- Anomalous Landau levels -From fundamentals to simulations

ICQIST, 2025

CQuERE, TCG CREST

Krishanu Roychowdhury

Saha Institute of Nuclear Physics, Kolkata

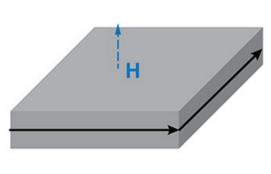
In collaboration with

Soujanay Datta

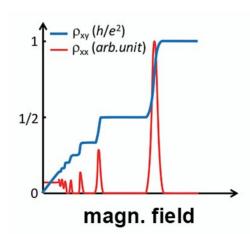
arXiv:2509.20462

The Quantum Hall effect is the first realized topological phase of matter, laying the foundation for all successive developments in modern topological physics

Resistance quantum → precision metrology

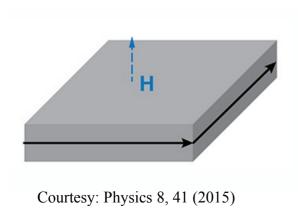


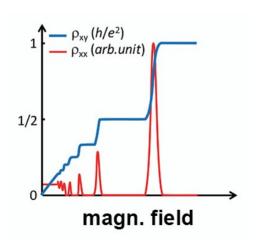
Courtesy: Physics 8, 41 (2015)

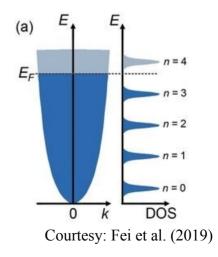


Landau quantization remains the cleanest way to understand how particles respond to magnetic flux and this physics reappears in many non-magnetic systems

Synthetic gauge fields → designer Landau spectra

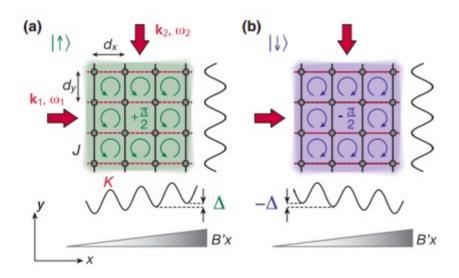






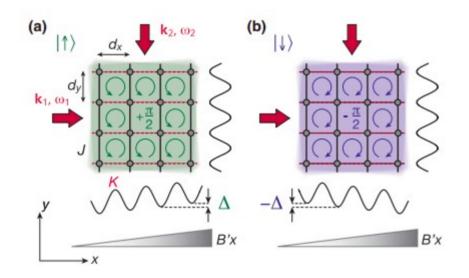
Landau levels are no longer just a condensed-matter curiosity. They've become a design principle—for protected transport, programmable band geometry, interaction-driven topology, and benchmarking quantum simulators.

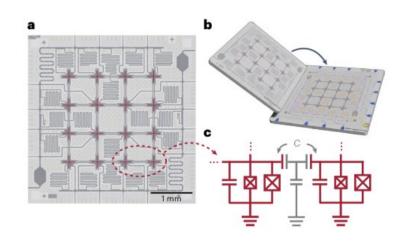
Landau levels are no longer just a condensed-matter curiosity. They've become a design principle—for protected transport, programmable band geometry, interaction-driven topology, and benchmarking quantum simulators.



Aidelsburger et al (2013), Miyake et al (2013)

Landau levels are no longer just a condensed-matter curiosity. They've become a design principle—for protected transport, programmable band geometry, interaction-driven topology, and benchmarking quantum simulators.

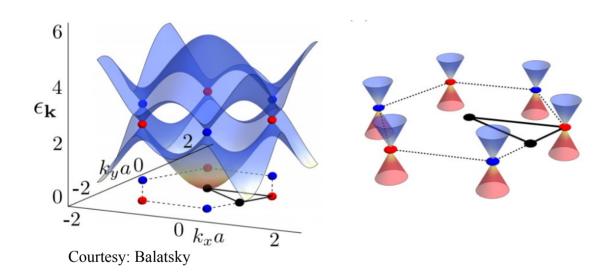




Aidelsburger et al (2013), Miyake et al (2013)

Rosen et al (2024)

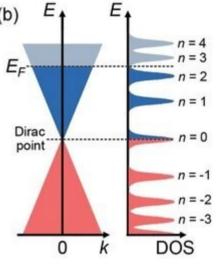
Graphene realizes relativistic Landau quantization, producing a zero-energy Landau level and half-integer quantum Hall effect



Relativistic dispersions around K and K' points

Graphene realizes relativistic Landau quantization, producing a zero-energy Landau level and half-integer quantum Hall effect

- Landau level quantization $E_n \sim \pm \sqrt{n}$
- Hall quantization $\sigma_{xy}= \nu \frac{e^2}{h} \; ; \; \nu = 4(n+1/2)$
- Enables practical quantum resistance standards.



Courtesy: Fei et al. (2019)

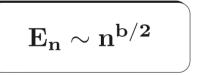
Onsager semi-classical relation (EBK quantization): Fermi surface area perp. to the applied magnetic field is quantized

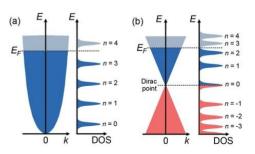
$$\int \mathbf{d^2k} = 2\pi \mathbf{eB}(\mathbf{n} + \gamma)$$
 Berry phase

Onsager semi-classical relation (EBK quantization): Fermi surface area perp. to the applied magnetic field is quantized

$$\int \mathbf{d^2k} = 2\pi \mathbf{eB}(\mathbf{n} + \gamma)$$
Berry phase

For dispersions of the form $E(k)\sim k^b$, the LL quantization is ${f E_n\sim n^{b/2}}$





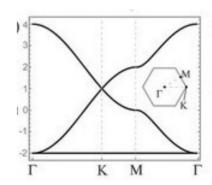
Onsager semi-classical relation (EBK quantization): Fermi surface area perp. to the applied magnetic field is quantized

$$\int \mathbf{d^2k} = 2\pi \mathbf{eB}(\mathbf{n} + \gamma)$$
Berry phase

For dispersions of the form $E(k)\sim k^b$, the LL quantization is ${f E_n\sim n^{b/2}}$

$${f E_n} \sim n^{{f b/2}}$$

What happens in the absence of intrinsic scales?



Onsager semi-classical relation (EBK quantization): Fermi surface area perp. to the applied magnetic field is quantized

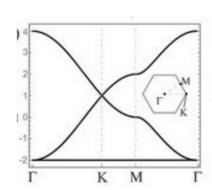
$$\int \mathbf{d^2k} = 2\pi \mathbf{eB}(\mathbf{n} + \gamma)$$
Berry phase

For dispersions of the form $E(k) \sim k^b$, the LL quantization is

 $E_n \sim n^{b/2}$

What happens in the absence of intrinsic scales?

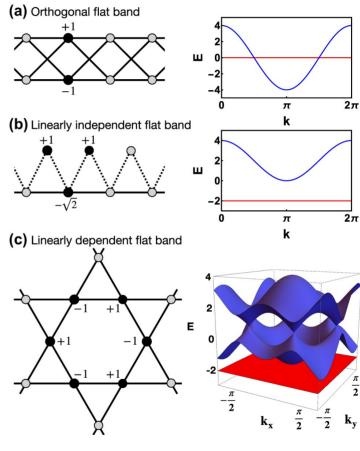
Onsager relation breaks down for flat bands — no semiclassical LLs.



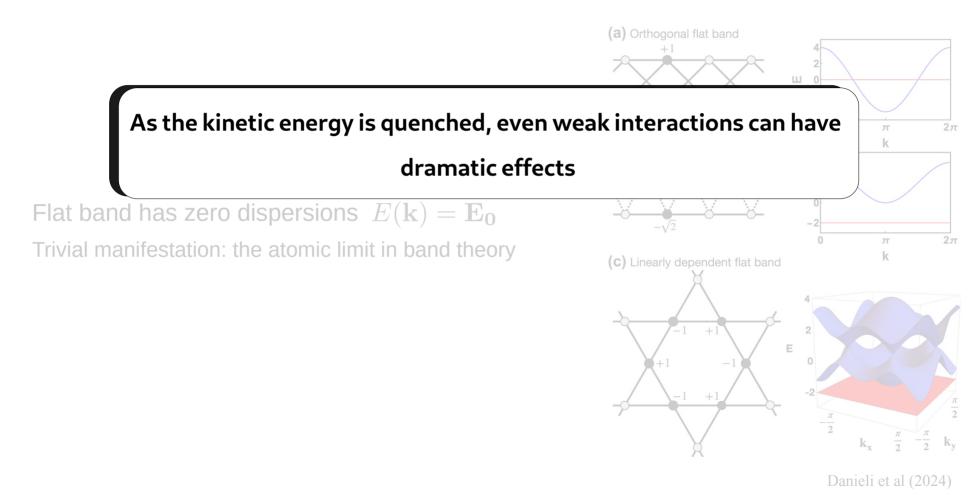
Flat band has zero dispersions $E(\mathbf{k}) = \mathbf{E_0}$

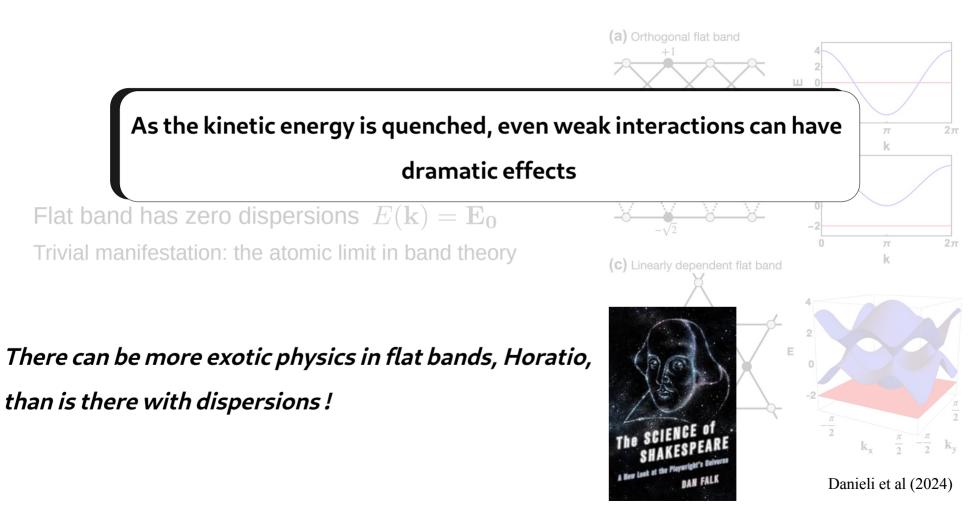
Trivial manifestation: the atomic limit in band theory

Flat band has zero dispersions $E(\mathbf{k}) = \mathbf{E_0}$ Trivial manifestation: the atomic limit in band theory



Danieli et al (2024)





Even the non-interacting setting is reach

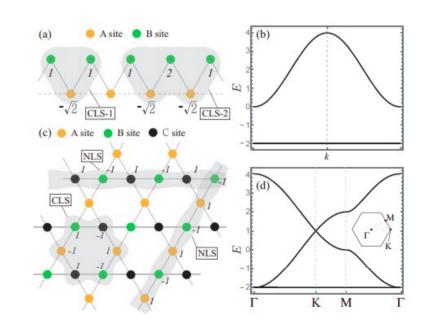
Even the non-interacting setting is reach

The single-particle states have special spatial structures

$$|\chi_{\mathbf{R}}\rangle \sim \sum_{\mathbf{k}\in\mathrm{BZ}} \alpha_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{\mathbf{k}}\rangle \sim \sum_{\mathbf{R}'} \sum_{\mathbf{k}\in\mathrm{BZ}} \sum_{p} \alpha_{\mathbf{k}} v_{\mathbf{k},q} e^{-i\mathbf{k}\cdot(\mathbf{R}-\mathbf{R}')} a_{\mathbf{R}',q}^{\dagger} |0\rangle$$

Compact localization of the flat-band eigenstates guaranteed by the construction of $\alpha_{\mathbf{k}}v_{\mathbf{k},q}$

– is a polynomial of $e^{i{\bf k}\cdot{\bf a}_l}$ i.e. a finite sum of Bloch phases



Even the non-interacting setting is reach

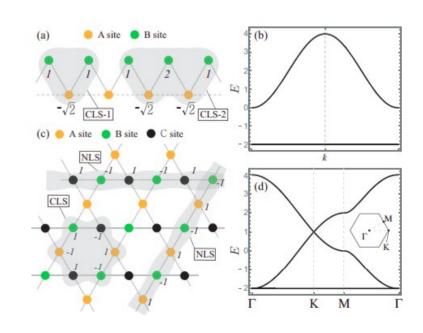
The single-particle states have special spatial structures

$$|\chi_{\mathbf{R}}\rangle \sim \sum_{\mathbf{k}\in\mathrm{BZ}} \alpha_{\mathbf{k}} e^{-i\mathbf{k}\cdot\mathbf{R}} |\psi_{\mathbf{k}}\rangle \sim \sum_{\mathbf{R}'} \sum_{\mathbf{k}\in\mathrm{BZ}} \sum_{p} \alpha_{\mathbf{k}} v_{\mathbf{k},q} e^{-i\mathbf{k}\cdot(\mathbf{R}-\mathbf{R}')} a_{\mathbf{R}',q}^{\dagger} |0\rangle$$

Compact localization of the flat-band eigenstates guaranteed by the construction of $\alpha_{\mathbf{k}}v_{\mathbf{k},q}$

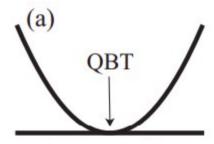
– is a polynomial of $e^{i\mathbf{k}\cdot\mathbf{a}_l}$ i.e. a finite sum of Bloch phases

localization even in the absence of disorder!



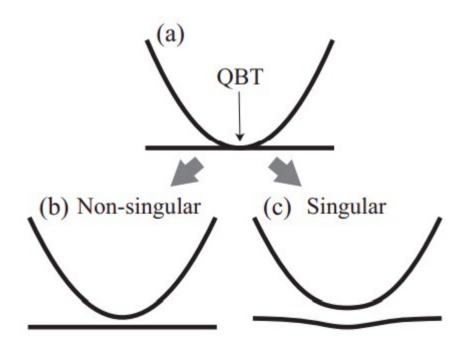
The classification of gapless flat bands

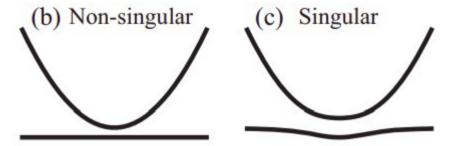
- Finding the complete set of compact localizates staes for gapless flat bands is tricky!
- Linear independence is not guaranteed when one of the $\alpha_{\bf k}$ is zero

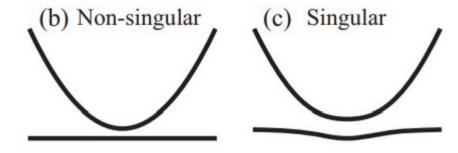


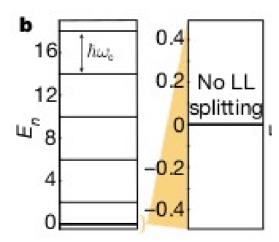
The classification of gapless flat bands

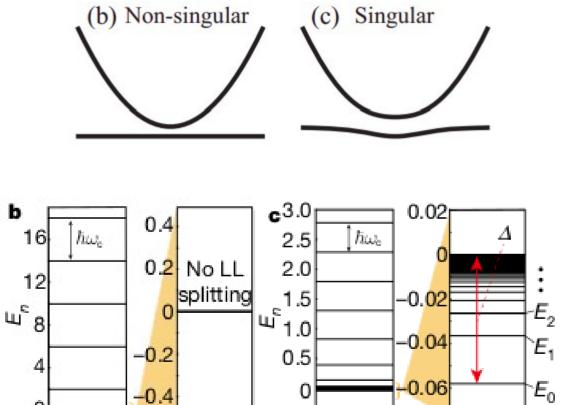
- Finding the complete set of compact localizates staes for gapless flat bands is tricky!
- Linear independence is not guaranteed when one of the $\alpha_{\bf k}$ is zero





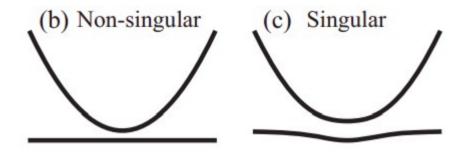


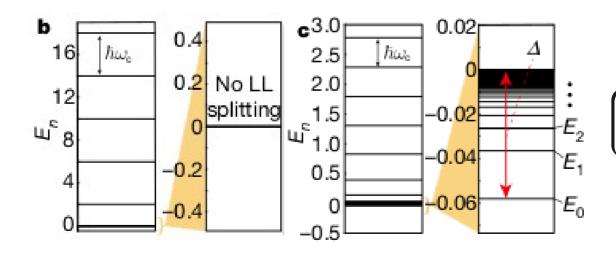




-0.5

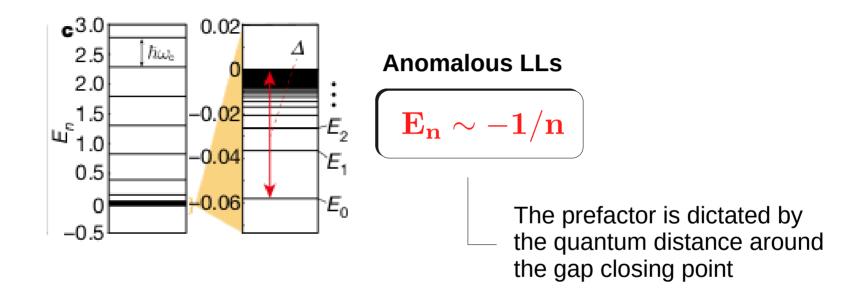
-0.4





Anomalous LLs

$$\mathbf{E_n} \sim -1/n$$



- Dispersions do not fully characterize quantum dynamics.
- The Bloch wavefunctions encode additional geometric information.

Quantum geometric tensor (QGT)

$$Q_{ij}(\mathbf{k}) = \langle \partial_i \mathbf{u}(\mathbf{k}) | (\mathbf{1} - |\mathbf{u}(\mathbf{k})\rangle \langle \mathbf{u}(\mathbf{k})|) | \partial_j \mathbf{u}(\mathbf{k})\rangle$$

Quantum geometric tensor (QGT)

$$Q_{ij}(\mathbf{k}) = \langle \partial_{\mathbf{i}} \mathbf{u}(\mathbf{k}) | (\mathbf{1} - |\mathbf{u}(\mathbf{k})) \langle \mathbf{u}(\mathbf{k}) |) | \partial_{\mathbf{j}} \mathbf{u}(\mathbf{k}) \rangle$$

Real part: quantum metric controls the distance d_{HS}^2

$$d(\mathbf{k}_1, \mathbf{k}_2) = 1 - |\langle u_{\mathbf{k}_1} | u_{\mathbf{k}_2} \rangle|^2$$

Imag part: Berry curvature

Quantum geometric tensor (QGT)

$$Q_{ij}(\mathbf{k}) = \langle \partial_{\mathbf{i}} \mathbf{u}(\mathbf{k}) | (\mathbf{1} - |\mathbf{u}(\mathbf{k})\rangle \langle \mathbf{u}(\mathbf{k})|) | \partial_{\mathbf{j}} \mathbf{u}(\mathbf{k})\rangle$$

Real part: quantum metric controls the distance d_{HS}^2

$$d(\mathbf{k}_1, \mathbf{k}_2) = 1 - |\langle u_{\mathbf{k}_1} | u_{\mathbf{k}_2} \rangle|^2$$

Imag part: Berry curvature

Anomalous LL quantization:

$${f E_n} \sim -1/n$$

Quantum geometric tensor (QGT)

$$Q_{ij}(\mathbf{k}) = \langle \partial_i \mathbf{u}(\mathbf{k}) | (1 - |\mathbf{u}(\mathbf{k})\rangle \langle \mathbf{u}(\mathbf{k}) |) | \partial_j \mathbf{u}(\mathbf{k}) \rangle$$

Real part: quantum metric controls the distance d_{HS}^2

$$d(\mathbf{k}_1, \mathbf{k}_2) = 1 - |\langle u_{\mathbf{k}_1} | u_{\mathbf{k}_2} \rangle|^2$$

Imag part: Berry curvature

Anomalous LL quantization:

$$\mathbf{E_n} \sim -(\mathbf{d_{max}^2})\mathbf{1/n}$$

$$2\pi d_{\text{max}} = \int_0^{2\pi} d\phi \sqrt{g(\phi)}$$

quantum metric in polar coordinate

Quantum geometric tensor (QGT)

$$Q_{ij}(\mathbf{k}) = \langle \partial_{\mathbf{i}} \mathbf{u}(\mathbf{k}) | (\mathbf{1} - |\mathbf{u}(\mathbf{k})\rangle \langle \mathbf{u}(\mathbf{k})|) | \partial_{\mathbf{j}} \mathbf{u}(\mathbf{k})\rangle$$

Real part: quantum metric controls the distance d_{HS}^2

$$d(\mathbf{k}_1, \mathbf{k}_2) = 1 - |\langle u_{\mathbf{k}_1} | u_{\mathbf{k}_2} \rangle|^2$$

Imag part: Berry curvature

Anomalous LL quantization:

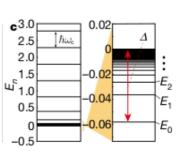
$$\mathbf{E_n} \sim -(\mathbf{d_{\max}^2})\mathbf{1/n}$$

$$2\pi d_{\text{max}} = \int_0^{2\pi} d\phi \sqrt{g(\phi)}$$

quantum metric in polar coordinate

A finite quantum distance implies band-mixing between the LLs of the dispersive band and the flat band

→ level repulsion



A glimpse of the model

A two-band Hamiltonian supporting a flat band touching a quadratic dispersive band

$$\mathcal{H}(\mathbf{k}) = \sum_{\mu} d_{\mu}(\mathbf{k}) \sigma_{\mu}$$

The parameters specify the *d* vector

$$d_0(\mathbf{k}) = \frac{1}{2} \left[a_1^2 k_x^2 + \left(a_2^2 + a_3^2 + a_4^2 \right) k_y^2 + 2a_1 a_2 k_x k_y \right]$$

$$d_1(\mathbf{k}) = a_3 a_4 k_y^2 , \quad d_2(\mathbf{k}) = a_2 a_4 k_y^2 + a_1 a_4 k_x k_y,$$

$$d_3(\mathbf{k}) = \frac{1}{2} \left[a_1^2 k_x^2 + \left(a_2^2 + a_3^2 - a_4^2 \right) k_y^2 + 2a_1 a_2 k_x k_y \right]$$

A glimpse of the model

A two-band Hamiltonian supporting a flat band touching a quadratic dispersive band

$$\mathcal{H}(\mathbf{k}) = \sum_{\mu} d_{\mu}(\mathbf{k}) \sigma_{\mu}$$

The parameters specify the *d* vector

$$d_0(\mathbf{k}) = \frac{1}{2} \left[a_1^2 k_x^2 + \left(a_2^2 + a_3^2 + a_4^2 \right) k_y^2 + 2a_1 a_2 k_x k_y \right]$$

$$d_1(\mathbf{k}) = a_3 a_4 k_y^2 , \quad d_2(\mathbf{k}) = a_2 a_4 k_y^2 + a_1 a_4 k_x k_y,$$

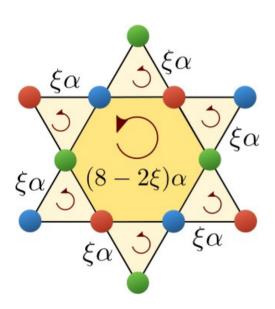
$$d_3(\mathbf{k}) = \frac{1}{2} \left[a_1^2 k_x^2 + \left(a_2^2 + a_3^2 - a_4^2 \right) k_y^2 + 2a_1 a_2 k_x k_y \right]$$

Straightforward calculations solving the Schroedinger equations yield

$$E_n = -\frac{1}{8} \left| \frac{3a_1a_4^2/l^2}{(2n+3)\sqrt{a_2^2 + a_3^2 + a_4^2 + a_3}} \right|$$

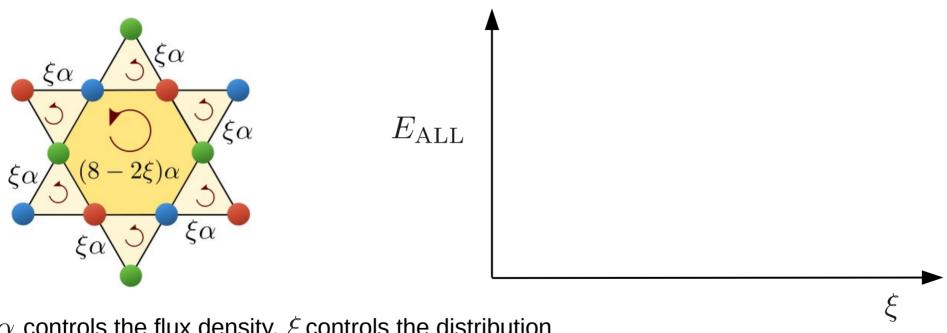
Lattice realization

A kagome network subjected to uniform magnetic fluxes (hoppings admit Peierls phases)



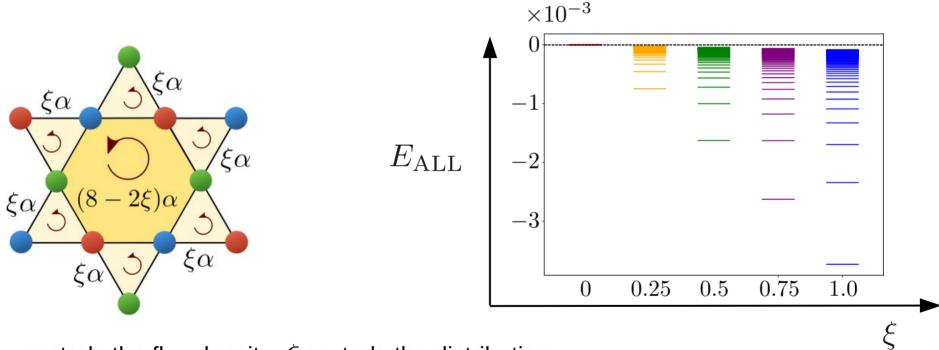
 α controls the flux density, ξ controls the distribution

A kagome network subjected to uniform magnetic fluxes (hoppings admit Peierls phases)



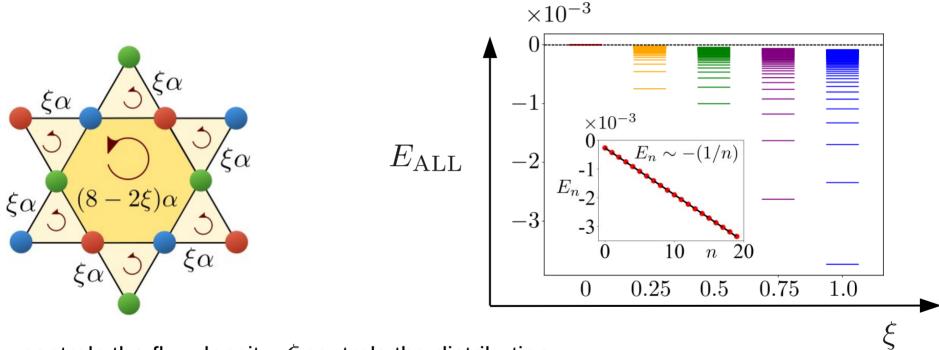
lpha controls the flux density, ξ controls the distribution

A kagome network subjected to uniform magnetic fluxes (hoppings admit Peierls phases)



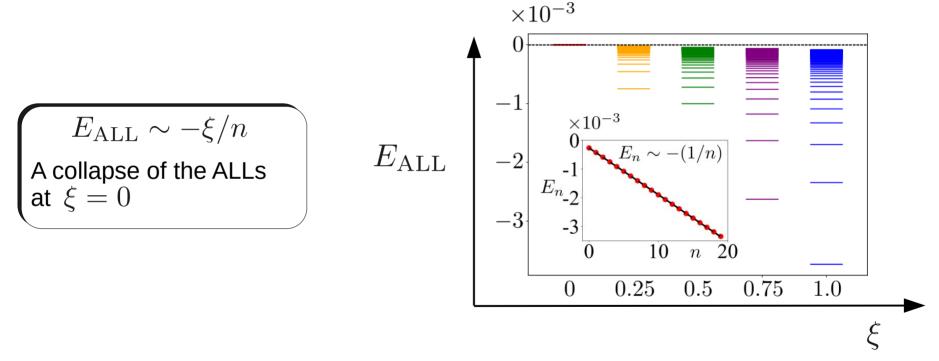
 α controls the flux density, ξ controls the distribution

A kagome network subjected to uniform magnetic fluxes (hoppings admit Peierls phases)



 α controls the flux density, ξ controls the distribution

A kagome network subjected to uniform magnetic fluxes (hoppings admit Peierls phases)



A special point in the phase diagram

At $\xi=0$, the Hamiltonian becomes positive semi-definite

A special point in the phase diagram

At $\xi = 0$, the Hamiltonian becomes positive semi-definite

→ An emergent Supersymmetric algebra can be spelled out in terms of a generator

$$Q = \begin{pmatrix} & R \\ R^{\dagger} & \end{pmatrix}$$

and two partner Hamiltonians coming from the square of Q

$$R^{\dagger}R$$
 \blacksquare RR

These Hamiltonians are isospectral except for the zero modes – lattice SUSY

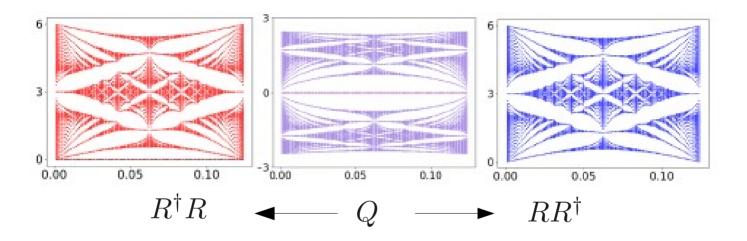
The number of zero modes are given by the Witten index.

Lattice SUSY in the presence of magnetic fields

Our model demonstrates lattice SUSY in the presence of inhomogeneous fluxes

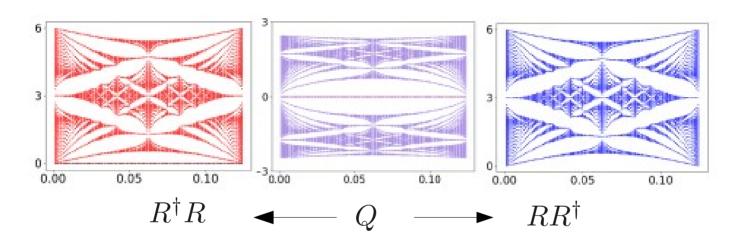
Lattice SUSY in the presence of magnetic fields

Our model demonstrates lattice SUSY in the presence of inhomogeneous fluxes



Lattice SUSY in the presence of magnetic fields

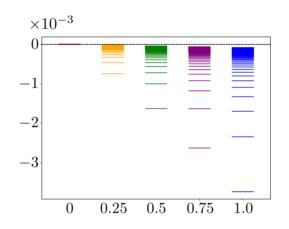
Our model demonstrates lattice SUSY in the presence of inhomogeneous fluxes

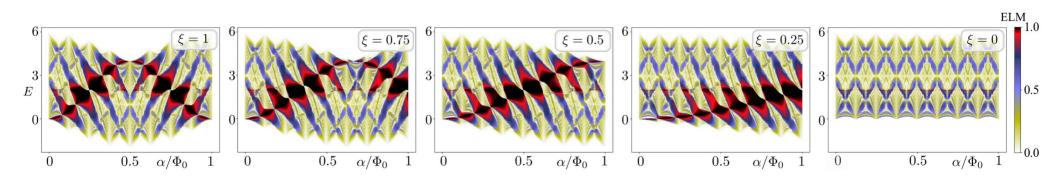


For a flux density $\Phi/\Phi_0=p/q$, we have q number of ALLs at zero energy.

Lattice analog of the *Aharonov-Casher theorem* (1979) – **manifold of zero modes** (ALLs) with **degeneracy determined solely by the flux density**, originating from the same operator algebra

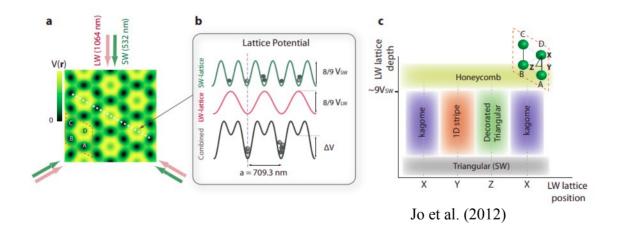
Evolution of the full spectrum





Material realization is difficult, can quantum simulators offer respite?

Kagome network has been simulated in a two-dimensional optical superlattice for ultracold ⁸⁷Rb atoms



QHE (edge currents, Hall drift) was realized shortly afterward on a square geometry (2013).

An open problem to explore anomalous LLs (response of flat bands to flux inhomogeneity) in a quantum simulator

On optical lattices:

- Multiple plaquettes, coupled flux constraints
- bond-dependent gauge engineering complexity
- Scaling up is possible; controlled flux geometry is the frontier.

On superconducting quantum processors:

- Finite-size dominance, geometry fixed by hardware
- Control is feasible; scale and lattice geometry are the frontier.

What becomes possible in larger kagome qubit arrays?