イヨト

Affine Cipher

- $\mathcal{M}=\mathcal{C}=\mathbb{Z}_{26},\ \mathcal{K}=\mathbb{Z}_{26}^{\star} imes\mathbb{Z}_{26}.$
 - Keygen: $(K_1, K_2) \leftarrow_{\$} \mathbb{Z}_{26}^{\star} \times \mathbb{Z}_{26}$.
 - Encryption: $C := (MK_1 + K_2) \mod 26$.
 - Decryption: $M := K_1^{-1}(C K_2) \mod 26$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Affine Cipher

- $\mathcal{M}=\mathcal{C}=\mathbb{Z}_{26},\ \mathcal{K}=\mathbb{Z}_{26}^{\star} imes\mathbb{Z}_{26}.$
 - Keygen: $(K_1, K_2) \leftarrow \mathbb{Z}_{26}^* \times \mathbb{Z}_{26}$.
 - Encryption: $C := (MK_1 + K_2) \mod 26$.
 - Decryption: $M := K_1^{-1}(C K_2) \mod 26$.

How to cryptanalyze affine cipher?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Substitution Cipher

- $\mathcal{M}=\mathcal{C}=\mathbb{Z}_{26},\ \mathcal{K}=\mathbb{P}(26).$
 - Keygen: $\pi \leftarrow_{\$} \mathbb{P}(26)$.
 - Encryption: $C := \pi(M)$.
 - Decryption: $M := \pi^{-1}(C) \mod 26$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cryptanalysis of Substitution Cipher

Can you decipher the following text?

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

イロト 不通 ト イヨト イヨ
Can you decipher the following text?

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

How about applying a brute-force search?

Э

・ロット (雪) (小田) (日)

Use Frequency Table:

э

э

Cryptanalysis of Substitution Cipher: Frequency Table

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

letter	frequency	letter	frequency
A	0	N	9
B	1	0	0
C	15	P	1
D	13	Q	4
E	7	\dot{R}	10
F	11	S	3
G	1	T	2
H	4	U	5
Ι	5	V	5
J	11	W	8
K	1	X	6
L	0	Y	10
M	16	Z	20

イロト 不得 トイヨト イヨト

• Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$
- C, D, F, J, M, R, Y might be encryptions of t, a, o, i, n, s, h, r, but difficult to predict.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Cryptanalysis of Substitution Cipher: Frequency Table

Look at di-grams:

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF.

э

イロト 不得下 イヨト イヨト

Cryptanalysis of Substitution Cipher: Frequency Table

Look at di-grams:

TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, OF.

Also look at tri-grams:

THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH.

A (10) × (10)

Cryptanalysis of Substitution Cipher: Frequency of Occurances

YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

イロト イヨト イヨト

- Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$
- C, D, F, J, M, R, Y might be encryptions of t, a, o, i, n, s, h, r, but difficult to predict.

イロト 不得 トイヨト イヨト 二日

- Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$
- C, D, F, J, M, R, Y might be encryptions of t, a, o, i, n, s, h, r, but difficult to predict.
- Look at digrams of the form $_Z$ and Z_- .

イロト 不得 トイヨト イヨト 二日

- Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$
- C, D, F, J, M, R, Y might be encryptions of t, a, o, i, n, s, h, r, but difficult to predict.
- Look at digrams of the form $_Z$ and Z_- .
- ZW : 4, WZ : 0, W less frequent: $d_K(W) = d$

イロン 不良 とうせい うせいしゅう

- Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$
- C, D, F, J, M, R, Y might be encryptions of t, a, o, i, n, s, h, r, but difficult to predict.
- Look at digrams of the form $_Z$ and Z_- .
- ZW : 4, WZ : 0, W less frequent: $d_K(W) = d$
- $DZ: 4, ZD: 2: d_{\mathcal{K}}(D) \in \{r, s, t\}$

- Z occurs 20 times: $d_{\mathcal{K}}(Z) = e$
- C, D, F, J, M, R, Y might be encryptions of t, a, o, i, n, s, h, r, but difficult to predict.
- Look at digrams of the form $_Z$ and Z_- .
- ZW : 4, WZ : 0, W less frequent: $d_K(W) = d$
- $DZ: 4, ZD: 2: d_{\mathcal{K}}(D) \in \{r, s, t\}$
- ZRW : 1, RW : 2, R frequent: $d_K(R) = n$

イロト 不得 トイヨト イヨト ニヨー

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

o-r-riend-ro--arise-a-inedhise--t---ass-it YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

hs-r-riseasi-e-a-orationhadta-en-ace-hi-e NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

he-asnt-oo-in-i-o-redso-e-ore-ineandhesett NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

-ed-ac-inhischair-aceti-ted--to-ardsthes-n XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

33 / 53

Our friend from Paris examined his empty glass with surprise, as if evaporation had taken place while he wasn't looking. I poured some more wine and he settled back in his chair, face tilted up towards the sun.¹

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Vigenere Cipher

- $\mathcal{M} = \mathcal{C} = \mathcal{K} = \mathbb{Z}_{26}^m.$
 - Keygen: $K \leftarrow_{\$} \mathbb{Z}_{26}^m$.
 - Encryption: $C := (M + K) \mod 26$.
 - Decryption: $M := (C + K) \mod 26$.

Poly-Alphabetic Cipher

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP WQAIIWXNRMGWOIIFKEE

ヘロト 人間ト ヘヨト ヘヨト

• Given *m*, how can you decrypt?

3

イロト 不得 トイヨト イヨト

• Given *m*, how can you decrypt?

Can you use the following result?

- Index of coincidence: $IC = \sum_{i=1}^{n} \frac{f_i^2}{2^n}$, f_i freq of *i*-th letter.
- For a set of 26 random elements, $IC = \frac{1}{26} = 0.038$
- However, for English dictionary IC = 0.065

- For the given ciphertext let q_1, \ldots, q_{26} be the freq of *i*-th letter.
- Calculate $I_j = \sum_{i=1}^{26} p_i q_{i+j}$, for $j = 0, \dots, 25$.
- Find k for which I_k is close to 0.065 and report that as the key.

イロト 不得 トイヨト イヨト 二日

Towards Modern Cryptography

3

イロト 不得 トイヨト イヨト

Principles of Modern Cryptography

Ad-hoc Design

Provably Secure Design

э

イロト 不得 トイヨト イヨト

Principles of Modern Cryptography

- Formal Definition (Power and Goal of the adversary)
- Precise Assumption
- Proofs of Security

э

イロト 不得下 イヨト イヨト

Eve obtains no information about plaintext:

Definition

$$\Pr[M = M \mid C = C] = \Pr[M = M], \ \forall M \in \mathcal{M}, \ C \in \mathcal{C}.$$

イロト 不得 トイヨト イヨト

Eve obtains no information about plaintext:

Definition

$$\Pr[M = M \mid C = C] = \Pr[M = M], \ \forall M \in \mathcal{M}, \ C \in \mathcal{C}.$$

An Alternate Definition

 $\Pr[Enc(M_0, K) = C] = \Pr[Enc(M_1, K) = C], \ \forall M_0, M_1 \in \mathcal{M}, \ C \in \mathcal{C}.$

N.Datta (TCG CREST, Kolkata)

42 / 53

Perfect Secrecy

N.Datta (TCG CREST, Kolkata)

Cryptography - The Journey Begins

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns b'

э

< ロ > < 同 > < 回 > < 回 >

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns *b*' (Goal: guess *b*)
- Adversary wins if it can guess b'.

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns *b*' (Goal: guess *b*)
- Adversary wins if it can guess b'.

Perfect Indistinguishable \Rightarrow Pr[Adv wins] = 1/2.

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns *b*' (Goal: guess *b*)
- Adversary wins if it can guess b'.

Perfect Indistinguishable \Rightarrow Pr[Adv wins] = 1/2.

Theorem

 Π achieves Perfect Secrecy $\Leftrightarrow \Pi$ is Perfectly Indistinguishable

Perfect Secrecy: Existence

One Time Pad

 $\mathcal{M}=\mathcal{C}=\mathcal{K}=\{0,1\}^\ell$

 $Enc_{\mathcal{K}}(M) = M \oplus \mathcal{K}.$

3

イロト イヨト イヨト

Perfect Secrecy: Existence

One Time Pad

 $\mathcal{M}=\mathcal{C}=\mathcal{K}=\{0,1\}^\ell$

 $Enc_{K}(M) = M \oplus K.$

э

イロト 不得 トイヨト イヨト

Theorem

If $\Pi :=$ (KeyGen, Encryption, Decryption) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \ge |\mathcal{M}|$.

Theorem

If $\Pi :=$ (KeyGen, Encryption, Decryption) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \ge |\mathcal{M}|$.

Proof Sketch

•
$$\mathcal{M}_C = \{M : Dec_K(C) = M, \text{ for some } K.\}$$

Theorem

If $\Pi :=$ (KeyGen, Encryption, Decryption) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \ge |\mathcal{M}|$.

Proof Sketch

•
$$\mathcal{M}_C = \{M : Dec_K(C) = M, \text{ for some } K.\}$$

•
$$|\mathcal{M}_C| \leq |\mathcal{K}|$$

N.Datta (TCG CREST, Kolkata)

Perfect Secrecy

Theorem

If $\Pi :=$ (KeyGen, Encryption, Decryption) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \ge |\mathcal{M}|$.

Proof Sketch

•
$$\mathcal{M}_C = \{M : Dec_{\mathcal{K}}(C) = M, \text{ for some } K.\}$$

•
$$|\mathcal{M}_{C}| \leq |\mathcal{K}|$$

 If |K| < |M|, there exists some M' such that M' ∈ M, but M' ∉ M(C) - Violates Perfect Security..!!

Theorem

If $\Pi :=$ (KeyGen, Encryption, Decryption) is a perfectly secret encryption scheme with message space \mathcal{M} and key space \mathcal{K} , then $|\mathcal{K}| \ge |\mathcal{M}|$.

Computational Security

Perfect Security is too strong

- Absolutely no information about an encrypted message is leaked.
- Moreover, the adversary has unlimited computational power.

Computational Security

Perfect Security is too strong

- Absolutely no information about an encrypted message is leaked.
- Moreover, the adversary has unlimited computational power.

How about a scheme that leaks information with

- probability at most 2^{-60} to adversaries
- investing up to 200 years of computational effort on the fastest available supercomputer?

Computational Security

A scheme is (t, ϵ) -secure if any adversary

- running for time at most t
- succeeds in breaking the scheme with probability at most ϵ .

Image: A image: A

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns b'

э

< ロ > < 同 > < 回 > < 回 >

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns b' (Goal: guess b)
- Adversary wins if it can guess b'.

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns b' (Goal: guess b)
- Adversary wins if it can guess b'.

Computationally Indistinguishable \Rightarrow Pr[Adv wins] = $1/2 + \epsilon$.

- Adv chooses two messages M_0 and M_1 of same length
- Challenger chooses b and returns $c = Enc(M_b, K)$
- Adv returns *b*' (Goal: guess *b*)
- Adversary wins if it can guess b'.

Computationally Indistinguishable \Rightarrow Pr[Adv wins] = $1/2 + \epsilon$.

IND-CPA Security

Adv is given the power to make encryption queries except M_0 and M_1 .

Designing A Provably Secure Encryption Construction

• Formal Definition (\checkmark)

э

イロト 不得 トイヨト イヨト

Designing A Provably Secure Encryption Construction

- Formal Definition (\checkmark)
- Precise Assumptions
 - Notions of Pseudo-Random Generator (PRG), Pseudo-Random Function (PRF)
 - Assume such function exists

イロト 不得下 イヨト イヨト

Designing A Provably Secure Encryption Construction

- Formal Definition (\checkmark)
- Precise Assumptions
 - Notions of Pseudo-Random Generator (PRG), Pseudo-Random Function (PRF)
 - Assume such function exists
- Proofs of Security
 - Encryption Scheme based on PRG G and PRF F.
 - Reduction-based Proofs.

- Introduction to Modern Cryptography by Jonathan Katz and Yehuda Lindell (\checkmark)
- Cryptography Theory and Practice by Douglas Stinson
- A Graduate Course in Applied Cryptography by Dan Boneh and Victor Shoup

Thank You..!!!

3

イロト 不同 トイヨト イヨト