Public Key Cryptography

Rana Barua

IAI, TCG CREST Kolkata

June 24, 2025

Rana Barua Public Key Cryptography

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Public Key Cryptography

- Before 1977, all cryptosystems used or proposed were symmetric key cryptosystems in which both the sender and receiver used the **same** key for both encryption and decryption.
- In 1976, in their seminal paper New directions in cryptography, IEEE Transactions on Information Theory 22 (1976), 644-654; Diffie-Hellman asked whether it is possible to have a cryptosystem where each user would have two keys, a private key and a public key that would be available to all
- In 1977, Rivest, Shamir and Adelman proposed the first feasible Public Key Cryotosystem, now known as RSA, using elementary number theory.

ヘロン 人間 とくほ とくほとう

Key-Generation: Let N = pq be the product of two large primes. Choose e, d s.t. $ed \equiv 1 \mod \phi(N)$ Public key: (N, e) Secret Key (N, p, q, d)**Encryption**: To encrypt a message $M \in \mathbb{Z}_N^*$, compute

 $y = M^e \mod N.$

Decryption: Given ciphertext $y \in \mathbb{Z}_N^*$, compute

$$M = y^d \mod N.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Correctness: Suppose $y \equiv M^e \mod N$. Since $ed \equiv 1 \mod \phi(N)$ we have $ed = t\phi(N) + 1$. Assume $M \in \mathbb{Z}_N^*$. Then

$$y^d \equiv M^{ed} \equiv (M^{\phi(N)})^t . M \equiv 1 . M \mod N.$$

Remark: If factorization of *N* is known or if $\phi(N)$ is known then RSA is completely broken

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Several algorithms for factoring exists viz

- Pollard's *p* 1 algorithm
- Pollard's ρ algorithm
- Number field sieve
- Quadratic sieve
- and many others.

None of these are poly-time algorithms (assuming quantum computers do not exist).

(雪) (ヨ) (ヨ)

INPUT: An integer *N* **OUTPUT:** A non-trivial factor of *N*.

- 1. Choose *B* such that p 1|B but q 1 does not divide *B*
- 2. $x \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$
- 3. $y := (x^{B} 1) \mod N$
- 4. p := GCD(y, N)
- 5. if $p \notin \{1, N\}$ then
- 6. **return** *p*

(四) (日) (日)

э.

We know that $\mathbb{Z}_N^* \leftrightarrow \mathbb{Z}_P^* \times \mathbb{Z}_q^*$. Hence

$$x^B-1 \mod N \leftrightarrow (x^B-1 \mod p, x^B-1 \mod q) = (0, x^B-1 \mod q).$$

Note that $x^B \mod q \neq 1$ if $x \mod q$ is a generator of \mathbb{Z}_q^* . Now, \mathbb{Z}_q^* has exactly $\phi(q-1)$ generators and $x \mod q$ is a random element of \mathbb{Z}_q^* Hence the probability that $x \mod q$ is a generator is $\frac{\phi(q-1)}{q-1} = \Omega(1/n)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Setup: Let n = pq where p, q are primes and $p, q \equiv 3 \mod 4$ PK is n and the secret key is (n, p, q)**Encrypt** Given a message $x \in Z_n^*$ compute

$$c = x^2 \mod n$$
.

Decrypt: Given ciphertext *c* find the square-roots of *c* modulo *n*.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

ElGamal Public Key Cryptosystem, 1984

Key Generation:

- Choose a cyclic $G = \langle g \rangle$ of prime order p
- 2 choose $x_A \in_R Z_p$ and compute $y_A = g^{x_A}$
- **O** Public key is (g, y_A) and secret key is x_A .
- Encryption: Given message $m \in G$,
 - choose $r \in_R Z_p$ and compute $h = g^r$
 - 2 send ciphertext $(h, y_A^r.m)$
- **Decryption:** On receiving ciphertext (*h*, *z*), compute

$$m=(h^{x_A})^{-1}.z$$

• Correctness: $h^{x_A} = (g^r)^{x_A} = y_A^r$

- Discrete Logarithm Problem.
- Diffie-Hellman Problem.

Discrete Logarithm:

- Instance: A multiplicative group (G, .), an element α ∈ G of order n, and an element β ∈< α >, the cyclic group generated by α.
- Question: Find the unique integer a, 0 ≤ a ≤ n − 1, s.t.
 α^a = β.

The integer *a* is called the discrete log of β to base α and is denoted by $\log_{\alpha} \beta$.

• Computing the discrete log is probably difficult in suitable groups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computational Diffie-Hellman(CDH) Problem

- Instance: A multiplicative group (G, .), an element α ∈ G of order n, and elements α^a, α^b ∈< α >, the cyclic group generated by α.
- **Question**: Compute α^{ab} .
- Diffie-Hellman Problem is stronger than the DLP

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Instance: A multiplicative group (G, .), an element α ∈ G of order n, and a triplet (α^a, α^b, h) ∈< α >³ from the cyclic group generated by α.
- Decide whether $h = \alpha^{ab}$ or h is random.
- Decisional Diffie-Hellman Problem is stronger than the CDH

(雪) (ヨ) (ヨ)

Security Against Chosen Ciphertext Attack (IND-CCA)

- **INIT:** Challenger runs the key generation algorithm and gives the public key to adversary *A*
- Phase 1: Adversary A makes(adaptively) a finite number of queries to the decryption-oracle O_d. It returns the resulting plaintext or null if the ciphertext cannot be decrypted.
- Challenge: When A decides that Phase 1 is over, it chooses two equal length messages m₀, m₁ and [pass these to C The challenger chooses uniformly at random a bit b ∈ {0, 1} and obtains a ciphertext C* corresponding to m_b, It returns C* as the challenge ciphertext to A.

ヘロン 人間 とくほど くほとう

Security Against Chosen Ciphertext Attack

- Phase 2: *A* now issues additional queries just like Phase 1, with the (obvious) restriction . The challenger responds as in Phase 1.
- Guess: A outputs a guess b of b. The advantage of the adversary A in attacking the PKE scheme H is defined as:

$$Adv_{A} = |Pr[(b = \bar{b})] - 1/2|.$$

A PKE scheme is said to be IND-CCA secure if for any (poly-time) adversary A that makes at most polynomial decryption queries, Adv_A is negligible.

CPA-Security

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

Theorem

If the DDH problem is hard relative to G, then the El Gamal encryption scheme is CPA-secure.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

What groups G should be chosen for ElGamal Cryptosystems?

- Obvious choice is Z^{*}_p, for large primes p
 p should be carefully chosen to avoid known algorithms for DLP.
 - e.g. p-1 should contain at least one large prime factor.
- Elliptic Curves
- Hyperelliptic curves
- Others

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

The Diffie-Hellman problem gives rise to a key exchange protocol. Let $G = \langle g \rangle$ be a cyclic group of large prime order p for which the CDH problem is hard.

- Alice chooses a random $a \in \mathbb{Z}_p$ and sends it to Bob.
- Bob chooses a random b ∈ Z_p and sends it to Alice. (These two acts can be done simultaneously)
- Alice computes (g^b)^a while Bob computes (g^a)^b
 Thus both Alice and Bob compute a common key g^{ab}.

ヘロト 人間 とくほ とくほ とう

Several algorithms for algorithms for Discrete Log exists viz

- Pollard's ρ algorithm
- Shanks' algorithm
- Index Calculus Algorithm
- Pohlig-Hellman Algorithm
- and many others.

None of these are poly-time algorithms (assuming quantum computers do not exist).

・ 同 ト ・ ヨ ト ・ ヨ ト …

INPUT: An element $h \in G = \langle g \rangle$, the cyclic group of order q generated by q. **OUTPUT:** log_a h 1. $t := \sqrt{q}$ 2. for i = 0 to |q/t|compute $q_i := q^{it}$ 3. **sort** (i, g_i) by their second component 4. 5. for i = 1 to t 6. compute $h_i := h.g^i$ 7. if $h_i = q_k$ for some k, 8. **return** $(kt - i) \mod q$

・ 「 ト ・ ヨ ト ・ 日 ト …

1

Correctness $h_i = g_k$ implies $hg^i = g^{kt}$ i.e. $g^{x+i} = g^{kt}$. Hence $x = (kt - i) \mod q$

- Time complexity: $O(\sqrt{q}polylog(q))$
- Space complexity: $O(\sqrt{q})$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ へ ⊙

A signature scheme is given by following algorithms:

- Setup(1^k): A PPT algorithm which takes a security parameter as input and outputs public parameters *Params*.
- **KG**(*Params*): A PPT algorithm which takes *Params* as input and outputs a public-private key pair (*PK*, *SK*).
- SIG(m, SK, Params): A PPT algorithm which takes a message m, a secret key SK and Params as input and outputs a signature σ.
- VER(m, σ, PK, Params): A deterministic polynomial time algorithm which takes a message m, a signature σ, a public key PK and Params as input and outputs 1 if σ is a valid signature on message m, else it returns 0.

<ロ> (四) (四) (三) (三) (三)

A signature scheme is said to be **EUF-CMA (existentially unforgeable against chosen message attack)** secure if no probabilistic polynomial time algorithm has a non-negligible advantage in the following game.

 $\underline{\mathsf{Game}_{SIG,\mathcal{A}}^{EUF-CMA}(1^k)}$

- $L \leftarrow \phi$
- Params \leftarrow Setup(1^k)
- $(PK, SK) \leftarrow KG(Params)$
- $(m, \sigma) \leftarrow \mathcal{A}^{\mathcal{O}}(SK, Params)$
- $x \leftarrow VER(m, \sigma, PK, Params)$

Advantage of A is defined as $Adv(A) = Pr(x = true \land m \notin L)$

ヘロト ヘ団ト ヘヨト ヘヨト

1

- N = pq, for some large primes p, q and ed ≡ 1 mod φ(N).
 Alice's public key is e and her secret key is d.
- To sugn a message m ∈ Z_p, Alice computes its signature as σ = m^d mod N
- To verify if σ is a valid signature on *m*, Bob checks if

$$m = \sigma^e \mod N$$

If true, then Bob outputs 1, ekse he outputs 0.

・ 同 ト ・ ヨ ト ・ ヨ ト …

No message attack: One can obtain a forgery using only the public key (*N.e*). Choose a random $\sigma \in \mathbb{Z}_N^*$ and compute $m = \sigma^e \mod N$. Then clearly, σ is a valid signature on *m* since

$$m^d = \sigma^{ed} = \sigma \mod N.$$

So (m, σ) is a forgery.

Remark: By using a secure hash function, one can obtain a secure signature. (RSA-FDH)

・ 同 ト ・ ヨ ト ・ ヨ ト …