Self-testing in a prepare-measure scenario sans assuming quantum dimension

Souradeep Sasmal

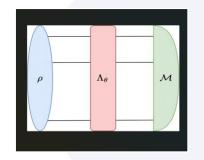
Quantum Algorithm and Resource Theory Group, IFFS, UESTC, Chengdu, China

2025-12-09

Characterisation of Quantum Devices

Device Dependent

User trust the preparation and measurement devices.



Parameter Estimation,
Tomography

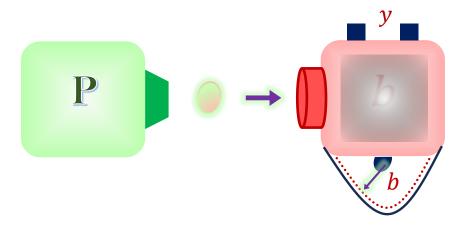
Device Independent

User does not trust the preparation or measurement devices. User can only charecterise the input-output statistics through a probability distribution p(input|output)

Self-Testing

Characterisation of Quantum Devices

Self-Testing

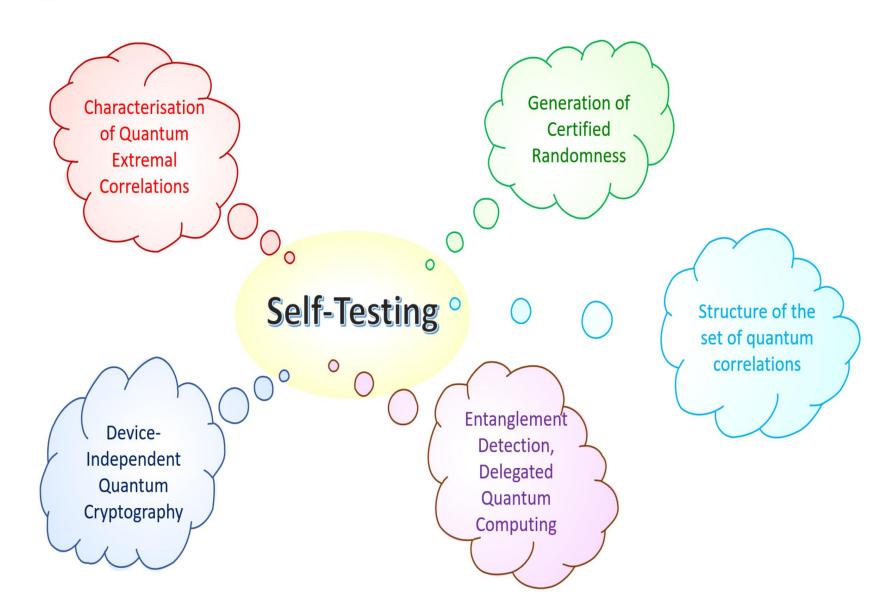


$$\vec{P} \equiv \{p(b|y, P)\}$$

- ☐ The ability of a classical verifier to completely characterise the working of the device by *only* considering the observed input-output statistics.
- lacksquare Quantum Device: $\left\{ \rho, \left\{ M_{b|y} \right\} \right\}$
- \square A behaviour \vec{P}_* self tests a quantum strategy, *iff*, that is the *only* strategy attaining \vec{P}_* .

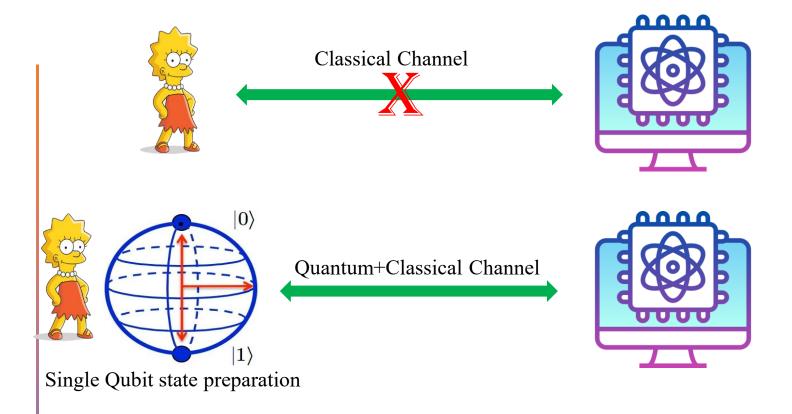
Why it is important?

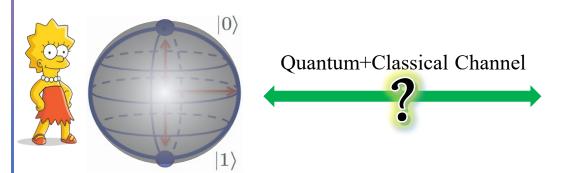
Self-Testing

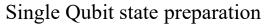


Why it is important?

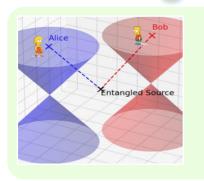
DI-VBQC





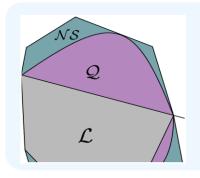


Motivation: Certification Beyond Bell Tests



Bell Self-testing: DI, but experimentally demanding.

• Why Prepare – Measure Self-testing?



Geometry of Quantum Correlations

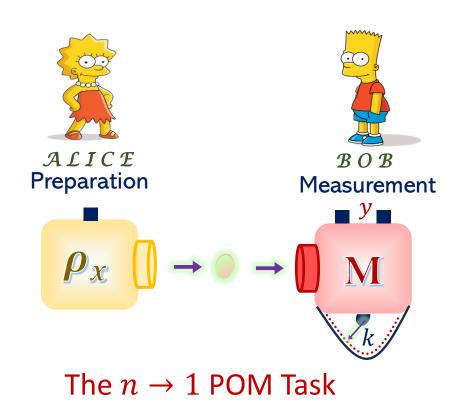
Prepare-Measure Correlations: Simpler, require upper bound on dimension.

(Contextuality, quasi-probability)

Motivation: Certification Beyond Bell Tests

Prevailing view:

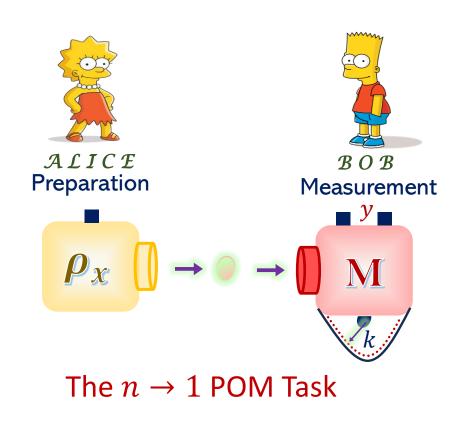
Dimension assumption is necessary for PM self-testing.



- 1. Alice receives an n-bit string $x^{\delta} \in \{0,1\}^n$ with $\delta \in \{0,1,\dots,2^n-1\}$.
- 2. Upon the receiving the input x^{δ} , Alice uses preparation procedure $P_{x^{\delta}}$ to prepare the state and sends it to Bob.

- 3. Bob receives index $y \in [n]$ and must output x_y .
- 4. The winning condition of the game is $b = x_v^{\delta}$.

5. Parity-obliviousness: Bob must learn no parity of weight

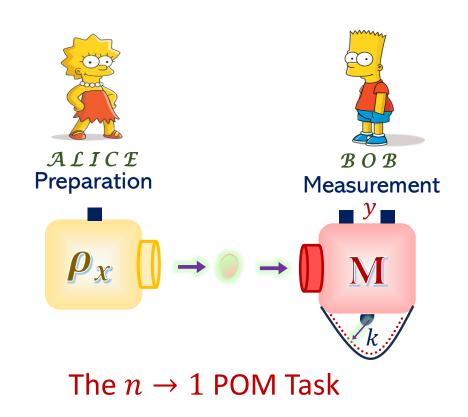


The success probability of the multiplexing task:

$$\mathcal{S}_{n} = \frac{1}{2^{n}n} \sum_{\substack{y \in \{1,2,3,\ldots,n\} \\ x^{\delta} \in \{0,1\}^{n}}} p\left(b = x_{y}^{\delta} | P_{x^{\delta}}, B_{y}\right)$$

The parity-oblivious condition:

$$\forall s, y, b \sum_{x^{\delta} \mid x^{\delta}.s=0} p\left(P_{x^{\delta}} \mid b, B_{y}\right) = \sum_{x^{\delta} \mid x^{\delta}.s=1} p\left(P_{x^{\delta}} \mid b, B_{y}\right).$$



Parity Set:

$$\mathbb{P}_n = \left\{ x^{\delta} | x^{\delta} \in \left\{0, 1\right\}^n, \sum_r x_r^{\delta} \geqslant 2 \right\} \text{ with } r \in \left\{1, 2, \dots, n\right\}$$

For any element $s \in P_n$, the information about $x^{\delta} \cdot s = \bigoplus_i x_i^{\delta} s_i$ must remain oblivious to Bob.

$$\forall s, y, b \sum_{x^{\delta} \mid x^{\delta}.s=0} p\left(P_{x^{\delta}} \mid b, B_{y}\right) = \sum_{x^{\delta} \mid x^{\delta}.s=1} p\left(P_{x^{\delta}} \mid b, B_{y}\right).$$

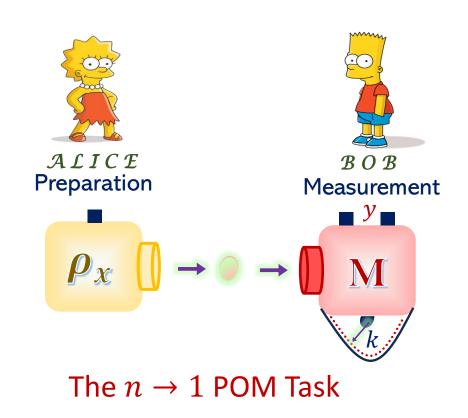


The parity-oblivious condition:

$$\forall s, y, b \sum_{x^{\delta} \mid x^{\delta}.s=0} p\left(P_{x^{\delta}} \mid b, B_{y}\right) = \sum_{x^{\delta} \mid x^{\delta}.s=1} p\left(P_{x^{\delta}} \mid b, B_{y}\right).$$

$$\forall s, y, b \sum_{x^{\delta} \mid x^{\delta}.s=0} p\left(b \mid P_{x^{\delta}}, B_{y}\right) = \sum_{x^{\delta} \mid x^{\delta}.s=1} p\left(b \mid P_{x^{\delta}}, B_{y}\right)$$

Two preparation procedures $P_{x^{\delta}|x^{\delta}.s=0}$ and $P_{x^{\delta}|x^{\delta}.s=1}$ cannot be distinguished by any outcome b and any measurement B_{v} .



The parity-oblivious condition:

$$\forall s, y, b \quad \sum_{x^{\delta} \mid x^{\delta}.s=0} p\left(b \mid P_{x^{\delta}}, B_{y}\right) = \sum_{x^{\delta} \mid x^{\delta}.s=1} p\left(b \mid P_{x^{\delta}}, B_{y}\right)$$

$$p(b|\rho_{00}, B_y) + p(b|\rho_{11}, B_y) = p(b|\rho_{01}, B_y) + p(b|\rho_{10}, B_y)$$

Preparation noncontextuality

Two preparation procedures $P_{x^{\delta}|x^{\delta}.s=0}$ and $P_{x^{\delta}|x^{\delta}.s=1}$ cannot be distinguished by any outcome b and any measurement B_y .

Two equivalent experimental procedures in quantum theory are assumed to be equivalently represented in an ontological model.

$$\forall M, \ k: \ p(k|P,M) = p(k|P',M) \Rightarrow \mu_P(\lambda|\rho) = \mu_{P'}(\lambda|\rho)$$

Preparation noncontextuality

$$(\mathcal{S}_n)_C \leqslant \frac{1}{2} \left(1 + \frac{1}{n} \right)$$

The parity oblivious constraint on Alice's state preparation:

$$\forall s \sum_{x^{\delta} \mid x^{\delta}.s=0} \rho_{x^{\delta}} = \sum_{x^{\delta} \mid x^{\delta}.s=1} \rho_{x^{\delta}}$$

The quantum success probability

$$\left(\mathcal{S}_{n}\right)_{Q} = \frac{1}{2^{n}n} \sum_{\substack{y \in \{1,2,3,\ldots,n\}\\ x^{\delta} \in \{0,1\}^{n}}} \operatorname{Tr}\left[\rho_{x^{\delta}} \Pi_{y}^{b}\right]$$

Our First Result: Dimension-independent Optimal Quantum Value

Derivation Strategy:

- No assumption on the dimension of Alice's states or Bob's measurements.
- Represent preparation as

$$\rho_{\mathcal{X}} = \frac{1}{d}(I + A_{\mathcal{X}})$$

• Use parity-obliviousness to enforce constraints on the set $\{A_x\}$ as

$$\forall s \in P_n \quad \sum_{x^{\delta}} (-1)^{x^{\delta}.s} A_{\delta} = 0$$

The quantum success probability becomes

$$(S_n)_Q = \frac{1}{2} + \frac{1}{2^{n+1}nd} \operatorname{Tr} \left[\sum_{\delta=0}^{2^{n-1}-1} \alpha_\delta \omega_\delta \mathcal{A}_\delta \mathcal{B}_\delta \right]$$

$$\mathcal{B}_{\delta} = \frac{\sum_{y=1}^{n} (-1)^{x_{y}} B_{y}}{\omega_{\delta}}; \quad \mathcal{A}_{\delta} = \frac{A_{\delta} + A_{\overline{\delta}}}{\alpha_{\delta}}$$

$$\omega_{\delta} = \left\| \left(\sum_{y=1}^{n} (-1)^{x_{y}^{\delta}} B_{y} \right) \right\|; \quad \alpha_{\delta} = \left\| \left(A_{\delta} - A_{\overline{\delta}} \right) \right\|$$

Our First Result: Dimension-independent Optimal Quantum Value

Optimality requires:

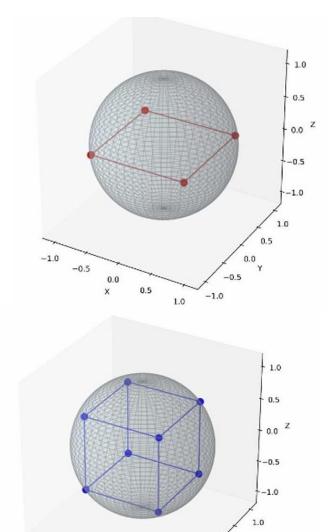
- Bob's observables mutually anticommute.
- Pairs of complementary preparations are orthogonal.
- The optimal quantum success probability is

$$(\mathcal{S}_n)_Q^{\text{opt}} = \frac{1}{2} \left(1 + \frac{1}{\sqrt{n}} \right)$$

Alice's optimal preparation:

$$\rho_{x^{\delta}} = \frac{1}{d} \left(\mathbb{1}_d + \frac{\sum_{y=1}^n (-1)^{x_y^{\delta}} B_y}{\sqrt{n}} \right)$$

Self-testing Implications



- Requirement of n mutually anti-commuting observables constrains the minimal Hilbert space dimension : $d^* = 2^m$, $m = \left[\frac{1}{2}(n-1)\right]$.
 - Alice must prepare quantum states of at least the same dimension, If the prepared states lie in a smaller-dimensional Hilbert space, then regardless of Bob's measurements, the success probability cannot attain its optimal value.
 - Alice's 2^n preparations correspond to vertices of an n-dimensional hypercube in the Clifford Bloch sphere:

Self-testing: Formal Statement

Theorem 1. Let a quantum strategy $\{\rho_{x^{\delta}}, B_{y} \in \mathcal{L}(\mathcal{H}^{d})\}$, achieve maximum quantum success probability in the n-bit POM task, where \mathcal{H}^{d} is an unknown finite-dimensional Hilbert space. Then, this strategy self-tests the reference preparations and measurements $\{\rho'_{x^{\delta}}, B'_{y} \in \mathcal{L}(\mathcal{H}^{d'})\}$, upto unitary freedom and complex conjugation, where $\mathcal{H}^{d'}$ is of known dimension, if there exists a unitary operation $U: \mathcal{H}^{d} \to \mathcal{H}^{d'}$ such that

$$\exists U : \mathcal{H}^d \to \mathcal{H}^{d'} \otimes \mathcal{H}^J \text{ s.t. } (i) \ UB_y U^{\dagger} = B_y' \otimes \mathbb{1}_J, \ (ii) \ U\rho_{x^{\delta}} U^{\dagger} = \rho_{x^{\delta}}' \otimes \frac{\mathbb{1}_J}{J}.$$

- Hence, the physical strategy is equivalent to a known finite-dimensional quantum realisation.
- This gives a **full self-test** (up to unitary and complex conjugation).

Breaks the perceived barrier that PM self-testing needs dimension restrictions.

Dimension witness: n mutually anticommuting observables imply a minimal system dimension.

Recycling a quantum resource

Single-device randomness expansion: Optimal POM violation gives a bound on min-entropy via EAT; Allows practical randomness expansion without entanglement and without dimension assumptions.

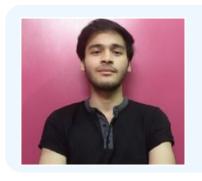
Verifiable blind quantum computing

Parameter Estimation, Sensing

Acknowledgements

Ritesh Kumar Singh, IITH

Collaborators



Sameer Nautiyal, IITH

Alok K. Pan, IITH

